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To my mother, who always used to ask me, �What is a monoclonal antibody?�
and, in another life would have been a wonderful scientist with

her inborn fascination with medical discovery and knowledge.
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PREFACE

In June 2009 at the 56th annualmeeting of the Society ofNuclearMedicine inToronto,

the “Image of the Year” was selected by Dr. Henry N.Wagner Jr. from Johns Hopkins

University [Figure 1(1)]. This image illustrated the high sensitivity of positron

emission tomography (PET) with 18F-2-fluorodeoxyglucose (18F-FDG) to reveal

complete responses as early as 3 months post-treatment with 90Y-ibritumomab

tiuxetan (Zevalin) or 131I-tositumomab (Bexxar) in patients with non-Hodgkin’s

lymphoma (NHL) (2). These two radioimmunotherapeutics are thefirst to be approved

by regulatory authorities for treating cancer. By highlighting this image, Dr. Wagner

not only recognized thegreat advances that havebeenmadeover the past three decades

in radioimmunotherapy (RIT) of NHL (3) but also pointed the way toward how this

approach could be combinedwith achievements in imaging (4) to help further advance

the field of molecularly targeted radiotherapy.

There remainmany challenges to be overcome, however, particularly to extend the

impressive results seen in NHL to RITof the more prevalent solid tumors (3). RITand

peptide-directed radiotherapy (PDRT) of solid tumors have been restricted by low

tumor uptake, dose-limiting toxicity to normal tissues including the bonemarrow, and

an intrinsicallygreater radioresistance (3).Nonetheless, the successofRITofNHLhas

proven that this approach is scientifically sound, translatable to clinical practice, and

feasible. Moreover, there has recently been progress in the treatment of solid tumors

with targeted radiotherapeutics, particularly using innovative pretargeting techniques

and in the setting of minimal residual disease (3).

My goal in assembling this book was to provide a single resource that would

constitute an expert discussion of the diverse aspects of the field of monoclonal

antibody and peptide-targeted radiotherapy of cancer. The chapters cover awide range

of topics including the optimization of design of biomolecules and their radiochem-

istry, cell andanimalmodels forpreclinical evaluation, important discoveries fromkey

clinical trials of their effectiveness for the treatment ofmalignancies, anunderstanding

of their radiation biology and dosimetry, considerations in their regulatory approval,

and health economics issues that need to be appreciated to ultimately see their

widespread use in clinical oncology.Newemerging areas such as the role ofmolecular

imaging in evaluating the response and resistance to targeted radiotherapy, a discus-

sion of the bystander effect that may enhance its effectiveness, and the potential of

combining cytolytic virus therapywith targeted radiotherapy have also been included.

Many of the chapters were authored by internationally renowned experts who have

made seminal discoveries in the field and by otherswho are leaders in areas thatwill be

important to its future. I am grateful to all authors for their excellent contributions and

xvii



thank them all for their patience as this book emerged. I am also indebted to my wife,

Anitawho tolerated theworkload and spared some of the precious time that we have to

spend together to accomplish this task. I believe that the book not only celebrates the

substantial achievements ofmAb and peptide-targeted radiotherapy of cancer but also

acknowledges its limitations and failures—as Henry Ford said, “Failure is simply an

opportunity to begin again, this time more intelligently.” A great deal has certainly

been learned, approaches are now more informed and elegant, and it is expected that

this new knowledge will build on the pioneering discoveries in targeted radiotherapy

of NHL that have proven so successful as aptly presented in Dr.Wagner’s selection of

the Image of the Year. I hope that this book will provide the impetus for discussion,

encourage continued contributions to the advancement of the field, and stimulate the

imagination of those who would aspire to set its future.

RAYMOND M. REILLY

Toronto, Ontario, Canada

January 2010

FIGURE 1 Whole-body PET scans using 18F-2-fluoro-deoxyglucose demonstrating com-

plete response in two patients receiving 131I-tositumomab (Bexxar; left two images showing

pre- and post-treatment) or 90Y-ibritumomab tiuxetan (Zevalin; right two images showing pre-

and post-treatment). (Reprinted with permission from Reference 1.)
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CHAPTER 1

Antibody Engineering: Optimizing the
Delivery Vehicle

DIANE E. MILENIC

1.1 INTRODUCTION

The progression of monoclonal antibodies (MAbs) for radioimmunotherapy (RIT)

has beendrivenby theneed to solvea series of problems.Asvariants of antibodies have

beendevelopedandevaluated inpreclinical studies, opportunities and limitationshave

become evident. Recent advances in DNA technology have led to the ability to tailor

and manipulate the immunoglobulin (Ig) molecule for specific functions and in vivo

properties. This chapter discusses the use of monoclonal antibodies for radiotherapy

with an emphasis on the problems that have been encountered and the subsequent

solutions.

The exploration of monoclonal antibodies as vehicles for the delivery of radio-

nuclides for therapy has been ongoing for almost 50 years (1). In 1948, Pressman and

Keighley reported the first in vivo use of a radiolabeled antibody for imaging (2). Ten

years later, the first report of radiolabeled tumor-specific antibodies was utilized for

radioimmunodiagnosis, and in 1960, radiolabeled antibodies were used to selectively

deliver a therapeutic dose of radiation to tumor tissue (1, 3). Even at these early stages,

investigators were quick to realize the obstacles associated with utilizing antibodies

for radioimmunotherapy. Radiation doses delivered to tumors in patients were too low

to have significant effects on tumor growth, and the prolonged retention of the

radiolabeled antibodies in the blood led to toxicity complications (4). The inherent

heterogeneity in specificity and affinity of polyclonal antibodies resulted in in vivo

variability. The advent of hybridoma technology and the ability to generate mono-

specific, monoclonal antibodies produced a resurgence in the use of antibodies as

“magicbullets” (5, 6). In the1980s, the literature explodedwith reports of radiolabeled

MAbs being evaluated in the clinical setting, initially in radioimmunodiagnostic

applications, confirming that MAbs against tumor-associated antigens could target
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tumors in patients. Subsequently, RIT clinical trials were initiated to deliver systemi-

cally administered radiation to tumors with a specificity that would spare normal

tissues from damage (7). This optimistic viewpoint was quickly tempered by the

realization of the obstacles inherent to the use of a biological reagent, especially one of

xenogeneic origin.

The preclinical and clinical RIT trials exposed the major constraints to the

successful clinical use of radiolabeled MAbs: (i) development of human anti-murine

immunoglobulin antibodies (HAMA); (ii) inadequate (low) therapeutic levels of

radiation doses delivered to tumor lesions; (iii) slow clearance of the radiolabeled

MAbs (radioimmunoconjugates) from the blood compartment; (iv) lowMAb affinity

and avidity; (v) trafficking to, or targeting of, the radioimmunoconjugates to normal

organs; and (vi) insufficient penetration of tumor tissue (8, 9). In addition, there were

toxicities associated with conjugated radionuclides when the radioimmunoconju-

gates were metabolized or when the radionuclide dissociated from the immunocon-

jugate (9). With these problems in mind, a primary focus has been to optimize RIT by

manipulating the MAb molecule. As technology permitted, this was initially accom-

plished with chemical or biochemical techniques to generate a variety of immuno-

globulin forms but is now predominated by genetic engineering.

1.2 INTACT MURINE MONOCLONAL ANTIBODIES

InMay 2008, a perspective onMAbs by Reichert and Valge-Archer (10) reported that

in the periods 1980–1989, 1990–1999, and 2000–2005, 37, 25, and 8 murine MAbs,

respectively, were evaluated in the clinic as cancer therapeutics. During this entire 25-

year period, radiolabeled MAbs comprised 33% of the murine MAbs (10). To date,

only two radiolabeled murine (mu) MAbs, both targeting CD20, have received FDA

approval. Zevalin, 90Y-rituxan (ibritumomab-tiuxetan), was approved in 2002 and is

indicated for relapsed or refractory low-grade follicular transformed non-Hodgkin’s

lymphoma (NHL). The overall response rate of patients is reported to be 80%; 46% for

those with rituximab refractory disease (11). Bexxar (131I-tositumomab) was ap-

proved in 2003 for the treatment of non-Hodgkin’s B-cell lymphoma in rituximab

refractory patients (see Chapter 6). Objective responses following 131I-tositumomab

therapy have ranged from 54% to 71% in patients who have undergone previous

therapies while for newly diagnosed patients the response rates are 97% with 63%

of those experiencing a complete response (12).

In clinical trials using muMAbs for RIT of solid tumors, approximately 73%

(ranging from 16% to 100%) of the patients developed HAMA following a single

infusion of MAb (13). In contrast, only about 42% of the patients in RIT trials for

treatment of hematologic malignancies develop HAMA. When multiple doses of a

radioimmunoconjugate have been administered, the amount of MAb that effectively

targets tumor tissue is usually compromised after the second administration (13). In

general, the human antibody response, especially at earlier time points, is directed

against the Fc portion of the MAb molecule (Fig. 1.1). With the passage of time and

particularly after repeated infusions, the specificity of the human antibody response
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matures and becomes increasingly specific for the variable region of theMAb (13). In

some instances, anti-variable region antibodies develop after a single infusion of the

MAb (13, 14). This response has the potential of directly inhibiting the ability of the

injected MAb from interacting with the targeted tumor (14). As with any therapeutic

regimen, for RIT to be effective, multiple treatment cycles will be necessary.

Immunomodulatory drugs such as deoxyspergualin, cyclosporin A, or cyclophospha-

mide have been evaluated as ameans ofminimizingor suppressing a patient’s immune

response during RIT (15).

To address these challenges of MAb-directed therapy, several strategies have been

employed that center aroundmodifying theMAbmolecule. These alterations include

reduction in the size of the MAb molecule, deglycosylation, or the addition of side

groups. Reduction in size of the MAb molecule has been accomplished through

methods such as enzymatic cleavage or genetic engineering (16–18). Digestion of an

antibody with pepsin removes the Fc region of the heavy chain on the carboxyl

terminus of cysteamine producing F(ab0)2 fragments that retain two antigen binding

sites and have amolecularweight of�100 kDa (Fig. 1.1). Fab fragments are generated

by digestion with papain, an enzyme with a specificity for the amino group of

cysteines. In this case, the disulfide bridges between the heavy chains are removed

with theFc region,which results in amolecule (Mr� 50 kDa)with one antigen binding

site. Fab0 fragments are produced through reduction and alkylation of F(ab0)2, which
also yields a MAb molecule with a single antigen binding site and an Mr of �50
kDa (16–18). Comparisons of intact MAbs and F(ab0)2 fragments (Fig. 1.1) in RIT

clinical trials have demonstrated that the F(ab0)2 fragments do have a shorter serum

half-life than intact MAbs. Patient antibody responses against F(ab0)2 fragments

FIGURE 1.1 Schematic of an immunoglobulin structure. Enzymatic digestion of the intact

IgG molecule yields F(ab0)2 and Fab fragments.
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appear to occur with lower frequency after a single administration of the radio-

immunoconjugate. Furthermore, some objective responses to treatment with a radi-

olabeled F(ab0)2 fragment have been observed (19, 20). Autoradiographic studies of

radiolabeled MAbs administered to athymic mice bearing human tumor xenografts

have illustrated the ability of Fab0 and F(ab0)2 fragments to penetrate tumor tissuewith

greater efficiency than intact MAbs (20, 21). The pharmacokinetics of Fab or Fab0

fragments is even more rapid than F(ab0)2 fragments (t1/2a� 10min, t1/2b� 1.5 h for

Fab0 fragments versus t1/2a� 30min, t1/2b� 12 h forF(ab0)2 fragments) (22). In general,

Fab and Fab0 fragments have proven to be less immunogenic than intact MAbs (23).

Their greatest disadvantage for RIT applications is their high and persistent renal

localization, which appears to be a function of molecular size (22), which greatly

increases the risk for renal toxicity.Thedegree towhich the radiolabel is retained in the

kidneys depends on the radionuclide and the radiolabeling chemistry (see Chapter 2).

RadioiodinatedMAbs are rapidly dehalogenated and the radioiodine excreted via the

kidneys or into the stomach and intestines. Free radioiodine is trapped in the thyroid

gland if there is inadequate blocking with stable iodine. Chelated radiometallonu-

clides, that is, 111In, 90Y, and 177Lu, are not as readily eliminated from normal tissues

when the radioimmunoconjugate is metabolized (24). The retention of radiometals in

the kidneys is due to the reabsorption of antibody fragments after their glomerular

filtration followed by degradation of the radioimmunoconjugates with trapping of

radioactive metabolites within the renal tubular cells (22, 24, 25). Although they are

readily eliminated from the body, radioiodines may also pose a concern for toxicity to

renal tissue, depending on the dose of radioactivity administered. An effective means

of enhancing renal excretion of the radioimmunoconjugates is the blocking of its

readsorption from the luminal fluid in the proximal tubules by administering basic

amino acids such as lysine or arginine, prior to or with the radiolabeled MAb

fragment (26, 27).

Fragments of MAb that retain immunoreactivity, however, are often difficult to

generate (22). Asmentioned, they are prepared by proteolytic digestion of intactMAb

using enzymes, a procedure thatmust be optimized for eachMAb and usually requires

threefold or more MAbs to obtain the final desired quantity of the fragment. The

process is inefficient and costly when producing the amounts necessitated by a RIT

clinical trial.

1.3 RECOMBINANT IMMUNOGLOBULIN MOLECULES

Antibodies consist of four polypeptide chains, two heavy and two light chains,

connected by disulfide bonds; the heavy chains are glycosylated (Fig. 1.1). Several

criteriamust bemet to generate andproducegenetically engineered antibodies. First, a

host cell is needed that would produce and secrete a properly assembled functional

antibody molecule with the appropriate carbohydrate side chains. Second, the DNA

must be introduced into the recipient cell in an efficient manner. Finally, expression

vectorsmust be available that permit the expression of the introduced genes as well as

the isolation of the cells expressing the introduced antibody genes (28). The vectors
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