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Preface

This book is a successor to the book written by the first author (with the help of Dr Klaus
Kelkel, now at ZF Friedrichshafen), Technische Schwingungslehre: Lineare Schwingungen
kontinuierlicher mechanischer Systeme, published in 1989 in German. The German book,
which has been out of print for many years now, was developed from a course on the
vibrations of continuous systems delivered regularly by the first author at the Technische
Universität Darmstadt over the last 30 years to fourth and fifth year students of Applied
Mechanics, Mechanical Engineering, and other engineering curricula. This course deals
exclusively with linear continuous systems and structures, including wave propagation in
different media, in particular acoustic waves. The students come from a course on the
vibrations of discrete systems, or at least with rudimentary knowledge of discrete vibrations.
Over the years, the course content has changed more and more. The plan for a new
text came up in 2004 when the second author was spending a year in Darmstadt as an
Alexander von Humboldt Research Fellow. It was then that we started to work on the present
book. Later, we had a chance to get together again for some time in the Mathematisches
Forschungsinstitut Oberwolfach, in the Black Forest, in Germany. In this stimulating and
pleasant environment we worked out many details that have found their place in the present
book.

From the beginning, in the Darmstadt vibration course we aimed at presenting both
the modal solutions and the traveling wave solutions, showing the relations between the
two types of representations of solutions. We have found time and again in different
engineering problems involving the vibrations of elastic structures, that one and the same
problem can be handled in both ways, and this dual approach gives new insights. This is
particularly useful whenever the spectra are rather dense, as for example in the vortex-
excited vibrations of overhead transmission lines. We believe that stressing the duality
between modal representation and a wave-type solution often leads to better understanding
of the system’s dynamics.

In a time when most of the structural vibrations problems in industry are dealt with by
commercial finite-element and/or multi-body codes, often used as black boxes, it may seem
that analytical solutions to vibration problems have become superfluous. True, in general it is
hopeless to search for analytical solutions for vibrations problems in systems with complex
geometry, for example. On the other hand, it can also be extremely dangerous to solve
vibration problems using finite-element codes as black boxes without properly checking
the applicability and convergence for the problem at hand. Often, for example, gyroscopic
terms, non-classical damping and other effects may not be properly handled by the codes if
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these are used naively. There are worked problems in this book that clearly demonstrate this
point. It is therefore important to have benchmark solutions for a large number of vibration
problems. Such benchmark results are precisely given by the analytical solutions. Moreover,
certain qualitative aspects, such as dependence on parameters, asymptotic behavior, or the
basic physics of the problem can be easily recognized from the analytical solutions, and are
difficult to find by purely numerical methods. In certain cases, a theoretical/analytical handle
can also help in extracting the numerical solution accurately and efficiently. The authors
therefore believe that analytical solutions for linear vibrations of continuous systems even
today are of great relevance to engineering curricula.

This book deals mainly with the derivation of the linear equations of motion of continuous
mechanical systems such as strings, rods, beams, plates and membranes as well as with
their solution, both via modal decomposition, and by the wave approach. The equations
are derived using the elementary Newton–Euler approach, as well as using variational
techniques. Both the free vibrations and forced damped and undamped vibrations are studied.
The eigenvalue problems are solved analytically wherever possible, and orthogonality
conditions are derived. Problems with non-homogeneous boundary conditions and systems
involving simultaneously distributed and lumped parameters are discussed in detail.
Eigenvalue problems for systems in which the eigenvalue appears explicitly in the boundary
conditions are examined, and the orthogonality of eigenfunctions is also derived for such
systems. The forced vibrations are also studied through different solution techniques.
Important discretization methods are discussed in a systematic fashion, including the
Rayleigh–Ritz and the Galerkin methods. Scattering of waves, and energetics of wave
propagation in continuous media are examined in detail. The wave approach is used to
explain certain phenomena, such as dispersion, wave propagation during impact and radiation
damping.

The dynamics of the aforementioned elastic structural elements are dealt with in the first
five chapters. In each of these chapters, a number of free and forced vibration problems are
solved, using both exact and also approximate techniques, modal and wave representation.
Almost no attention is given to the numerical solution of matrix eigenvalue problems
resulting from the discretization of continuous systems, since tools such as MATLAB or
Mathematica are readily available for their solution. Among some topics less commonly
found in vibration books are dynamics of systems involving continuous and lumped
parameters, dynamics and wave propagation in traveling continua, wave propagation during
impacts, and the phenomenon of radiation damping.

In Chapter 6, the self-adjoint boundary value problems of continuous elastic systems are
dealt with in a somewhat more abstract manner, and general results, such as the expansion
theorem and Rayleigh’s quotient, are stated and discussed in general form. A formulation
for the eigenvalue problem in terms of integral equations using Green’s functions is also
given. The same chapter also deals with the class of discretization methods in which the
solution is written as a series of products of chosen shape-functions with unknown time
functions (generalized coordinates). The different ways of minimizing the error then lead
to the different methods such as the Rayleigh–Ritz method, the Galerkin method and the
collocation method. This also includes finite-element methods, which can be regarded as a
particular case of the Rayleigh–Ritz methods.

Chapter 7 is in two parts. The first part is devoted to waves in fluids, including acoustic
media, propagation in wave guides and also in slightly viscous fluids. Radiation from
membranes and plates is also examined. The second part deals with surface waves in
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incompressible liquids, sloshing of liquids in partially filled tanks, and surface waves
in channels. Chapter 8 deals with elements of wave motion in three-dimensional elastic
continua, and includes a short introduction to Rayleigh surface waves.

Three appendices complement the text. The first one is on Hamilton’s principle and the
variational formulation of dynamics, the second one on harmonic waves, Fourier
representation of waves and dispersion, and the third one is on the variational formulation
of plate dynamics.

Each chapter comes with a number of problems of different degrees of difficulty, most of
which have been used as homework problems in the course. There are many others which
are new. Some of the exercise problems are intended to motivate the reader to explore some
of the more advanced topics that are available in scientific journals or more advanced texts.

The authors believe that this book will fill a void as a textbook for a course on the linear
vibrations of continuous systems. The sections of the book are carefully planned so that they
may be used selectively in an undergraduate course, or a post-graduate course. It is hoped
that the presence of some of the advanced topics (all of which may not be possible to cover
in one course) will inspire the students to explore beyond the limits of a formal course.
This book also should be of use to engineers working in the field of structural vibrations
and dynamics.

The authors thank the staff of the Dynamics and Vibrations group in Darmstadt, in
particular Dr Daniel Hochlenert and Dr Gottfried Spelsberg-Korspeter. They not only
participated in the Oberwolfach project and gave important inputs, but also spent some
time at IIT Kharagpur with the second author, where they helped in setting up the Latex
environment for producing the book. The second author thanks Professor Sandipan Ghosh
Moulic for providing useful comments on Chapter 7, and Mr Miska Venu Babu for his
help in preparing the figures. The authors also thank the Alexander von Humboldt
Foundation, the DAAD (German Academic Exchange Service), which made possible
the visit of Darmstadt staff to IIT Kharagpur, the Mathematisches Forschungsinstitut
Oberwolfach, as well as Wiley staff, who were extremely helpful in producing this book.

March 2007 Peter Hagedorn
Darmstadt

Anirvan DasGupta
Kharagpur





1
Vibrations of strings and bars

A one-dimensional continuous system, whose configuration at any time requires only one
space dimension for description, is the simplest model of a class of continua with boundaries.
Strings in transverse vibration, and bars of certain geometries in axial and torsional vibrations
may be adequately described by one-dimensional continuous models. In this chapter, we
will consider such models that are not only simple to study, but also are useful in developing
the basic framework for analysis of continuous systems of one or more dimensions.

1.1 DYNAMICS OF STRINGS AND BARS: THE NEWTONIAN
FORMULATION

1.1.1 Transverse dynamics of strings

A string is a one-dimensional elastic continuum that does not transmit or resist bending
moment. Such an idealization may be justified even for cable-like components when the
ratio of the thickness of the cable to its length (or wavelength of waves in the cable) is
small compared to unity. In deriving the elementary equation of motion, it is assumed that
the motion of the string is planar, and transverse to its length, i.e., longitudinal motion
is neglected. Further, the amplitude of motion is assumed to be small enough so that the
change in tension is negligible.

Consider a string, stretched along the x-axis to a length l by a tension T , as shown in
Figure 1.1. Arbitrary distributed forces are assumed to act over the length of the string.
The transverse motion of any point on the string at the coordinate position x is represented
by the field variable w(x, t) where t is the time. Consider the free body diagram of a
small element of the string between two closely spaced points x and x + �x, as shown in
Figure 1.2. Let the element have a mass �m(x), and a deformed length �s. The tensions
at the two ends are T (x, t) and T (x + �x, t), respectively, and the external force densities
(force per unit length) are p(x, t) in the transverse direction, and n(x, t) in the longitudinal
direction, as shown in the figure. Neglecting the inertia force in the longitudinal direction of
the string, we can write the force balance equation for the small element in the longitudinal
direction as

0 = T (x + �x, t) cos[α(x + �x, t)] − T (x, t) cos[α(x, t)] + n(x, t)�s, (1.1)

Vibrations and Waves in Continuous Mechanical Systems P. Hagedorn and A. DasGupta
Ò 2007 John Wiley & Sons, Ltd
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l

x

z

w(x, t)

ρ,A, T

Figure 1.1 Schematic representation of a taut string

x x + �x

�s
T (x, t)

α(x, t)

T (x + �x, t)

α(x + �x, t)
p(x, t)�s

n(x, t)�s

Figure 1.2 Free body diagram of a string element

where α(x, t) represents the angle between the tangent to the string at x and the x-axis,
as shown in Figure 1.2. Dividing both sides of (1.1) by �x and taking the limit �x → 0
yields

[T (x, t) cosα(x, t)],x = −n(x, t)
ds

dx
, (1.2)

where [·],x represents partial derivative with respect to x. From geometry, one can write

cosα = 1√
1 + tan2 α

= 1√
1 + w2

,x

, and
ds

dx
=
√

1 + w2
,x . (1.3)

Substituting (1.3) in (1.2), and assuming w,x � 1, yields on simplification

[T (x, t)],x = −n(x, t). (1.4)

Therefore, when n(x, t) ≡ 0, (1.4) implies that the tension T (x, t) is a constant. On the
other hand, for a hanging string, shown in Figure 1.3, one has n(x, t) = ρA(x)g, where ρ

is the density, A is the area of cross-section, and g is the acceleration due to gravity. Then,
using the boundary condition of zero tension at the free end, i.e., T (l, t) ≡ 0 (for constant
ρA), (1.4) yields T (x, t) = ρAg(l − x). In general, the tension in a string may also depend
on time. However, in the following discussions, it will be assumed to depend at most on x.
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x

z

w(x, t)

ρ,A, l

g

Figure 1.3 Schematic representation of a hanging string

Now, consider the transverse dynamics of the string element shown in Figure 1.1. The
equation of motion of the small element in the transverse direction can be written from
Newton’s second law of motion as

�mw,tt (x + θ�x, t) = T (x + �x) sin[α(x + �x, t)]

−T (x) sin[α(x, t)] + p(x, t)�s, (1.5)

where �m is the mass of the element, θ ∈ [0, 1], and (·),tt indicates double partial differen-
tiation with respect to time. Again assuming w,x � 1, one can write sin α ≈ tan α = w,x .
Further, �m = ρA(x)�s. Using these expressions in (1.5) and dividing by �x on both
sides, one can write after taking the limit �x → 0

ρA(x)w,tt − [T (x)w,x],x = p(x, t), (1.6)

where, based on the previous considerations, we have assumed ds/dx ≈ 1. The linear partial
differential equation (1.6), along with (1.4), represents the dynamics of a taut string. When
the external force is not distributed but a concentrated force acting at, say x = a, the forcing
function on the right hand side of (1.6) can be written using the Dirac delta function as

p(x, t) = f (t)δ(x − a), (1.7)

where f (t) is the time-varying force, and δ(·) represents the Dirac delta function.
Let us consider the hanging string shown in Figure 1.3 once again. The expression of

tension derived earlier was T (x) = ρAg(l − x). Substituting this expression in (1.6) and
assuming p(x, t) ≡ 0, one obtains on simplification

w,tt − g[(l − x)w,x],x = 0. (1.8)

This case will be considered again later.



4 Vibrations of strings and bars

An important particular form of (1.6) is obtained for p(x, t) ≡ 0, and T and ρA not
depending on x. We can rewrite (1.6) as

w,tt − c2w,xx = 0, (1.9)

where c = √
T /ρA is a constant having the dimension of speed. This represents the unforced

transverse dynamics of a uniformly tensioned string. The hyperbolic partial differential
equation (1.9) is known as the linear one-dimensional wave equation, and c is known as the
wave speed. In the case of a taut string, c is the speed of transverse waves on the string, as we
shall see later. This implies that a disturbance created at any point on the string propagates
with a speed c. It should be clear that the wave speed c is distinct from the transverse
material velocity (i.e., the velocity of the particles of the string) which is given by w,t (x, t).
The solution and properties of the wave equation will be discussed in detail in Chapter 2.

The complete solution of the second-order partial differential equation (1.6) (or (1.9))
requires specification of two boundary conditions, and two initial conditions. For example,
for a taut string shown in Figure 1.1, the appropriate boundary conditions are w(0, t) ≡ 0
and w(l, t) ≡ 0. For the case of a hanging string, the boundary conditions are w(0, t) ≡ 0
and w(l, t) is finite. The initial conditions are usually specified in terms of the initial shape
of the string, and initial velocity of the string, i.e., in the forms w(x, 0) = w0(x), and
w,t (x, 0) = v0(x), respectively. These will be discussed further later in this chapter.

Boundary conditions are classified into two types, namely geometric (or essential) bound-
ary conditions, and dynamic (or natural) boundary conditions. A geometric boundary condi-
tion is one that imposes a kinematic constraint on the system at the boundary. The forces at
such a boundary adjust themselves to maintain the constraint. On the other hand, a dynamic
boundary condition imposes a condition on the forces, and the geometry adjusts itself to
maintain the force condition. For example, in Figure 1.4, the right-end boundary condition is
obtained from the consideration that the component of the tension in the transverse direction
is zero, the roller being assumed massless. This implies T w,x(l, t) ≡ 0, which is a natural
boundary condition. As a consequence of this force condition, the slope of the string remains
zero. At the left-end boundary, the condition w(0, t) ≡ 0 is a geometric boundary condition,
and the transverse force from the support point (which can be computed as T w,x(0, t)) will
adjust itself appropriately to prevent any transverse motion of the right end of the string.
Classification of boundary conditions based on their mathematical structure is discussed in
Section 6.1.1.

When a string, in addition to the distributed mass, carries lumped masses (i.e., parti-
cles of finite mass) and is subjected to concentrated elastic restoring forces, these can be

l

x

z,w

ρ,A, T
w(0, t) ≡ 0

T w,x(l, t) ≡ 0

Figure 1.4 A taut string with geometric and natural boundary conditions
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m

ρ, A, T

z, w

a

l

Figure 1.5 A taut string with lumped elements

x

k

m

P (t)

P (t)

z, w

Figure 1.6 The interaction force diagram

easily incorporated into the equation of motion as follows. Consider the system shown in
Figure 1.5, and the interaction force diagram shown in Figure 1.6. The force P (t) at the
interface between the string and the particle of mass m can be written from Newton’s sec-
ond law for the mass–spring system as P (t) = mw,tt (a, t) + kw(a, t), where x = a is the
location of the lumped system. Using the Dirac delta function, one can represent P (t) as a
distributed force

p(x, t) = mw,tt (x, t)δ(x − a) + kw(x, t)δ(x − a). (1.10)

Therefore, the equation of motion of the combined system can be written as

ρA(x)w,tt − [T (x)w,x],x = −p(x, t),

or

[ρA(x) + mδ(x − a)]w,tt − [T (x)w,x],x + kδ(x − a)w = 0. (1.11)
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ρ,A,Eu(x, t)

x

l

Figure 1.7 Schematic representation of a bar

1.1.2 Longitudinal dynamics of bars

Let us consider the longitudinal dynamics of a bar of arbitrary cross-section, as shown
in Figure 1.7. We assume that the centroid of each cross-section lies on a straight line
which is perpendicular to the cross-section. Under such assumptions, we can study the pure
longitudinal motion of the bar. Such cases include bars which are solids of revolution (for
example, cylinders and cones), and other standard structural elements.

Consider the free body diagram of an element of length �x of the bar, as shown in
Figure 1.8. We assume the displacement of any point of the bar to be along the x-axis, so
that it can be represented by a single field variable u(x, t). Using Newton’s second law,
one can write the equation of longitudinal motion of the element as

ρA(x)�xu,tt (x + θ�x, t) = σx(x + �x, t)A(x + �x) − σx(x, t)A(x), (1.12)

where ρ is the density, A(x) is the cross-sectional area at x, θ ∈ [0, 1], and σx(x, t) is the
normal stress over the cross-section. Dividing (1.12) by �x, and taking the limit �x → 0,
yields

ρA(x)u,tt (x, t) = [σx(x, t)A(x)],x . (1.13)

From elementary theory of elasticity (see [1]), we can relate the longitudinal strain εx(x, t)

and the displacement field as εx(x, t) = u,x(x, t). Using this strain–displacement relation
and Hooke’s law, one can write

σx(x, t) = Eεx(x, t) = Eu,x(x, t), (1.14)

A(x) A(x + �x)

σ(x, t) σ (x + �x, t)

�x

Figure 1.8 Free body diagram of a bar element
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where E is the material’s Young’s modulus. Using (1.14) in (1.13) yields on rearrangement

ρA(x)u,tt − [EA(x)u,x],x = 0. (1.15)

If the bar is homogeneous and has a uniform cross-section, then (1.15) simplifies to

u,tt − c2u,xx = 0, (1.16)

where c = √
E/ρ is the speed of the longitudinal waves in a uniform bar.

The boundary conditions for the bar can be written by inspection. For example, in
Figure 1.7, the left-end boundary condition is u(0, t) ≡ 0, which is a geometric boundary
condition. The right end of the bar is force-free, i.e., EAu,x(l, t) ≡ 0. Hence, the right end
of the bar has a dynamic boundary condition.

1.1.3 Torsional dynamics of bars

In this section, we make the same assumptions regarding the centroidal axis as made for
the longitudinal dynamics of bars. The torsional dynamics of a bar depends on the shape
of its cross-section. Complications arise due to warping of the cross-section during torsion
in bars with non-circular cross-section (see [1]). In general, the torsional vibration of a
bar is also coupled with its flexural vibration. Therefore, to keep the discussion simple,
we will consider only torsional dynamics of bars with circular cross-section. As is known
from the theory of elasticity, for bars with circular cross-section, planar sections remain
planar for small torsional deformation. Further, an imaginary radial line on the undeformed
cross-section can be assumed to remain straight even after deformation.

Consider a circular bar, as shown in Figure 1.9. A small sectional element of the bar
between the centroidal coordinates x and x + �x is shown in Figure 1.10. Let φ(x, t) be the
angle of twist at coordinate x, and φ + �φ(x, t) be the twist at x + �x. From Figure 1.10,
one can write, at any radius r , the kinematic relation

r�φ(x, t) = �xψ(r, t), (1.17)

where ψ(r, t) is the angular deformation of a longitudinal line at r , as shown in the figure.
This angular deformation is the shear angle, as shown in Figure 1.11. Then, the shear stress
τxφ(r, t) is obtained from Hooke’s law as

τxφ(r, t) = Gψ(r, t), (1.18)

ρ,A,Gφ(x, t)

x

l

Figure 1.9 Schematic representation of a circular bar
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r

ψ(r, t)

�φ(x, t)

M(x, t) M(x + �x, t)

�x

Figure 1.10 Deformation of a bar element under torsion

ψ

τxφ

τφx

�x

Figure 1.11 State of stress on a bar element under torsion

where G is the shear modulus. Substituting the expression of ψ(r, t) from (1.17) in (1.18),
one can write in the limit �x → 0

τxφ(r, t) = Grφ,x. (1.19)

Now, the torque at any cross-section x can be computed as

M(x, t) =
∫

A(x)

rτxφ(r, t) dA = Gφ,x

∫
A(x)

r2dA = GIp(x)φ,x, (1.20)

where A(x) represents the cross-sectional area, and Ip(x) is the polar moment of the area.
Writing the moment of momentum equation for the element yields

[∫
A(x+θ�x)

ρr2�x dA

]
φ,tt (x, t) = GIp(x + �x)φ,x(x + �x, t)

−GIp(x)φ,x(x, t) + nE(x, t)�x, (1.21)



1.2 Dynamics of strings and bars: the variational formulation 9

a

φ(x, t)

x

ID

ρ,A,G

Figure 1.12 A circular bar with a disc

where nE(x, t) is an externally applied torque distribution. Dividing both sides in (1.21) by
�x and taking the limit �x → 0, we obtain

ρIpφ,tt − (GIpφ,x),x = nE(x, t). (1.22)

The partial differential equation (1.22) represents the torsional dynamics of a circular bar.
For a bar with uniform cross-section (i.e., Ip independent of x), and nE(x, t) ≡ 0, we obtain
the wave equation

φ,tt − c2φ,xx = 0, (1.23)

where c = √
G/ρ is the speed of torsional waves in the bar.

The boundary conditions for the fixed–free bar shown in Figure 1.9 can be written
as φ(0, t) ≡ 0, and M(l, t) = GIpφ,x(l, t) ≡ 0. We can easily identify the first boundary
condition as geometric, while the second is a natural boundary condition.

As an example, consider the torsional dynamics of a uniform circular bar with a massive
disc at x = a, as shown in Figure 1.12. The disc can be considered as having a lumped
rotational inertia. Therefore, the bar experiences an external torque due to the rotational
inertia of the disc given by nE(x, t) = −IDφ,tt (x, t)δ(x − a), where ID is the rotational
inertia of the disc. Substituting this expression of external moment in (1.22), the complete
equation of torsional dynamics of the bar can then be written as

[ρIp + IDδ(x − a)]φ,tt − GIpφ,xx = 0. (1.24)

1.2 DYNAMICS OF STRINGS AND BARS: THE VARIATIONAL
FORMULATION

The variational formulation presents an elegant and powerful method of deriving the
equations of motion of a dynamical system. Through this formulation, all the boundary
conditions of a system are revealed. This is clearly an advantage especially for continuous
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mechanical systems. As will be discussed later, this approach also yields very useful meth-
ods of obtaining approximate solutions of vibration problems. The fundamentals of the
variational approach for continuous systems is presented in Appendix A. In the following,
we directly use the procedure discussed in Appendix A in deriving the equation of motion
for strings and bars.

1.2.1 Transverse dynamics of strings

Consider a string of length l, as shown in Figure 1.1. The kinetic energy T of the string is

T = 1

2

∫ l

0
ρAw2

,t dx. (1.25)

The potential energy can be written from the consideration that the unstretched length �x is

stretched to �s =
√

1 + w2
,x�x under a constant tension T . Therefore, the potential energy

V stored in the string is given by

V =
∫ l

0
T (ds − dx) ≈

∫ l

0
T

[(
1 + 1

2
w2

,x

)
− 1

]
dx

= 1

2

∫ l

0
T w2

,x dx. (1.26)

Defining the Lagrangian L = T − V , Hamilton’s principle can be written as

δ

∫ t2

t1

L dt = 0 (1.27)

or

δ

∫ t2

t1

1

2

∫ l

0

[
ρAw2

,t − T w2
,x

]
dx. (1.28)

As detailed in Appendix A, one obtains from (1.28)

∫ l

0
ρAw,t δw

∣∣t2
t1

dx −
∫ t2

t1

T w,xδw
∣∣l
0 dt

−
∫ t2

t1

∫ l

0
[ρAw,tt − (T w,x),x] δw dx dt = 0. (1.29)

The first term in (1.29) is always zero since the variations of the field variable at the initial
and final times are zero, i.e., δw(x, t0) ≡ 0, and δw(x, t1) ≡ 0. Following the arguments in
Appendix A, the integrand of the third term in (1.29) has to be zero, i.e.,

ρAw,tt − (T w,x),x = 0, (1.30)
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which yields the equation of transverse dynamics of the string. The second term in (1.29)
is zero if, for example,

T w,x(0, t) ≡ 0 or w(0, t) ≡ 0 (1.31)

and

T w,x(l, t) ≡ 0 or w(l, t) ≡ 0, (1.32)

which represent possible boundary conditions. For a fixed–fixed string, the conditions
w(0, t) ≡ 0 and w(l, t) ≡ 0 hold, while for a fixed–sliding string (see Figure 1.4), w(0, t) ≡
0 and T w,x(l, t) ≡ 0.

In the case of a string with discrete elements shown in Figure 1.5, the kinetic and potential
energies can be written as, respectively,

T = 1

2

∫ l

0
ρAw2

,t (x, t) dx + 1

2
mw2

,t t (a, t)

= 1

2

∫ l

0
[ρA + mδ(x − a)]w2

,t t (x, t) dx, (1.33)

V = 1

2

∫ l

0
T w2

,x(x, t) dx + 1

2
kw2(a, t)

= 1

2

∫ l

0
[T w2

,x(x, t) + kδ(x − a)w2(x, t)] dx. (1.34)

Substituting L = T − V in the variational form (1.27) and taking the variation yields on
simplification

∫ l

0
[ρA + mδ(x − a)]w,t δw

∣∣t2
t1

dx −
∫ t2

t1

T w,xδw
∣∣l
0 dt

−
∫ t2

t1

∫ l

0
[(ρA + mδ(x − a))w,tt − (T w,x),x + kδ(x − a)w] δw dx dt = 0.

The equation of motion is obtained from the third term above which is the same as (1.11).
The boundary conditions remain the same as in (1.31)–(1.32). When external forces are
present, one can use the extended Hamilton’s principle discussed in Appendix A to obtain
the equations of motion.

1.2.2 Longitudinal dynamics of bars

In the case of longitudinal vibration of a bar, the kinetic energy is given by

T = 1

2

∫ l

0
ρAu2

,t dx. (1.35)
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Defining σx and εx as the longitudinal stress and strain, respectively, the potential energy
can be computed from the theory of elasticity as

V = 1

2

∫ l

0
σxεxA dx = 1

2

∫ l

0
EAε2

x dx

= 1

2

∫ l

0
EAu2

,x dx. (1.36)

Writing the Lagrangian L = T − V , Hamilton’s principle assumes the form

δ

∫ t2

t1

L dt = 0,

or

δ

∫ t2

t1

1

2

∫ l

0

(
ρAu2

,t − EAu2
,x

)
dx dt = 0,

⇒
∫ l

0
ρAδu

∣∣t2
t1
dx −

∫ t2

t1

EAu,xδu
∣∣l
0 dt

−
∫ t2

t1

∫ l

0
[ρAu,tt − (EAu,x),x] δu dx dt = 0. (1.37)

Since by definition δu(x, t0) = δu(x, t1) ≡ 0, the first term in (1.37) vanishes identically.
The third term in (1.37) yields the equation of motion

ρAu,tt − (EAu,x),x = 0, (1.38)

and the boundary conditions are obtained from the second term. For example, the boundary
conditions can be written as

EAu,x(0, t) ≡ 0 or u(0, t) ≡ 0, (1.39)

and

EAu,x(l, t) ≡ 0 or u(l, t) ≡ 0. (1.40)

It can be seen that the first condition in both (1.39) and (1.40) is the longitudinal force
condition (natural boundary condition) at the two ends of the bar, while the second condition
is the displacement condition (geometric boundary condition). Thus, for a fixed–fixed bar,
u(0, t) ≡ 0, and u(l, t) ≡ 0, while for a fixed–free bar, u(0, t) ≡ 0 and EAu,x(l, t) ≡ 0. In the
case of a free–free bar, the boundary conditions are EAu,x(0, t) ≡ 0, and EAu,x(l, t) ≡ 0.
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1.2.3 Torsional dynamics of bars

The kinetic energy of a circular bar undergoing torsional oscillations can be written in the
notations used previously in Section 1.1.3 as

T = 1

2

∫ l

0

∫ R

0

∫ 2π

0
ρφ2

,t r
3 dφ dr dx

= 1

2

∫ l

0
ρIpφ

2
,t dx. (1.41)

The potential energy can be written from elasticity theory as

V = 1

2

∫ l

0

∫ R

0

∫ 2π

0
τxφψr dφ drdx. (1.42)

Using the definitions of τrφ and ψ(x, t) from (1.17) and (1.18), respectively, in (1.42), we
have

V = 1

2

∫ l

0

∫ R

0

∫ 2π

0
Gφ2

,xr
3 dφ dr dx

= 1

2

∫ l

0
GIpφ

2
,x dx. (1.43)

Hamilton’s principle can then be written as

δ

∫ t2

t1

1

2

∫ l

0

[
ρIpφ

2
,t − GIpφ

2
,x

]
dx = 0

⇒
∫ l

0
ρIpφ,t δφ

∣∣t2
t1

dx −
∫ t2

t1

GIpφ,xδφ
∣∣l
0 dt

−
∫ t2

t1

∫ l

0
[ρIpφ,tt − (GIpφ,x),x] δφ dx = 0. (1.44)

The first term in (1.44) is zero by definition of the variational formulation. The third term
in (1.44) yields the equation of motion

ρIpφ,tt − (GIpφ,x),x = 0, (1.45)

while the second term provides information on the boundary conditions. For example, the
possible boundary conditions could be

GIpφ,x(0, t) ≡ 0 or φ(0, t) ≡ 0, (1.46)
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and

GIpφ,x(l, t) ≡ 0 or φ(l, t) ≡ 0. (1.47)

The first condition in (1.46) and (1.47) can be easily identified to be the torque condition
(natural boundary condition) at the ends of the bar, while the second condition is on the
angular displacement (geometric boundary condition).

1.3 FREE VIBRATION PROBLEM: BERNOULLI’S SOLUTION

Vibration analysis of a system almost always starts with the free or natural vibration analysis.
This leads us to the important concepts of natural frequency and mode of vibration of the
system. These two concepts form the starting point of any quantitative and qualitative
analysis and understanding of a vibratory system.

It was observed in the above discussions that, under certain assumptions of uniformity,
the one-dimensional wave equation represents the transverse dynamics of a string, and
longitudinal and torsional dynamics of a bar. The wave equation is one of the most important
equations that appear in the study of vibrations of continuous systems. The solution and
properties of the wave equation are fundamental in understanding vibration and propagation
of vibration in continuous media, and will be taken up in detail in later chapters. In this
section, we will discuss a simple solution procedure for the one-dimensional wave equation
and study some of the solution properties.

Consider the wave equation

w,tt − c2w,xx = 0, x ∈ [0, l], (1.48)

with the boundary conditions

w(0, t) ≡ 0, and w(l, t) ≡ 0. (1.49)

Such a problem corresponds to, for example, a fixed-fixed string or bar.
Let us first look for separable solutions of (1.48) in the form

w(x, t) = p(t)W(x). (1.50)

Substituting (1.50) in (1.48) yields on rearrangement

p̈

p
− c2 W ′′

W
= 0. (1.51)

It is easily observed that the first term in (1.51) is solely a function of t , while the second
term is solely a function of x. Therefore, (1.51) will hold identically if and only if both the
terms are constant, i.e.,

p̈

p
= −ω2 and c2 W ′′

W
= −ω2 (1.52)

⇒ p̈ + ω2p = 0 (1.53)


