Applied Biophysics A Molecular Approach for Physical Scientists

Tom A. Waigh University of Manchester, Manchester, UK

John Wiley & Sons, Ltd

Applied Biophysics

Applied Biophysics A Molecular Approach for Physical Scientists

Tom A. Waigh University of Manchester, Manchester, UK

John Wiley & Sons, Ltd

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The Publisher is not associated with any product or vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

The Publisher and the Author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of fitness for a particular purpose. The advice and strategies contained herein may not be suitable for every situation. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website is it is read. No warranty may be created or extended by any promotional statements for this work. Neither the Publisher nor the Author shall be liable for any damages arising herefrom.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Ltd, 6045 Freemont Blvd, Mississauga, Ontario L5R 4J3, Canada

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Anniversary Logo Design: Richard J. Pacifico

Library of Congress Cataloging-in-Publication Data

Waigh, Tom A.
Applied biophysics : a molecular approach for physical scientists / Tom A. Waigh.
p. cm.
Includes index.
ISBN 978-0-470-01717-3 (alk. paper)
1. Biophysics. I. Title.
QH505.W35 2007
\$71.4-dc22
2007011017

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 9780470017173 Cloth, 9780470017180 Paper

Typeset in 10.5/13 Sabon by Thomson Digital, India

Printed and bound in Great Britain by TJ International Ltd, Padstow, Cornwall This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two trees are planted for each one used for paper production.

Contents

Pr	eface			xi
Ac	knowl	edgeme	nts	xiii
1	The I	Building	Blocks	1
	1.1	Protein	15	1
	1.2	Lipids		11
	1.3	Nuclei	c Acids	12
	1.4	Carbol	hydrates	15
	1.5	Water		18
	1.6	Proteo	glycans and Glycoproteins	20
	1.7	Cells (Complex Constructs of Biomolecules)	21
	1.8	Viruses	s (Complex Constructs of Biomolecules)	22
	1.9	Bacteri	ia (Complex Constructs of Biomolecules)	23
	1.10	Other	Molecules	23
	Furth	er Read	ling	23
	Tuto	rial Que	estions	24
2	Meso	scopic I	Forces	25
	2.1	Cohesive Forces		25
	2.2	Hydro	gen Bonding	28
	2.3	Electro	ostatics	30
		2.3.1	Unscreened Electrostatic Interactions	30
		2.3.2	Screened Electrostatic Interactions	32
		2.3.3	The Force Between Charged Spheres	
			in Solution	36
	2.4	Steric a	and Fluctuation Forces	38
	2.5	Depletion Forces		42
	2.6	Hydrodynamic Interactions		44
	2.7	Direct Experimental Measurements of Intermolecular		
		and Su	rface Forces	44

	Further Reading	47
	Tutorial Questions	48
_		
3	Phase Transitions	49
	3.1 The Basics	49
	3.2 Helix–Coil Transition	53
	3.3 Globule–Coil Transition	59
	3.4 Crystallisation	64
	3.5 Liquid–Liquid Demixing (Phase Separation)	68
	Further Reading	74
	Tutorial Questions	74
4	Liquid Crystallinity	
	4.1 The Basics	77
	4.2 Liquid–Nematic–Smectic Transitions	92
	4.3 Defects	95
	4.4 More Exotic Possibilities for Liquid	25
	Crystalline Phases	100
	Further Reading	100
	Tutorial Questions	103
	Tutonal Questions	104
5	Motility	107
	5.1 Diffusion	108
	5.2 Low Reynold's Number Dynamics	116
	5.3 Motility	119
	5.4 First Passage Problem	121
	5.5 Rate Theories of Chemical Reactions	125
	Further Reading	127
	Tutorial Questions	127
6	Aggregating Self-Assembly	129
U	6.1 Surfactants	133
	6.2 Viruses	137
	6.3 Self-Assembly of Proteins	139
	6.4 Polymerisation of Cytoskeletal Filaments (Motility)	142
	Further Reading	148
	Tutorial Questions	
7	Surface Dhonomone	151
/	7.1 Surface Tension	151
	7.1 Sufface refision	131
	/.2 Adhesion	154
	/.3 Wetting	156

	7.4	Capillarity	160
	7.5	Experimental Techniques	164
	7.6	Friction	165
	7.7	Other Surface Phenomena	168
	Furth	er Reading	168
	Tuto	rial Question	169
8	Biom	acromolecules	171
	8.1	Flexibility of Macromolecules	171
	8.2	Good/Bad Solvents and the Size of Polymers	177
	8.3	Elasticity	183
	8.4	Damped Motion of Soft Molecules	187
	8.5	Dynamics of Polymer Chains	191
	8.6	Topology of Polymer Chains – Super Coiling	199
	Furth	er Reading	201
	Tuto	rial Questions	202
9	Char	205	
	9.1	Electrostatics	207
	9.2	Debye–Huckel Theory	213
	9.3	Ionic Radius	214
	9.4	The Behaviour of Polyelectrolytes	218
	9.5	Donnan Equilibria	221
	9.6	Titration Curves	223
	9.7	Poisson-Boltzmann Theory for Cylindrical	
		Charge Distributions	227
	9.8	Charge Condensation	228
	9.9	Other Polyelectrolyte Phenomena	232
	Further Reading		234
	Tutorial Questions		235
10	Mem	branes	237
	10.1	Undulations	238
	10.2	Bending Resistance	240
	10.3	Elasticity	243
	10.4	Intermembrane Forces	248
	Further Reading		250
	Tutorial Questions		251
11	Cont	inuum Mechanics	253
	11.1	Structural Mechanics	2.54

	11.2	Composites	258
	11.3	Foams	261
	11.4	Fracture	263
	11.5	Morphology	265
	Furth	er Reading	265
	Tuto	rial Questions	266
12	Biorh	eology	267
	12.1	Storage and Loss Moduli	270
	12.2	Rheological Functions	274
	12.3	Examples from Biology	276
		12.3.1 Neutral Polymer Solutions	276
		12.3.2 Polyelectrolytes	280
		12.3.3 Gels	283
		12.3.4 Colloids	287
		12.3.5 Liquid Crystalline Polymers	288
		12.3.6 Glassy Materials	290
		12.3.7 Microfluidics in Channels	291
	Furth	er Reading	291
	Tutor	rial Questions	291
13	Expe	rimental Techniques	293
	13.1	Static Scattering Techniques	294
	13.2	Dynamic Scattering Techniques	297
	13.3	Osmotic Pressure	303
	13.4	Force Measurement	306
	13.5	Electrophoresis	314
	13.6	Sedimentation	321
	13.7	Rheology	325
	13.8	Tribology	333
	13.9 Solid Properties		334
	Furth	er Reading	335
	Tuto	rial Questions	336
14	Moto	ors	339
	14.1	Self-assembling Motility – Polymerisation of Actin	
		and Tubulin	341
	14.2	Parallelised Linear Stepper Motors – Striated Muscle	346
	14.3	Rotatory Motors	350
	14.4	Ratchet Models	350
	14.5	Other Systems	352

	Furth	er Reading	353
	Tuto	rial Question	353
15	Struc	tural Biomaterials	355
	15.1	Cartilage – Tough Shock Absorber in Human Joints	355
	15.2	Spider Silk	368
	15.3	Elastin and Resilin	369
	15.4	Bone	371
	15.5	Adhesive Proteins	372
	15.6	Nacre and Mineral Composites	373
	Furth	er Reading	375
	Tuto	rial Questions	375
16	Phase	Behaviour of DNA	377
	16.1	Chromatin – Naturally Packaged DNA Chains	377
	16.2	DNA Compaction – An Example of Polyelectrolyte	
		Complexation	380
	16.3	Facilitated Diffusion	383
	Furth	er Reading	387
	Appe	ndix	389
	Answ	ers to Tutorial Questions	391
	Index		407

Preface

The field of molecular biophysics is introduced in the following pages. The presentation focuses on the simple underlying concepts and demonstrates them using a series of up to date applications. It is hoped that the approach will appeal to physical scientists who are confronted with biological questions for the first time as they become involved in the current biotechnological revolution.

The field of biochemistry is vast and it is not the aim of this textbook to encompass the whole area. The book functions on a reductionist, nuts and bolts approach to the subject matter. It aims to explain the constructions and machinery of biological molecules very much as a civil engineer would examine the construction of a building or a mechanical engineer examine the dynamics of a turbine. Little or no recourse is taken to the chemical side of the subject, instead modern physical ideas are introduced to explain aspects of the phenomena that are confronted. These ideas provide an alternative, complementary set of tools to solve biophysical problems. It is thus hoped that the book will equip the reader with these new tools to approach the subject of biological physics.

A few rudimentary aspects of medical molecular biophysics are considered. In terms of the statistics of the cause of death, heart disease, cancer and Alzheimer's are some of the biggest issues that confront modern society. An introduction is made to the action of striated muscle (heart disease), DNA delivery for gene therapy (cancers and genetic diseases), and self-assembling protein aggregates (amyloid diseases such as Alzheimer's). These diseases are some of the major areas of medical research, and combined with food (agrochemical) and pharmaceutics, provide the major industrial motivation encouraging the development of molecular biophysics. Please try to read some of the highlighted books, they will prove invaluable to bridge the gap between undergraduate studies and active areas of research science.

> Том WAIGH Manchester, UK February 2007

Acknowledgements

I would like to thank my family (Roger, Sally, Cathy, Paul, Bronwyn and Oliver) and friends for their help and support. The majority of the book was written in the physics department of the Universities of Manchester and Leeds. The PhD and undergraduate students (the umpa lumpas etc.) who weathered the initial course and the rough drafts of the lecture notes on which this book was based should be commended. I am indebted to the staff at the University of Edinburgh, the University of Cambridge and the Collège de France who helped educate me concerning the behaviour of soft condensed matter and molecular biophysics.

1 The Building Blocks

It is impossible to pack a complete biochemistry course into a single introductory chapter. Some of the basic properties of the structure of simple biological macromolecules, lipids and micro organisms are covered. The aim is to give a basic grounding in the rich variety of molecules that life presents, and some respect for the extreme complexity of the chemistry of biological molecules that operates in a wide range of cellular processes.

1.1 PROTEINS

Polymers consist of a large number of sub-units (monomers) connected together with covalent bonds. A protein is a special type of polymer. In a protein there are up to twenty different amino acids (Figure 1.1) that can function as monomers, and all the monomers are connected together with identical peptide linkages (C–N bonds, Figure 1.2). The twenty amino acids can be placed in different families dependent on the chemistry of their different side groups. Five of the amino acids form a group with lipophilic (fat-liking) side-chains: glycine, alanine, valine, leucine, and isoleucine. Proline is a unique circular amino acid that is given its own separate classification. There are three amino acids with aromatic side-chains: phenylalanine, tryptophan, and tyrosine. Sulfur is in the side-chains of two amino acids have hydroxyl (neutral) groups that make them water loving: serine and threonine. Three amino acids have very polar positive side-chains: lysine, arginine and histidine. Two amino acids form a family with acidic

Applied Biophysics: A Molecular Approach for Physical Scientists Tom A. Waigh © 2007 John Wiley & Sons, Ltd

Amino acids with hydroxyl or sulfur containing groups

Figure 1.1 The chemical structure of the twenty amino acids found in nature

Proline

Acidic amino acids and amides

Figure 1.1 (Continued)

Figure 1.2 All amino acids have the same primitive structure and are connected with the same peptide linkage through C–C–N bonds (O, N, C, H indicate oxygen, nitrogen, carbon and hydrogen atoms respectively. R is a pendant side-group which provides the amino acid with its identity, i.e. proline, glycine etc.)

side-groups and they are joined by two corresponding neutral counterparts that have a similar chemistry: aspartate, glutamate, asparagine, and glutamine.

The linkages between amino acids all have the same chemistry and basic geometry (Figure 1.2). The *peptide linkage* that connects all amino acids together consists of a carbon atom attached to a nitrogen atom through a single covalent bond. Although the chemistry of peptide linkages is fairly simple, to relate the primary sequence of amino acids to the resultant three dimensional structure in a protein is a daunting task and predominantly remains an unsolved problem. To describe protein structure that occur in their morphology. The motifs include *alpha helices, beta sheets* and *beta barrels* (Figure 1.3). The full three dimensional *tertiary structure* of a protein typically takes the form of a compact globular morphology (the globular proteins) or a long extended conformation (fibrous proteins, Figures 1.4 and 1.5). Globular morphologies usually consist of a number of secondary motifs combined with more disordered regions of peptide.

Charge interactions are very important in determining of the conformation of biological polymers. The degree of charge on a polyacid or polybase (e.g. proteins, nucleic acids etc) is determined by the pH of a solution, i.e. the concentration of hydrogen ions. Water has the ability to dissociate into oppositely charged ions; this process depends on temperature

$$H_2 O \rightleftharpoons H^+ + O H^- \tag{1.1}$$

The product of the hydrogen and hydroxyl ion concentrations formed from the dissociation of water is a constant at equilibrium and at a fixed temperature $(37 \degree C)$

$$c_{\rm H^+}c_{\rm OH^-} = 1 \times 10^{-14}M^2 = K_w \tag{1.2}$$

where c_{H^+} and c_{OH^-} are the concentrations of hydrogen and hydroxyl ions respectively. Addition of acids and bases to a solution perturbs the equilibrium dissociation process of water, and the acid/base equilibrium

Figure 1.3 Simplified secondary structures of (a) an α -helix and (b) a β -sheet that commonly occur in proteins (Hydrogen bonds are indicated by dotted lines.)

THE BUILDING BLOCKS

Figure 1.3 (Continued)

phenomena involved are a corner stone of the physical chemistry of solutions. Due to the vast range of possible hydrogen ion (H^+) concentrations typically encountered in aqueous solutions, it is normal to use a logarithmic scale (pH) to quantify them. The pH is defined as the

Figure 1.4 The complex hierarchical structures found in the keratins of hair (α -helices are combined in to protofibrils, then into microfibrils, macrofibrils, cells and finally in to a single hair fibre [*Reprinted with permission from J.Vincent, Structural Biomaterial*, Copyright (1990) Princeton University Press])

Figure 1.5 The packing of anti-parallel beta sheets found in silk proteins (Distances between the adjacent sheets are shown.)

negative logarithm (base 10!) of the hydrogen ion concentration

$$pH = -\log c_{H^+} \tag{1.3}$$

Typical values of pH range from 6.5 to 8 in physiological cellular conditions. Strong acids have a pH in the range 1–2 and strong bases have a pH in the range 12–13.

When an acid (HA) dissociates in solution it is possible to define an equilibrium constant (K_a) for the dissociation of its hydrogen ions (H^+)

$$HA \rightleftharpoons H^+ + A^- \qquad K_a = \frac{c_{H^+} c_{A^-}}{c_{HA}}$$
(1.4)

where c_{H^+} , c_{A^-} and c_{HA} are the concentrations of the hydrogen ions, acid ions, and acid molecules respectively. Since the hydrogen ion concentration follows a logarithmic scale, it is natural to also define the dissociation constant on a logarithmic scale (pK_a)

$$pK_a = -\log K_a \tag{1.5}$$

The logarithm of both sides of equation (1.4) can be taken to give a relationship between the pH and the pK_a value:

$$pH = pK_a + \log\left\{\frac{c_{\text{conjugate_base}}}{c_{\text{acid}}}\right\}$$
(1.6)

where $c_{conjugate_base}$ and c_{acid} are the concentrations of the conjugate base (e.g. A⁻) and acid (e.g. HA) respectively. This equation enables the degree of dissociation of an acid (or base) to be calculated, and it is named after its inventors *Henderson and Hasselbalch*. Thus a knowledge of the pH of a solution and the pK_a value of an acidic or basic group allows the charge fraction on the molecular group to be calculated to a first approximation. The propensity of the amino acids to dissociate in water is illustrated in Table 1.1. In contradiction to what their name might imply, only amino acids with acidic or basic side groups are charged when incorporated into proteins. These charged amino acids are arginine, aspartic acid, cysteine, glutamic acid, histidine, lysine and tyrosine.

Another important interaction between amino acids, in addition to charge interactions, is their ability to form hydrogen bonds with surrounding water molecules; the degree to which this occurs varies. This amino acid hydrophobicity (the amount they dislike water) is an important driving force for the conformation of proteins. Crucially it leads to the compact conformation of globular proteins (most enzymes) as the hydrophobic groups are buried in the centre of the globules to avoid contact with the surrounding water.

Name	pK _a value of side chain	Mass of residue	Occurrence in natural proteins (%mol)
Alanine	_	71	9.0
Arginine	12.5	156	4.7
Asparagine		114	4.4
Apartic acid	3.9	115	5.5
Cysteine	8.3	103	2.8
Glutamine	_	128	3.9
Glutamic acid	4.2	129	6.2
Glycine		57	7.5
Histidine	6.0	137	2.1
Isoleucine	_	113	4.6
Leucine		113	7.5
Lysine	10.0	128	7.0
Methionine	_	131	1.7
Phenylalanine	_	147	3.5
Proline	_	97	4.6
Serine		87	7.1
Threonine	_	101	6.0
Tyrptophan	_	186	1.1
Tyrosine	10.1	163	3.5
Valine	—	99	6.9

 Table 1.1
 Fundamental physical properties of amino acids found in protein

 [Ref.: Data adapted from C.K. Mathews and K.E. Van Holde, Biochemistry, 137].

Figure 1.6 Hierarchical structure for the collagen triple helices in tendons (Collagen helices are combined into microfibrils, then into sub-fibrils, fibrils, fascicles and finally into tendons.)

Covalent interactions are possible between adjacent amino acids and can produce solid protein aggregates (Figures 1.4 and 1.6). For example, disulfide linkages are possible in proteins that contain cysteine, and these form the strong inter-protein linkages found in many fibrous proteins e.g. keratins in hair.

The internal secondary structures of protein chains (α helices and β sheets) are stabilised by hydrogen bonds between adjacent atoms in the peptide groups along the main chain. The important structural proteins such as keratins (Figure 1.4), collagens (Figure 1.6), silks (Figure 1.5), anthropod cuticle matrices, elastins (Figure 1.7), resilin

Figure 1.7 The β turns in elastin (a) form a secondary elastic helix which is subsequently assembled into a superhelical fibrous structure (b)

Figure 1.8 Two typical structures of globular proteins calculated using X-ray crystallography data

and abductin are formed from a combination of intermolecular disulfide and hydrogen bonds.

Some examples of the globular structures adopted by proteins are shown in Figure 1.8. Globular proteins can be denatured in a folding/ unfolding transition through a number of mechanisms, e.g. an increase in the temperature, a change of pH, and the introduction of hydrogen bond breaking chaotropic solvents. Typically the complete denaturation transition is a first order thermodynamic phase change with an associated latent heat (the thermal energy absorbed during the transition). The unfolding process involves an extremely complex sequence of molecular origami transitions. There are a vast number of possible molecular configurations ($\sim 10^{N}$ for an N residue protein) that occur in the reverse process of protein folding, when the globular protein is constructed from its primary sequence by the cell, and thus frustrated structures could easily be formed during this process. Indeed, at first sight it appears a certainty that protein molecules will become trapped in an intermediate state and never reach their correctly folded form. This is called Levinthal's paradox, the process by which natural globular proteins manage to find their native state among the billions of possibilities in a finite time. The current explanation of protein folding that provides a resolution to this paradox, is that there is a funnel of energy states that guide the kinetics of folding across the complex energy landscape to the perfectly folded state (Figure 1.9).

There are two main types of inter-chain interaction between different proteins in solution; those in which the native state remains largely

Figure 1.9 Schematic diagram indicating the funnel that guides the process of protein folding through the complex configuration space that contains many local minima. The funnel avoids the frustrated misfolded protein structures described in Levinthal's paradox

unperturbed in processes such as protein crystallisation and the formation of filaments in sheets and tapes, and those interactions that lead to a loss of conformation e.g. heat set gels (e.g. table jelly and boiled eggs) and amyloid fibres (e.g. Alzheimer's disease and Bovine Spongiform Encephalopathy).

1.2 LIPIDS

Cells are divided into a series of subsections or compartments by membranes which are formed predominantly from lipids. The other main role of lipids is as energy storage compounds, although the molecules play a role in countless other physiological processes. Lipids are amphiphilic, the head groups like water (and hate fat) and the tails like fat (and hate water). This amphiphilicity drives the spontaneous self-assembly of the molecules into membranous morphologies.

There are four principle families of lipids: fatty acids with one or two tails (including carboxylic acids of the form RCOOH where R is a long hydrocarbon chain), and steroids and phospholipids where two fatty acids are linked to a glycerol backbone (Figure 1.10). The type of polar head group differentiates the particular species of naturally occurring lipid. Cholesterol is a member of the steroid family and these compounds are often found in membrane structures. Glycolipids also occur in membranes and in these molecules the phosphate group on a phospholipid is replaced by a sugar residue. Glycolipids have important roles in cell signalling and the immune system. For example, these molecules are an important factor in determining the compatibility of blood cells after a blood transfusion, i.e. blood types A, B, O, etc.

Figure 1.10 Range of lipid molecules typically encountered in biology (a) fatty acids with one tail; (b) steroids and fatty acids with two tails; (c) phospholipids

1.3 NUCLEIC ACIDS

The 'central dogma of biochemistry' according to F.C.Crick is illustrated in Figure 1.11. DNA contains the basic blueprint for life that guides the construction of the vast majority of living organisms. To implement this blue print cells need to *transcribe* DNA to RNA, and this structural information is subsequently translated into proteins using specialised protein factories (the ribosomes). The resultant proteins can then be used to catalyse specific chemical reactions or be used as building materials to construct new cells.

This simple biochemical scheme for transferring information has powerful implications. DNA can now be altered systematically using *recombinant DNA technology* and then placed inside a living cell. The foreign DNA hijacks the cell's mechanisms for translation and the proteins that are subsequently formed can be tailor-made by the genetic engineer to fulfil a specific function, e.g. bacteria can be used to form biodegradable plastics from the fibrous proteins that are expressed.

Figure 1.11 The central dogma of molecular biology considers the duplication and translation of DNA. DNA is duplicated from a DNA template. DNA is transcribed to form a RNA chain, and this information is translated into a protein sequence

Figure 1.12 The chemical structure of the base of a nucleic acid consists of a phosphate group, a sugar and a base

The monomers of DNA are made of a sugar, an organic base and a phosphate group (Figure 1.12). There are only four organic bases that naturally occur in DNA, and these are thymine, cytosine, adenine and guanine (T,C,A,G). The sequence of bases in each strand along the backbone contains the genetic code. The base pairs in each strand of the double helical DNA are complementary, A has an afinity for T (they form two hydrogen bonds) and G for C (they form three hydrogen bonds). The interaction between the base pairs is driven by the geometry of the hydrogen bonding sites. Thus each strand of the DNA helix contains an identical copy of the genetic information to its complementary strand, and replication can occur by separation of the double helix and resynthesis of two additional chains on each of the two original double helical strands. The formation of helical secondary structures in DNA drastically increases the persistence length of each separate chain and is called a *helix-coil transition*.

There is a major groove and a minor groove on the biologically active A and B forms of the DNA double helix. The individual polynucleotide DNA chains have a sense of direction, in addition to their individuality (a complex nucleotide sequence). DNA replication in vivo is conducted by a combination of the DNA polymerases (I, II and III).

DNA in its double helical form can store torsional energy, since the monomers are not free to rotate (like a telephone cable). The ends of a DNA molecule can be joined together to form a compact supercoiled structure that often occurs in vivo in bacteria; this type of molecule presents a series of fascinating questions with regard to its statistical mechanics and topological analysis.

DNA has a wide variety of structural possibilities (Table 1.2, Figure 1.13). There are *3 standard types* of averaged double helical structure labelled A, B and Z, which occur ex vivo in the solid fibres used for X-ray structural determination. Typically DNA in solution has a structure that is intermediate between A and B, dependent on the chain sequence and the aqueous environment. An increase in the level of hydration tends to increase the number of B type base pairs in a double

Property	A form	B form	Z-form
Direction of helix rotation	Right	Right	Left
Number of residues per turn	11	10	12
Rotation per residue	33°	36°	30°
Rise in helix per residue	0.255 nm	0.34 nm	0.37 nm
Pitch of helix	2.8 nm	3.4 nm	4.5 nm

 Table 1.2
 Structural parameters of polynucleotide helices

Z-DNA

Figure 1.13 Molecular models of A, B and Z type double helical structures of DNA (A and B type helical structures, and their intermediates typically occur in biological systems. Z-DNA helical structures crystallise under extreme non-physiological conditions.)