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Preface

This book is based around the concept of ‘adaptive structures’, by which
we mean engineering structures which have the ability to adapt, evolve or
change their properties or behaviour in response to the environment around
them. In recent years this concept has developed into a richly diverse area
of research which includes topics such as structures, materials, dynamics,
control, design and biological systems. The interdisciplinary fusion of these
individual topic areas creates the possibility for new and exciting techno-
logical developments. These developments have been taking place in a wide
range of industrial applications, but are particularly advanced in the aerospace
and space technology sector.

Each chapter in this book represents the current state of the art in a
particular aspect of adaptive structures, written by leading experts in their
respective fields. But what about future developments beyond the current
state of the art? Well, many chapters include discussions on future devel-
opments. More than this, we believe that by bringing together so many
interrelated and yet diverse topics in a single volume one can get a sense
of the huge future potential of this rapidly developing field of research. We
hope that by viewing these combined chapters as a whole, the reader can
enjoy the same sense of excitement and inspiration we felt when compiling
this volume.

WHAT ARE ADAPTIVE STRUCTURES?

Humans have long been fascinated by nature’s ability to build structures
which adapt to their environment. In contrast, our own structures often
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appear inefficient, static and cumbersome. In engineering, the term ‘adap-
tive structure’ has come to mean any structure which can alter either
its geometric form or material properties. These are processes which are
currently much simpler than those which can be observed in nature. The
terms ‘smart’, ‘intelligent’ and ‘active’ have all been applied to describe
both materials and structures which exhibit some or all of these properties
(see the selection of authored and edited texts referenced below). Increas-
ingly, the ability to adapt to a performance demand or environmental
conditions has become a key design criterion for a range of structural and
mechanical systems in recent years. It is precisely this type of requirement
which has become a key driver in the development of adaptive structure
technology.

The adaptation process itself can be passive, active, based on material
properties, control, mechanical actuation or some combination of these. As
performance limits on structural systems are increasinlgly being pushed to
more extreme levels, especially with respect to minimising weight, there is a
strong requirement to find more efficient ways to apply adaption processes.
This brings significant scientific challenges relating to structural stability,
vibration, control/actuation, sensing and material behaviour.

There are many examples of adaptive structures from a broad range of
engineering applications, but much of the driving force for development has
come from the aerospace and space engineering sectors. The need for a high
level of material performance in terms of strength, flexibility and minimal
weight, coupled with the need for deployment and operation in extreme
environments, has led to some of the most advanced adaptive structures
currently in existence. There has also been considerable interest in new
concepts such as ‘morphing’ wings for aircraft.

As these more advanced concepts of adaptive structures become realisable,
the interaction and integration of material behaviour, control, sensing and
actuation becomes ever more critical.

WHY ADAPTIVE STRUCTURES 2006?

This book forms a permanent record of the 2006 Colston Research Society
Symposium on Adaptive Structures, held at the University of Bristol on
10-12 July 2006. The symposium formed part of of a wider celebration
happening in Bristol during 2006 to mark the bicentenary of the birth of
Isambard Kingdom Brunel (1806-1859), arguably the greatest engineer of
all time. Brunel’s influence on the science and application of engineering
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led to some of the greatest engineering achievements in history. The historic
city of Bristol has special links to Brunel, with structures such as the Clifton
Suspension Bridge and the SS Great Britain forming a prominent part of the
city’s engineering heritage.

Bristol retains a strong link with modern engineering as a key centre for
European aerospace manufacture. Representatives from local industry took
part in the symposium and a public lecture by Gordon McConnell, Senior
Vice President — Engineering at Airbus UK, was given on ‘Continuing the
Vision — Airbus A380 and Beyond’. The focus of this symposium was
to consider the direction and key challenges associated with the rapidly
developing field of adaptive structures.

WHAT DID WE LEARN?

The book chapters stand alone in giving detailed information in specific topic
areas. However, there are some strong ‘emergent’ or common themes which
relate the diverse array of subject areas — from precise theoretical mechanics
and control in piezoelectric devices, through advanced polymer chemistry,
to the innermost workings of a Venus Fly Trap.

Firstly, it is clear that advanced material properties lie at the very heart
of adaptive structures. In this book, topics covered range from chemistry to
theoretical mechanics — seemingly disparate areas but crucial to the under-
standing of many problems. In fact this example highlights one of the key
concepts to emerge from this book — integrated thinking. What do we mean
by this? Any material has a chemical make-up and at the same time a
mechanical behaviour. Our traditional approach to scientific research means
that these two things are treated as completely separate subjects, so much so
that many practitioners from either field may not even be able to commu-
nicate with each other! What is clear for adaptive structures research is that
integrated understanding of a material’s behaviour can lead to novel ways of
exploitation.

This becomes more specific when we think about ‘material’ and ‘struc-
tural’ properties. Again, although often separated, throughout this book we
see examples of ‘multifunctionality’ which makes this traditional separation
irrelevant. In essence we need to see a blurring of the distinction between
‘structure’ and ‘material’, because when we do this new possibilities emerge
which can potentially be exploited. This is often possible across the length
scales. Although the dominant motivations are for aerospace and space
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applications (and a small amount of civil engineering) there are also many
possibilities at the MEMS and nano scales.

Another common thread in this work is that of biological inspiration (or
analogy/function). A clear message is that nature uses information and struc-
ture rather than energy to design its structures. Nature also makes significant
use of hierarchy throughout its adaptive structures, leading quite naturally
to multifunctional behaviour. It is also clear that with regard to obtaining
information and acting upon it, our current sensing and control/actuation
technology is some way behind that employed by nature. Again, we see that
there is a strong driver towards integration of function — sensors which are
also actuators, materials with integral sensors, etc. Structural health moni-
toring is relatively new in engineering, but an entirely natural (and essen-
tial) process for biological systems. Ways of efficiently closing the control
loop to provide feedback continues to challenge our traditional engineering
approach.

Imparting some degree of self-healing to an engineering structure/material
is perhaps a prime example of how research is attempting to bridge the
divide between the synthetic and organic. One can envisage such a function-
ality offering real benefit across a wide range of engineering applications;
however, replicating the subtleties of the natural world continues to pose
significant challenges.

Overall, there is a strong sense that we need to challenge existing ways
of thinking: concepts, assumptions and design approaches. Throughout this
book the reader will see examples of this type of new and questioning
approach. But these thought processes are not just idle speculation — almost
every one is backed up with high-quality experimental validation.

Arguably, had Brunel been alive today he would have been a champion
of the thinking that is encapsulated within the work presented here. Never
one to shy away from applying the latest technologies available, or indeed
finding his own solutions to problems, Brunel would no doubt approve of
the theme, topics and findings presented herein.
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Adaptive Structures for
Structural Health
Monitoring

Daniel J. Inman and Benjamin L. Grisso

Center for Intelligent Material Systems and Structures,
Department of Mechanical Engineering, 310 Durham Hall,
Mail Code 0261, Virginia Tech, Blacksburg, VA24061, USA

1.1 INTRODUCTION

For some time the adaptive structures community has focused on trans-
ducer effects, and the closest advance into actually having a structural
system show signs of intelligence is to include adaptive control imple-
mented with a smart material. Here we examine taking this a step further
by combining embedded computing with a smart structural system in an
attempt to form an autonomous sensor system. The focus here is based on an
integrated structural health monitoring system that consists of a completely
wireless, active sensor with embedded electronics, power and computing.
Structural health monitoring is receiving increased attention in industrial
sectors and in government regulatory agencies as a method of reducing
maintenance costs and preventing disasters. Here we propose and discuss
an integrated autonomous sensor ‘patch’ that contains the following key
elements: sensing, energy harvesting from ambient vibration and temperature,
energy storage, local computing/decision making, memory, actuation and

Adaptive Structures: Engineering Applications Edited by D. Wagg, 1. Bond, P. Weaver and M. Friswell
© 2007 John Wiley & Sons, Ltd



2 ADAPTIVE STRUCTURES FOR STRUCTURAL HEALTH MONITORING

wireless transmission. These elements should be autonomous, self-contained
and unobtrusive compared to the system being monitored. Each of these
elements is discussed as a part of an integrated system to be used in structural
health monitoring applications.

In addition, the concept of using smart materials in a combined monitoring
and self-healing function is briefly discussed. This chapter concludes with
some thoughts on the way forward in monitoring which is a subset of
the newly formed area called ‘autonomic structures’ and includes a short
introduction to such systems.

Autonomous sensing requires the integration of a number of subsystems:
power, sensor material, actuation material, energy management, telemetry
and computing. This chapter discusses one such solution to building an
autonomous sensing system as well as steps taken to further integrate such
a system into a load-bearing adaptive structure. The basic idea of the
autonomous sensing system proposed here is summarized in Figure 1.1.

The proposed sensing system must have the following components in
order to function autonomously. First, it must be built around a transducer
material that performs the basic sensing function. For the example discussed
here, this material consists of a piezoceramic, which produces an electric
field when strained (see, for instance, Dosch ef al., 1994). The electric field
is then converted to a voltage, which is proportional to local strain and can
be used to measure local displacement or velocity. Here, however, we are
interested in measuring the electrical impedance of the sensing piezoceramic
(PZT in this case) as discussed below. Figure 1.1 also indicates that the
PZT serves as an actuator as well. Actuation is needed because many of

Figure 1.1 A proposed autonomous sensing system
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the best algorithms for structural health monitoring (SHM) require a known
input (Doebling et al., 1998) in order to form measurements resembling
a transfer function. At the very least, input—output measurements contain
much more information than output only measurements. The existence of
this actuation element separates the proposed active sensing system from
many of the wireless sensing systems proposed by others (such as the Mote
system). The circuit of Dosch et al. (1994) allows ‘self-sensing actuation’
and results in a reduction in the number of required components, reducing
the size and weight requirements.

The second key element in the proposed autonomous sensing scheme is the
use of a local computing platform. In a review of smart sensing technology
for civil applications, smart sensors are defined as sensors which contain an
onboard microprocessor giving the system intelligence capabilities (Spencer
et al., 2004). Several sensor platforms have incorporated microprocessors for
the purpose of power management and signal conditioning using off-the-shelf
chips. The system here takes the approach that (a) it takes less energy to
compute than to transmit raw data, and (b) at some point during the sensor’s
life, it may be desirable to remotely change the algorithm used to determine
damage. This is also the area in which further autonomy can be gained by
enabling the sensor to make decisions. The philosophy of this approach is
to make all the calculations at the sensor location and to broadcast only a
limited amount of information in the form of a decision. Localized computing
and decision again separates the proposed system from many of the previous
efforts in the literature (Straser and Kiremidjian, 1998; Giurgiutiu and Zagrai,
2002; Lynch et al., 2002, 2003). However, Lynch et al. (2004a, b) also use at-
the-sensor computing to perform a time series analysis and broadcasts results,
rather than raw data streams. A Berkeley—Mote platform is also used as a
basis for a wireless structural health monitoring system with an embedded
damage detection algorithm (Tanner ef al., 2003). A main difference between
the approach presented here and other approaches is that they use a standard
operating system whereas the goal here is to diminish the operating system
to further reduce the power required to run the system.

The third key element of the system of Figure 1.1 is the power harvesting,
management and storage system. Most systems to date use batteries as the
source, and our goal here is to extend the autonomy of the sensor system
by using various energy harvesting methods, power management and energy
storage devices. The transmission device is taken as a standard off-the-shelf
system here (see Lynch and Koh, 2005), and no new results are offered in
the telemetry area. The main thrust of the work proposed here is to examine
energy conservation through using a digital signal processor (DSP) platform
without using an operating system (which tends to waste energy).
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1.2 STRUCTURAL HEALTH MONITORING

Damage prognosis (DP) is the prediction in near real time of the remaining
useful life of an engineered system given the measurement and assess-
ment of its current damaged (or aged) state and accompanying predicted
performance in anticipated future loading environments (Inman et al., 2005).
Self-healing can be thought of as structural repair of damage. A key
element in damage prognosis and self-healing is obviously that of struc-
tural health monitoring (SHM). The added effort in damage prognosis is
the concept of organizing the ability to make a decision based on the
current assessment of damage by assuming future loads and predicting how
the damaged system will behave. This prediction is then used to make a
decision about how to use the damaged structure (or if to use it) going
forward. A military aircraft hit by enemy fire gives a simple example of
a prognosis system. The ideal prognosis system would detect the damage
and inform the pilot if he/she should bail out, ignore the damage or
perhaps continue to fly by under reduced flight performance. The battery
indicator on a laptop performs a similar prediction in the sense that it
measures current usage and estimates the remaining time left before required
shutdown.

The added effort in self-healing is repairing the damage to return the
structure to a usable state. A simple example is given below of a self-
healing mechanism, while ‘Self-healing composite materials’ in dealt with in
Chapter 9 of this volume. In the example given below of a self-healing bolted
joint, there is a need to know the extent of the damage before self-repair can
begin. Again, the concept of determining the state of the structure’s health
and the extent of its damage is a key element in the process. In this sense,
damage prognosis and damage mitigation are natural extensions to SHM and
can be viewed as the next steps.

In order of increasing difficulty, damage monitoring and prognosis prob-
lems can be categorized in the following stages of increasing difficulty:

1. Determining the existence of damage.
2. Determining the existence and location of damage.

3. Determining the existence, location and characterization (quantification)
of damage.

4. All of the above and predicting the future behavior under various loads
(damage prognosis).

5. All of the above and mitigating the effects of damage (self-healing
structures).
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6. Combining problems 1, 2, 3 or 4 with smart materials to form self-
diagnosing Structures.

7. Combining the above with adaptive structures to form autonomous, self-
repairing structures (autonomic structures).

Adaptive materials, or smart materials, and structures integrate very nicely
into all seven of these problems. In the following, several examples are
given to illustrate the effect that integrating these two disciplines has on
solving problems arising in damage prognosis and mitigation, with the goal
of eventually producing an entirely standalone chip fully integrated into a
structure.

There are numerous SHM algorithms. A review of the SHM literature
(Doebling et al., 1998; Sohn et al., 2003; Inman et al., 2005) indicates that
the main drawbacks and issues of the current SHM methods include:

1. Spatial aliasing: Conventional monitoring is accomplished with a limited
number of sensors dispersed over a relatively large area of a structure
providing poor spatial resolution and thus is only capable of detecting
fairly significant damage.

2. Cabling issues: As a new generation of sensing technologies and sensor
arrays pushes the limits of scale, the cabling and bookkeeping of sensor
arrays has become an issue. Although wireless communication technology
can provide a partial solution to this problem, unwavering power supply
to the transmitter remains largely unsolved.

3. Environmental issues: Varying environmental and operational conditions
produce changes in the system’s dynamic response that can be easily
mistaken for damage.

4. Integration issues: The predominant approach is to design separate
systems leading to inefficiencies and reduced capabilities that could be
increased through an integrated design philosophy.

Much activity has emerged in the area of wireless sensing (see, for instance,
Lynch er al., 2003). However, few have focused on the power requirements
or on the integration of the algorithms into the choice of sensing hardware.
In summary, the basic roadblock in adapting SHM methods in practice is
that commercial sensing systems have not been developed with the intent of
specifically addressing these drawbacks. The need to develop a system that
goes beyond the laboratory demonstration and can be deployed in the field
on real-world structures necessitates the goal of this effort: that new sensing
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hardware must be developed in conjunction with software interrogation
algorithms.

The SHM algorithm used here is called the impedance method, was intro-
duced by Liang et al. (1994), was used extensively over the last 10 years
and is described next. Other algorithms, such as Lamb wave methods or
vibration-based methods, can also be used, but, for the sake of simplicity
and example, only impedance methods are discussed here.

1.3 IMPEDANCE-BASED HEALTH MONITORING

Impedance-based health monitoring techniques utilize small piezoceramic
(PZT) patches attached to a structure as self-sensing actuators to simulta-
neously excite the structure with high-frequency excitations and monitor
changes in the patch electrical impedance signature (Park ef al., 2003). Since
the PZT is bonded directly to the structure of interest, it has been shown
that the mechanical impedance of the structure is directly correlated with the
electrical impedance of the PZT (Liang et al., 1994). Thus, by observing the
electrical impedance of the PZT, assessments can be made about the integrity
of the mechanical structure.

The impedance-based health monitoring method is made possible through
the use of piezoelectric patches bonded to the structure that act as both sensors
and actuators on the system. When a piezoelectric is stressed, it produces an
electric charge. Conversely, when an electric field is applied, the piezoelectric
produces a mechanical strain. The patch is driven by a sinusoidal voltage
sweep. Since the patch is bonded to the structure, the structure is deformed
along with it and produces a local dynamic response to the vibration. The
area one patch can excite depends on the structure and material. The response
of the system is transferred back from the piezoelectric patch as an electrical
response. The electrical response is then analyzed and, since the presence of
damage causes the response of the system to change, damage is shown as a
phase shift and/or magnitude change in the impedance.

The solution to the wave equation gives the following equation for elec-
trical admittance as a function of the excitation frequency w:

. - . Z(w) ~
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In Equation (1.1), Y is the electrical admittance (inverse of impedance), Z,
and Z, are the PZT material’s and the structure’s mechanical impedances,
respectively, Y is the complex Young’s modulus of the PZT with zero
electric field, d;, is the piezoelectric coupling constant in the arbitrary x



