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Series Preface 

There has been a rapid expansion in the provision of further education in recent 
years, which has brought with it the need to provide more flexible methods of 
teaching in order to satisfy the requirements of an increasingly more diverse type 
of student. In this respect, the open learning approach has proved to be a valuable 
and effective teaching method, in particular for those students who for a variety 
of reasons cannot pursue full-time traditional courses. As a result, John Wiley 
& Sons Ltd first published the Analytical Chemistry by Open Learning (ACOL) 
series of textbooks in the late 1980s. This series, which covers all of the major 
analytical techniques, rapidly established itself as a valuable teaching resource, 
providing a convenient and flexible means of studying for those people who, on 
account of their individual circumstances, were not able to take advantage of 
more conventional methods of education in this particular subject area. 

Following upon the success of the ACOL series, which by its very name is 
predominately concerned with Analytical Chemistry, the Analytical Techniques 
in the Sciences (AnTS) series of open learning texts has now been introduced 
with the aim of providing a broader coverage of the many areas of science in 
which analytical techniques and methods are now increasingly applied. With 
this in mind, the AnTS series of open learning texts seeks to provide a range 
of books which will cover not only the actual techniques themselves, but also 
those scientific disciplines which have a necessary requirement for analytical 
characterization methods. 

Analytical instrumentation continues to increase in sophistication, and as a 
consequence, the range of materials that can now be almost routinely analysed 
has increased accordingly. Books in this series which are concerned with the 
techniques themselves will reflect such advances in analytical instrumentation, 
while at the same time providing full and detailed discussions of the fundamental 
concepts and theories of the particular analytical method being considered. Such 
books will cover a variety of techniques, including general instrumental analysis, 
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spectroscopy, chromatography, electrophoresis, tandem techniques, electroana- 
lytical methods, X-ray analysis and other significant topics. In addition, books in 
the series will include the application of analytical techniques in areas such as 
environmental science, the life sciences, clinical analysis, food science, forensic 
analysis, pharmaceutical science, conservation and archaeology, polymer science 
and general solid-state materials science. 

Written by experts in their own particular fields, the books are presented in 
an easy-to-read, user-friendly style, with each chapter including both learning 
objectives and summaries of the subject matter being covered. The progress of the 
reader can be assessed by the use of frequent self-assessment questions (SAQs) 
and discussion questions (DQs), along with their corresponding reinforcing or 
remedial responses, which appear regularly throughout the texts. The books are 
thus eminently suitable both for self-study applications and for forming the basis 
of industrial company in-house training schemes. Each text also contains a large 
amount of supplementary material, including bibliographies, lists of acronyms 
and abbreviations, and tables of SI Units and important physical constants, plus 
where appropriate, glossaries and references to original literature sources. 

It is therefore hoped that this present series of textbooks will prove to be a 
useful and valuable source of teaching material, both for individual students and 
for teachers of science courses. 

Dave Ando 
DaMord, UK 



Preface 

This present book is no more than an introduction to electroanalytical chemistry. 
It is not a textbook, but is intended for those wanting to learn at a distance, or 
in the absence of a suitable tutor. Accordingly, the approach taken is that of a 
series of tutorial questions and worked examples, interspersed with questions for 
students to attempt in their own time. In no way is this meant to be a definitive 
text: students who have mastered these topics are recommended to consult the 
books and articles listed in the Bibliography at the end. 

Electroanalysis is a relatively simple topic in concept, so the first few chapters 
are intended to be extremely straightforward. Some aspects of the later chapters 
are more challenging in scope but, as students build on the earlier sections, these 
latter parts should also appear relatively painless. 

A word about errors. I have used the phrase 'treatment of errors' fairly liberally. 
A few of my colleagues take this phrase to mean the statistical manipulation of 
data once the latter have been obtained. I have followed a different tack, and mean 
here those errors and faults which can creep into an actual experimental measure- 
ment. Indeed, this book is not long enough to describe the actual manipulation 
of data. 

Perhaps I should mention a few of these colleagues. I am delighted to work 
with such professionals as Dr Brian Wardle and Dr David Johnson of my own 
Department, namely Chemistry and Materials, at the Manchester Metropolitan 
University (MMU). They have both read this book in manuscript form from end to 
end. Additionally, my friends Dr Seamus Higson of the Materials Science Centre, 
University of Manchester Institute of Science and Technology (UMIST) and 
Dr Roger Mortimer of the Department of Chemistry, Loughborough University, 
have also read the entire manuscript. The kind encouragement of these four, 
together with their perceptive and shrewd comments, have made the preparation 
of this book much more enjoyable. I also wish to thank Professor Arnold Fogg 
of Loughborough University and Dr Alan Bottom for their comments within the 
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context of a stimulating correspondence. I have incorporated just about all of the 
comments received from these wise men, and I extend my heart-felt thanks to 
all of them. Nevertheless, all errors remaining are entirely my own. 

I also wish to thank Dr Lou Coury and Dr Adrian Bott of Bioanalytical 
Systems, Inc. for their enthusiasm, and permission to reproduce Figures 6.16, 
6.18, 6.19, 10.1 and 10.3. I gladly thank Dr Manfred Rudolph for his description 
of the DigiSimTM program, Dr Mike Dawson of E G & G for his help concerning 
the Condecon program, and Dr Keith Dawes of Windsor Scientific for his help, 
and the permission to reproduce Figure 10.2. 

Further thanks are also in order, namely to Professor Derek Pletcher of 
Southampton University for permission to reproduce Figures 6.12, 6.23 and 6.25 
and the first two of the three computer programs presented in Chapter 10, to 
Elsevier Science for permission to reproduce Figures 7.14, 8.1, 8.5 and 8.16, to 
The Royal Society of Chemistry for permission to reproduce Figures 7.1 1 ,  8.3, 
8.6 and 8.7, to Wiley-VCH for permission to reproduce Figure 4.3, and to John 
Wiley & Sons, Inc. for permission to reproduce Figures 3.12, 4.9, 4.10, 6.7, 6.8 
and 6.28, plus the third computer program given in Chapter 10. In addition, I wish 
to acknowledge the following organizations for permission to reproduce further 
material used in the text, namely The Electrochemical Society, Inc. for Figure 
8.14, Oxford University Press for Figure 7.8, the American Chemical Society 
for Figure 6.27, and the International Society for Optical Engineering (SPIE) for 
Figure 6.14. 

Finally, I would like to thank John Wiley & Sons Ltd and Dave Ando 
(Managing Editor of the AnTS Series) for commissioning this book, the second 
title in this series of texts, my friends who have not seen very much of me over 
the past year, and not least, my precious wife Jo. 

Paul Monk 
Manchester Metropolitan University 
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Chapter 1 

Explanatory Foreword 

Learning Objectives 

0 To appreciate that clcctroanalysis is an analytical tool in which electro- 
chemistry provides the analytical methodology. 

0 To understand the fundamental differences between potentiometric 
and amperometric electroanalytical measurements, namely potentiometric 
measurements are those of the potential made at zero current (i.e. at 
equilibrium), while amperometric measurements are of the current in 
response to imposing a perturbing potential (dynamic, i.e. a non-equilibrium 
measu re me n t ) . 

0 To learn the standard nomenclature of electroanalysis. 
0 To appreciate that while the majority of electroanalytical variables follow 

the IUPAC system of units, a majority of the common electrochemical 
equations, if containing variables of length (or units derived from length), 
wil: still use the unit of centimetre. 

0 To appreciate that the fine-detail of electroanalytical nomenclature is impor- 
tant, for example, the way an electrode potential or concentration is written 
has important implications. 

0 To notice that the way in which a complicated electrochemical word or 
term can he split up into its componenl parts will aid the understanding of 
its meaning. 

1.1 Electroanalysis 
Analysts always ask questions such as ‘what is it?’, ‘how much of it is present?’, 
and sometimes, ‘how fast does it change?’. Electrochemistry is an ideal analytical 
tool for answering each of these questions - sometimes simultaneously. Here, 
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Explanatory Foreword 3 

we will use the word ‘electroanalysis’ to mean the use of electrochemistry in an 
analytical context. 

In this present book, we will look at the analytical use of two fundamentally 
different types of electrochemical technique, namely potentiometry and amper- 
ometry. The distinctions between the two are outlined in some detail in Chapter 2. 
For now, we will anticipate and say that a potentiometric technique determines 
the potential of electrochemical cells - usually at zero current. The potential of 
the electrode of interest responds (with respect to a standard reference electrode) 
to changes in the concentrationt of the species under study. The most common 
potentiometric methods used by the analyst employ voltmeters, potentiometers 
or pH meters. Such measurements are generally relatively cheap to perform, but 
can be slow and tedious unless automated. 

An amperometric technique relies on the current passing through a polariz- 
able electrode. The magnitude of the current is in direct proportion to the concen- 
tration of the electroanalyte, with the most common amperometric techniques 
being polarography and voltammetry. The apparatus needed for amperometric 
measurement tends to be more expensive than those used for potentiometric 
measurements alone. It should also be noted that amperometric measurements 
can be overly sensitive to impurities such as gaseous oxygen dissolved in the 
solution, and to capacitance effects at the electrode. Nevertheless, amperometry 
is a much more versatile tool than potentiometry. 

The differences between potentiometry and amperometry are summarized 
in Table 1.1. It will be seen that amperometric measurements are generally 
more precise and more versatile than those made by using potentiometry, 
so the majority of this book will therefore be concerned with amperometric 
measurements. 

1.2 Nomenclature and Terminology (IUPAC and 
Non-IUPAC) 

The experimental practice of electrochemistry has a long history. For example, 
more than 200 years have passed since Volta first looked at the twitching of 
animal tissues in response to the application of an electric impulse. The litera- 
ture of electrochemistry was huge even before the International Union of Pure 
and Applied Chemistry (IUPAC) first deliberated in a systematic code of electro- 
chemical symbols in 1953. Accordingly, many of the IUPAC recommendations 
will not be followed here. 

We will now look at each of the major variables in turn. 

Redox couple. Two redox states of the same material are termed a ‘redox 
couple’, e.g. 

Strictly speaking. i t  responds to changes in activity, as defined in Chapter 3 
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The electron in this equation will come from (or go to) an electrode if current 
flows. 

Electrode potential. Potentiometric experiments determine potentials. The two 
components of the redox couple are only together at equilibrium at a single 
energy specific to the system under study and at the conditions employed. This 
energy, when expressed as a voltage,+ is termed the electrode potential, E. 
The ‘electrode potential’ is also known as the ‘redox potential’ or ‘reduction 
potential’. Some texts for physicists call E the ‘electrode energy’. 

Unless stated otherwise, we normally assume that the solution is aqueous. 
E is normally written with a subscript to indicate the two redox states involved. 

EFe2+,Fe. for example, is the electrode potential for the ferrous ion-iron metal 
system. Note that we expect a different electrode potential if different redox states 
are involved, so EFe2+,Fe # EFe~+,Fe. It is the usual practice to write the oxidized 
form of the couple first. 

SAQ 1.1 

Write symbols for the electrode potential for the following couples: 

(a) bromine and bromide; 
(b) silver and silver cation; 
(c) ferrocene, Fe(cp),, and the ferrocene radical cation, Fe (cp)?. 

There are several different electrode potentials we shall need to use, for example, 
E, which is the potential of a half-cell reaction. It is not usually described with 
any form of superscript, but will have subscripts, as shown above. 

Ee is the standard electrode potential, and represents a value of E measured 
(or calculated) when all activities are 1, when the applied pressures p is 1 atmo- 
sphere and with all redox materials participating in their standard states. As for 
E, Ee should be cited with subscripts to describe the precise composition of the 
redox couple indicated. Note that Ee is often written as Eo, thus explaining why 
standard electrode potentials are commonly called ‘E  nought’. The symbol ‘e’ 
implies standard conditions i.e. 298 K, pe and unit activities throughout. 

‘This exposition has been greatly simplified. At equilibrium, the sums of the electrochemical potentials, p, within 
each of the two half cells comprising the overall cell are the same, and p is related to the chemical potential p 
a by the relationship p = p + nF@. The occurrence of a potential E at the electrode is a manifestation of the 
difference in electric field, A@ between the electrodes and their respective couples in solution, as a function of 
their separation distances. 

The SI unit of pressure is the pascal, Pa. The SI standard pressure is I bar (Id Pa) and is denoted by the symbol 
pe. For historical reasons. the electrochemical standard pressure is taken as being I atmosphere of pressure; pe  for 
the electroanalyst is therefore 101 325 Pa, a I% difference from the SI value, which causes negligible differences 
in Ee.  
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Related to Ee is the formal electrode potential, Eo’ (as discussed in 
Chapter 61, which can be called ‘the standard electrode potential at 298 K, pe 
and unit concentrations throughout’. The differences between Ee and Eo’ are 
discussed in Chapter 6. 

The electrode potential obtained with linear-sweep polarography, for example, 
at a dropping-mercury electrode (DME), is different again and is called the half- 
wave potential, E1p.  which is also discussed in Chapter 6. 

The phrase ‘electrode potential’ implies a single electrode, but such potentials 
are in fact determined or calculated from measurements of cells comprising two or 
more electrodes. This procedure is necessary since it is not possible to measure the 
energy of a single redox couple at equilibrium:+ in practice, we have to measure 
the difference or separution in energy between two (or more) electrodes. This 
separation is termed the emf, following from the somewhat archaic expression 
‘electromotive force’.$ In other texts, the alternative name is sometimes 
given to the emf; some texts (rather confusingly) call it just E.  

The magnitude of E does not depend on the size of the electrodes - nor does 
it depend on the material with which the electrode is made, or on the method of 
measurement. It  is therefore an intrinsic quantity. 

Current. Amperometric experiments measure current. The current I is the rate 
at which charge is passed, while the current density is symbolized as i .  Current 
density is defined as the current per unit electrode area A, so we can write the 
following: 

. I  
I = -  (1.1) 

A 

where current has the unit of the ampere (or ‘amp’, for short). 

~~ ~~ ~ ~ ~ 

Note Both area and ampere have the symbol A, but A for ampere is shown 
in upright script, while A for area is shown as italic - because it’s a variable. 

SAQ 1.2 

What is the current density if an electrode of area 0.35 crn2 is passing a current of 
12 mA? 

’ While this potential cannot he determined for a single electrode, a potential con be derived if the potential of the 
other electrode in a cell is defined, i.e. the potential of the standard hydrogen electrode (SHE) is arbitrarily taken 
as 0.oooOV. In  this way, a potential scale can then he devised for single electrode potentials - see Section 3.2. 
*The abbreviation ‘emf’, in upright script. is often used in other textlxwks as a ‘direct’. i.e. non-variable. acronym 
for the electromotive forcc. Note, however, that in this present text it is used to represent a variable (cell potenlial) 
and is therefore shown in italic script. 
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DQ 1.1 
Why use current density at all? 

Answer 
Current is not measured at equilibrium. Each electroanalytical labora- 
tory will own its own set of electrodes, some large and some small. The 
current actually measured will be a simple function of the electrode area 
since charge is passed when electrolyte impinges on a electrode ( i f  it 
is suficiently polarized). We see that current is an extrinsic quantity 
because its value depends on how much ‘something’ we employ during 
the measurement. In this case, the ‘something’ i.e. the current, relates to 
the electrode area. 

In contrast, current density is intrinsic and does not depend on the 
electrode area, since, by its dejnition, the current measured has been 
adjusted to compensate for diflerences in area. 

In a similar manner to current density, we next distinguish between charge 
and charge density. The charge that flows is Q, while the charge density, i.e. the 
charge per unit area, Q/A, is symbolized by q. 

Length. It is when we come to units of length that the problems begin. The SI unit 
of length is the metre, m. Accordingly, the SI unit of concentration is mol m-3. 
Interconversion between concentration in rnol m-3 and concentration expressed 
in the more familiart units of mol dm-3 is simple, i.e. 

(1.2) 

because there are 1000cm3 in 1 dm3, and thereby 1000 litres in one cubic metre. 
We see that concentrations in SI units appear as larger numbers. 

concentration in mol m-3 = lo3 x concentration in mol dm-3 

SAQ 1.3 

11 g of solid KCI are dissolved in 250 cm3 of water. What is the concentration 
when expressed with the units of rnol m-3? 

It is rare for electrochemists to use SI units in this way, so, like most analysts, 
they will usually talk in terms of the concentration units that are most convenient. 

Unfortunately, many of the standard equations encountered in electrochemistry 
require the concentration unit of rnol cmP3 (moles per cubic centimetre). The 
conversion between rnol cm-3 and the familiar mol dm-3 is as follows: 

(1.3) concentration in mol cm-3 = loP3 x concentration in mol dmP3 
~~ 

‘Many texts use the symhol ‘M’ for mol dm-‘. We will not use ‘M’ here in order to emphasize the requirement 
for interconversion. 


