

95363c01.indd 295363c01.indd 2 1/25/09 4:39:27 PM1/25/09 4:39:27 PM

Charlie Miller
Dino A. Dai Zovi

The Mac® Hacker’s
Handbook

95363ffirs.indd i95363ffirs.indd i 1/25/09 4:38:00 PM1/25/09 4:38:00 PM

The Mac® Hacker’s Handbook

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright 2009 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-39536-3

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data is available from the publisher.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permis-
sion of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to
the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc.,
111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.
com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or war-
ranties with respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all
warranties, including without limitation warranties of fi tness for a particular purpose. No warranty may be
created or extended by sales or promotional materials. The advice and strategies contained herein may not
be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in
rendering legal, accounting, or other professional services. If professional assistance is required, the services
of a competent professional person should be sought. Neither the publisher nor the author shall be liable for
damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation
and/or a potential source of further information does not mean that the author or the publisher endorses the
information the organization or Web site may provide or recommendations it may make. Further, readers
should be aware that Internet Web sites listed in this work may have changed or disappeared between when
this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department
within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc.
and/or its affi liates, in the United States and other countries, and may not be used without written permis-
sion. Mac is a registered trademark of Apple, Inc. All other trademarks are the property of their respective
owners. Wiley Publishing, Inc. is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

95363ffirs.indd ii95363ffirs.indd ii 1/25/09 4:38:01 PM1/25/09 4:38:01 PM

www.wiley.com

I’d like to dedicate this book to the security research community and
everyone who is passionate about advancing the state of offensive and

defensive security knowledge.

— Dino A. Dai Zovi

95363ffirs.indd iii95363ffirs.indd iii 1/25/09 4:38:01 PM1/25/09 4:38:01 PM

iv

Charlie Miller is Principal Analyst at Independent Security Evaluators. He was
the fi rst person to publically create a remote exploit against Apple’s iPhone and
the G1 Google phone running Android. He has discovered fl aws in numer-
ous applications on various operating systems. He was the winner of the 2008
PwnToOwn contest for breaking into a fully patched MacBook Air. He has
spoken at numerous information-security conferences and is author of Fuzzing
for Software Security Testing and Quality Assurance (Artech House, 2008). He was
listed as one of the top 10 hackers of 2008 by Popular Mechanics magazine, and
has a PhD from the University of Notre Dame.

Dino Dai Zovi is Chief Scientist at a private information security fi rm. Mr. Dai
Zovi is perhaps best known in the security and Mac communities for winning
the fi rst Pwn2Own contest at CanSecWest 2007 by discovering and exploit- ing
a new vulnerability in Apple’s QuickTime in one night to compromise a fully
patched MacBook Pro. He previously specialized in software penetration test-
ing in roles at Matasano Security, @stake, and Sandia National Laboratories. He
is an invited speaker at information security conferences around the world, a
coauthor of The Art of Software Security Testing: Identifying Software Security Flaws
(Addison-Wesley, 2006) and was named one of the 15 Most Infl uential People
in Security by eWEEK in 2007.

About the Authors

95363ffirs.indd iv95363ffirs.indd iv 1/25/09 4:38:01 PM1/25/09 4:38:01 PM

v

Credits

Executive Editor
Carol Long

Development Editor
Christopher J. Rivera

Technical Editor
Ron Krutz

Production Editor
Elizabeth Ginns Britten

Copy Editor
Candace English

Editorial Manager
Mary Beth Wakefi eld

Production Manager
Tim Tate

Vice President and Executive
Group Publisher
Richard Swadley

Vice President and Executive Publisher
Barry Pruett

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Lynsey Stanford

Compositor
Jeffrey Lytle,
Happenstance Type-O-Rama

Proofreader
Justin Neely, Word One

Indexer
Jack Lewis

Cover Illustration
Michael E. Trent

Cover Designer
Michael E. Trent

95363ffirs.indd v95363ffirs.indd v 1/25/09 4:38:01 PM1/25/09 4:38:01 PM

vi

I’d like to thank my wife Andrea for not getting too upset when I locked myself
away at night to work on the book after the kids went to bed. I’d also like to
thank my two sons, Theo and Levi, for being good kids and keeping a smile on
my face. Finally, I’d like to thank ISE for giving me time to do research for the
book, and the following people for donating their time to look at early drafts of
it: Dave Aitel, Thomas Ptacek, Thomas Dullien, and Nate McFeters.

— Charlie Miller

I’d like to thank my friends for their support and patience while I was working
on this book and lacking a normal social life for the warmer half of the year.
I’d also like to thank the members of the Apple Product Security team for their
diligence in addressing the security issues that I have reported to them over
the years, as well as Apple for creating an operating system and computers that
are a joy to use. Finally, I’d like to thank our volunteer reviewers, Dave Aitel,
Halvar Flake, and Thomas Ptacek, for their advice and comments.

— Dino A. Dai Zovi

Acknowledgments

95363ffirs.indd vi95363ffirs.indd vi 1/25/09 4:38:01 PM1/25/09 4:38:01 PM

vii

Contents

Foreword xi

Introduction xiii

Part I Mac OS X Basics 1

Chapter 1 Mac OS X Architecture 3
Basics 3

XNU 4
Mach 4
BSD 5
I/O Kit 5
Darwin and Friends 7

Tools of the Trade 8
Ktrace/DTrace 8
Objective-C 10
Universal Binaries and the Mach-O File Format 13

Universal Binaries 13
Mach-O File Format 14
Example 15

Bundles 17
launchd 19
Leopard Security 21

Library Randomization 22
Executable Heap 24
Stack Protection (propolice) 27
Firewall 29
Sandboxing (Seatbelt) 29

References 34

Chapter 2 Mac OS X Parlance 35
Bonjour! 35

Get an IP Address 36
Set Up Name Translation 37
Service Discovery 38
Bonjour 40
mDNSResponder 41
Source Code 44

95363ftoc.indd vii95363ftoc.indd vii 1/25/09 4:38:32 PM1/25/09 4:38:32 PM

viii Contents

QuickTime 47
.mov 47
RTSP 52

Conclusion 61
References 61

Chapter 3 Attack Surface 63
Searching the Server Side 63

Nonstandard Listening Processes 68
Cutting into the Client Side 72

Safari 75
All of Safari’s Children 77
Safe File Types 79
Having Your Cake 80

Conclusion 81
References 81

Part II Discovering Vulnerabilities 83

Chapter 4 Tracing and Debugging 85
Pathetic ptrace 85
Good Ol’ GDB 86
DTrace 87

D Programming Language 88
Describing Probes 89
Example: Using Dtrace 90
Example: Using ltrace 91
Example: Instruction Tracer/Code-Coverage Monitor 93
Example: Memory Tracer 95

PyDbg 96
PyDbg Basics 97
Memory Searching 98
In-Memory Fuzzing 99
Binary Code Coverage with Pai Mei 102

iTunes Hates You 108
Conclusion 111
References 112

Chapter 5 Finding Bugs 113
Bug-Hunting Strategies 113
Old-School Source-Code Analysis 115

Getting to the Source 115
Code Coverage 116
CanSecWest 2008 Bug 121

vi + Changelog = Leopard 0-day 122
Apple’s Prerelease-Vulnerability Collection 124
Fuzz Fun 125

Network Fuzzing 126
File Fuzzing 129

Conclusion 133
References 134

Chapter 6 Reverse Engineering 135
Disassembly Oddities 135

EIP-Relative Data Addressing 136
Messed-Up Jump Tables 137
Identifying Missed Functions 138

Reversing Obj-C 140
Cleaning Up Obj-C 141
Shedding Light on objc_msgSend Calls 145

95363ftoc.indd viii95363ftoc.indd viii 1/25/09 4:38:33 PM1/25/09 4:38:33 PM

 Contents ix

Case Study 150
Patching Binaries 154

Conclusion 156
References 157

Part III Exploitation 159

Chapter 7 Exploiting Stack Overfl ows 161
Stack Basics 162

Stack Usage on PowerPC 163
Stack Usage on x86 164

Smashing the Stack on PowerPC 165
Smashing the Stack on x86 170
Exploiting the x86 Nonexecutable Stack 173

Return into system() 173
Executing the Payload from the Heap 176

Finding Useful Instruction Sequences 181
PowerPC 181
x86 182

Conclusion 184
References 184

Chapter 8 Exploiting Heap Overfl ows 185
The Heap 185
The Scalable Zone Allocator 186

Regions 186
Freeing and Allocating Memory 187

Overwriting Heap Metadata 192
Arbitrary 4-Byte Overwrite 193
Large Arbitrary Memory Overwrite 195
Obtaining Code Execution 197

Taming the Heap with Feng Shui 201
Fill ’Er Up 201
Feng Shui 202
WebKit’s JavaScript 204

Case Study 207
Feng Shui Example 209
Heap Spray 211

References 212

Chapter 9 Exploit Payloads 213
Mac OS X Exploit Payload Development 214

Restoring Privileges 215
Forking a New Process 215
Executing a Shell 216
Encoders and Decoders 217
Staged Payload Execution 217
Payload Components 218

PowerPC Exploit Payloads 219
execve_binsh 221
system 223
decode_longxor 225
tcp_listen 231
tcp_connect 232
tcp_fi nd 233
dup2_std_fds 234
vfork 235
Testing Simple Components 236
Putting Together Simple Payloads 237

Intel x86 Exploit Payloads 238

95363ftoc.indd ix95363ftoc.indd ix 1/25/09 4:38:33 PM1/25/09 4:38:33 PM

x Contents

remote_execution_loop 241
inject_bundle 244
Testing Complex Components 254

Conclusion 259
References 259

Chapter 10 Real-World Exploits 261
QuickTime RTSP Content-Type Header Overfl ow 262

Triggering the Vulnerability 262
Exploitation on PowerPC 263
Exploitation on x86 273

mDNSResponder UPnP Location Header Overfl ow 276
Triggering the Vulnerability 277
Exploiting the Vulnerability 279
Exploiting on PowerPC 283

QuickTime QTJava toQTPointer() Memory Access 287
Exploiting toQTPointer() 288
Obtaining Code Execution 290

Conclusion 290
References 290

Part IV Post-Exploitation 291

Chapter 11 Injecting, Hooking, and Swizzling 293
Introduction to Mach 293

Mach Abstractions 294
Mach Security Model 296
Mach Exceptions 297

Mach Injection 300
Remote Threads 301
Remote Process Memory 306
Loading a Dynamic Library or Bundle 307
Inject-Bundle Usage 311
Example: iSight Photo Capture 311

Function Hooking 314
Example: SSLSpy 315

Objective-C Method Swizzling 318
Example: iChat Spy 322

Conclusion 326
References 326

Chapter 12 Rootkits 327
Kernel Extensions 327

Hello Kernel 328
System Calls 330
Hiding Files 332
Hiding the Rootkit 342
Maintaining Access across Reboots 346
Controlling the Rootkit 349

Creating the RPC Server 350
Injecting Kernel RPC Servers 350
Calling the Kernel RPC Server 352

Remote Access 352
Hardware-Virtualization Rootkits 354

Hyperjacking 355
Rootkit Hypervisor 356

Conclusion 358
References 358

Index 367

95363ftoc.indd x95363ftoc.indd x 1/25/09 4:38:33 PM1/25/09 4:38:33 PM

xi

For better or worse, there are moments in our lives that we can visualize with
startling clarity. Sometimes momentous and other times trivial, we’re able to
completely recall these snippets of our past even if we can’t remember the day
or context. In my life, there’s one moment I’d like to call trivial, but the truth is,
it was likely more central in establishing my eventual technology career than
I care to admit at social gatherings.

I think it was the early 1980s, but that’s mostly irrelevant. My best friend’s parents
recently purchased an Apple II (plus, I think), making my friend the fi rst person I
knew with a computer in his house. One day we noticed a seam on the top of the
plastic case; we slid the bulking green screen monitor to the side and removed
the panel on the top. For the fi rst time, we peered into the inner guts of an actual
working computer. This was defi nitely before the release of WarGames, likely
before I’d ever heard of hacking, and long before “hacker” became synonymous
with “criminal” in the mass media. We lifted that plastic lid and stared at the cop-
per and black components on the fi eld of green circuit boards before us. We were
afraid to touch anything, but for the fi rst time, the walls between hardware and
software shattered for our young minds, opening up a new world of possibilities.
This was something we could touch, manipulate, and, yes, break.

My young computer career began with those early Apples (and Commodores).
We spent countless hours exploring their inner workings; from BASIC to binary
math, and more than our fair share of games (for the record, the Apple joystick
was terrible). Early on I realized I enjoyed breaking things just as much, if not
more than, creating them. By feeling around the seams of software and systems,
learning where they bent, cracked, and failed, I could understand them in ways
just not possible by coloring between the lines.

The very fi rst Mac I could buy was an early Mac Mini I purchased mostly for
research purposes. I quickly realized that Mac OS X was a hacker’s delight of an
operating system. Beautiful and clean compared to my many years on Windows,

Foreword

95363flast.indd xi95363flast.indd xi 1/25/09 4:38:54 PM1/25/09 4:38:54 PM

xii Foreword

with a Unix terminal a click away. Here was a box I could run Microsoft Offi ce
on that came with Apache by default and still held full man pages. As I delved
into Applescript, plists, DMGs, and the other minutia of OS X, I was amazed
by the capabilities of the operating system, and the breadth and depth of tools
available.

But as I continued to switch completely over to Apple, especially after the
release of Intel Macs, my fi ngers started creeping around for those cracks at the
edges again. I wasn’t really worried about viruses, but, as a security professional,
I started wondering if this was by luck or design. I read the Apple documenta-
tion and realized fairly early that there wasn’t a lot of good information on how
OS X worked from a security standpoint, other than some confi guration guides
and marketing material.

Mac security attitudes have changed a fair bit since I purchased that fi rst
Mac Mini. As Macs increase in popularity, they face more scrutiny. Windows
switchers come with questions and habits, more security researchers use Macs
in their day-to-day work, the press is always looking to knock Apple down a
notch, and the bad guys won’t fail to pounce on any profi table opportunity. But
despite this growing attention, there are few resources for those who want to
educate themselves and better understand the inner workings of the operating
system on which they rely.

That’s why I was so excited when Dino fi rst mentioned he and Charlie were
working on this book. Ripping into the inner guts of Mac OS X and fi nding
those edges to tear apart are the only ways to advance the security of the plat-
form. Regular programming books and system overviews just don’t look at any
operating system from the right perspective; we need to know how something
breaks in order to make it stronger. And, as any child (or hacker) will tell you,
breaking something is the most exhilarating way to learn.

If you are a security professional, this book is one of the best ways to under-
stand the strengths and weaknesses of Mac OS X. If you are a programmer, this
book will not only help you write more secure code, but it will also help you in
your general coding practices. If you are just a Mac enthusiast, you’ll learn how
hackers look at our operating system of choice and gain a better understanding
of its inner workings. Hopefully Apple developers will use this to help harden
the operating system; making the book obsolete with every version. Yes, maybe
a few bad guys will use it to write a few exploits, but the benefi ts of having this
knowledge far outweigh the risks.

For us hackers, even those of us of limited skills, this book provides us with a
roadmap for exploring those edges, fi nding those cracks, and discovering new
possibilities. For me, it’s the literary equivalent of sliding that beige plastic cover
off my childhood friend’s fi rst Apple and gazing at the inner workings.

—Rich Mogull
Security Editor at TidBITS and Analyst at Securosis

95363flast.indd xii95363flast.indd xii 1/25/09 4:38:54 PM1/25/09 4:38:54 PM

xiii

As Mac OS X continues to be adopted by more and more users, it is important
to consider the security (or insecurity) of the devices running it. From a secu-
rity perspective, Apple has led a relatively charmed existence so far. Mac OS
X computers have not had any signifi cant virus or worm outbreaks, making
them a relatively safe computing platform. Because of this, they are perceived
by most individuals to be signifi cantly more secure than competing desktop
operating systems, such as Windows XP or Vista.

Overview of the Book and Technology

Is this perception of security justifi ed, or has Mac OS X simply benefi ted from its
low profi le up to this point? This book offers you a chance to answer this question
for yourself. It provides the tools and techniques necessary to analyze thoroughly
the security of computers running the Mac OS X operating system. It details exactly
what Apple has done right in the design and implementation of its code, as well as
points out defi ciencies and weaknesses. It teaches how attackers look at Mac OS X
technologies, probe for weaknesses, and succeed in compromising the system. This
book is not intended as a blueprint for malicious attackers, but rather as an instru-
ment so the good guys can learn what the bad guys already know. Penetration
testers and other security analysts can and should use this information to identify
risks and secure the Macs in their environments.

Keeping security fl aws secret does not help anybody. It is important to under-
stand these fl aws and point them out so future versions of Mac OS X will be
more secure. It is also vital to understand the security strengths and weaknesses
of the operating system if we are to defend properly against attack, both now
and in the future. Information is power, and this book empowers its readers by
providing the most up-to-date and cutting-edge Mac OS X security research.

Introduction

95363flast.indd xiii95363flast.indd xiii 1/25/09 4:38:54 PM1/25/09 4:38:54 PM

xiv Introduction

How This Book Is Organized

This book is divided into four parts, roughly aligned with the steps an attacker
would have to take to compromise a computer: Background, Vulnerabilities,
Exploitation, and Post-Exploitation. The fi rst part, consisting of Chapters 1–3,
contains introductory material concerning Mac OS X. It points out what makes
this operating system different from Linux or Windows and demonstrates the
tools that will be needed for the rest of the book. The next part, consisting
of Chapters 4–6, demonstrates the tools and techniques necessary to identify
security vulnerabilities in the operating system and applications running on
it. Chapters 7–10 make up the next part of the book. These chapters illustrate
how attackers can take the weaknesses found in the earlier chapters and turn
them into functional exploits, giving them the ability to compromise vulnerable
machines. Chapters 11 and 12 make up the last part of the book, which deals
with what attackers may do after they have exploited a machine and techniques
they can use to maintain continued access to the compromised machines.

Chapter 1 begins the book with the basics of the way Mac OS X is designed.
It discusses how it originated from BSD and the changes that have been made
in it since that time. Chapter 1 gives a brief introduction to many of the tools
that will be needed in the rest of the book. It highlights the differences between
Mac OS X and other operating systems and takes care to demonstrate how
to perform common tasks that differ among the operating systems. Finally, it
outlines and analyzes some of the security improvements made in the release
of Leopard, the current version of Mac OS X.

Chapter 2 covers some uncommon protocols and fi le formats used by Mac
OS X. This includes a description of how Bonjour works, as well as an inside
look at the Mac OS X implementation, mDNSResponder. It also dissects the
QuickTime fi le format and the RTSP protocol utilized by QuickTime Player.

Chapter 3 examines what portions of the operating system process attacker-
supplied data, known as the attack surface. It begins by looking in some detail
at what services are running by default on a typical Mac OS X computer and
examines the diffi culties in attacking these default services. It moves on to
consider the client-side attack surface, all the code that can be executed if an
attacker can get a client program such as Safari to visit a server the attacker
controls, such as a malicious website.

Chapter 4 dives into the world of debugging in a Mac OS X environment.
It shows how to follow along to see what applications are doing internally. It
covers in some detail the powerful DTrace mechanism that was introduced in
Leopard. It also outlines the steps necessary to capture code-coverage informa-
tion using the Pai Mei reverse-engineering framework.

Chapter 5 demonstrates how to fi nd security weaknesses in Mac OS X soft-
ware. It talks about how you can look for bugs in the source code Apple makes
available or use a black-box technique such as fuzzing. It includes detailed
instructions for performing either of these methods. Finally, it shows some tricks

95363flast.indd xiv95363flast.indd xiv 1/25/09 4:38:54 PM1/25/09 4:38:54 PM

 Introduction xv

to take advantage of the way Apple develops its software, which can help fi nd
bugs it doesn’t know about or give early warning of those it does.

Chapter 6 discusses reverse engineering in Mac OS X. Given that most of the
code in Mac OS X is available in binary form only, this chapter discusses how
this software works statically. It also highlights some differences that arise in
reverse engineering code written in Objective-C, which is quite common in Mac
OS X binaries but rarely seen otherwise.

Chapter 7 begins the exploitation part of the book. It introduces the simplest
of buffer-overfl ow attacks, the stack overfl ow. It outlines how the stack is laid
out for both PowerPC and x86 architectures and how, by overfl owing a stack
buffer, an attacker can obtain control of the vulnerable process.

Chapter 8 addresses the heap overfl ow, the other common type of exploit.
This entails describing the way the Mac OS X heap and memory allocations
function. It shows techniques where overwriting heap metadata allows an
attacker to gain complete control of the application. It fi nishes by showing how
to arrange the heap to overwrite other important application data to compro-
mise the application.

Chapter 9 addresses exploit payloads. Now that you know how to get control
of the process, what can you do? It demonstrates a number of different possible
shellcodes and payloads for both PowerPC and x86 architectures, ranging from
simple to advanced.

Chapter 10 covers real-world exploitation, demonstrating a large number of
advanced exploitation topics, including many in-depth example exploits for
Tiger and Leopard on both PowerPC and x86. If Chapters 7–9 were the theory
of attack, then this chapter is the practical aspect of attack.

Chapter 11 covers how to inject code into running processes using Mac
OS X–specifi c hooking techniques. It provides all the code necessary to write
and test such payloads. It also includes some interesting code examples of
what an attacker can do, including spying on iChat sessions and reading
encrypted network traffi c.

Chapter 12 addresses the topic of rootkits, or code an attacker uses to hide
their presence on a compromised system. It illustrates how to write basic kernel-
level drivers and moves on to examples that will hide fi les from unsuspecting
users at the kernel level. It fi nishes with a discussion of Mac OS X–specifi c root-
kit techniques, including hidden in-kernel Mach RPC servers, network kernel
extensions for remote access, and VT-x hardware virtual-machine hypervisor
rootkits for advanced stealth.

Who Should Read This Book

This book is written for a wide variety of readers, ranging from Mac enthusiasts
to hard-core security researchers. Those readers already knowledgeable about
Mac OS X but wanting to learn more about the security of the system may want

95363flast.indd xv95363flast.indd xv 1/25/09 4:38:54 PM1/25/09 4:38:54 PM

xvi Introduction

to skip to Chapter 4. Conversely, security researchers may fi nd the fi rst few
chapters the most useful, as those chapters reveal how to use the OS X–related
skills they already possess.

While the book may be easier to comprehend if you have some experience
writing code or administering Mac OS X computers, no experience is necessary.
It starts from the very basics and slowly works up to the more-advanced topics.
The book is careful to illustrate the points it is making with many examples,
and outlines exactly how to perform the steps required. The book is unique in
that, although anybody with enthusiasm for the subject can pick it up and begin
reading it, by the end of the book the reader will have a world-class knowledge
of the security of the Mac OS X operating system.

Tools You Will Need

For the most part, all you need to follow along with this book is a computer with
Mac OS X Leopard installed. Although many of the techniques and examples
will work in earlier versions of Mac OS X, they are designed for Leopard.
To perform the techniques illustrated in Chapter 6, a recent version of IDA Pro
is required. This is a commercial tool that must be run in Windows and can
be purchased at http://www.hex-rays.com. The remaining tools either come
on supplemental disks, such as Xcode does, or are freely available online or at
this book’s website.

What’s on the Website

This book includes a number of code samples. The small and moderately sized
examples are included directly in this book. But to save you from having to
type these in yourself, all the code samples are also available for download at
www.wiley.com/go/machackershandbook. Additionally, some long code samples
that are omitted from the book are available on the site, as are any other tools
developed for the book.

Final Note

We invite you to dive right in and begin reading. We think there is something
in this book for just about everyone who loves Mac OS X. I know we learned a
lot in researching and writing this book. If you have comments, questions, hate
mail, or anything else, please drop us a line and we’d be happy to discuss our
favorite operating system with you.

95363flast.indd xvi95363flast.indd xvi 1/25/09 4:38:54 PM1/25/09 4:38:54 PM

P a r t

I
Mac OS X Basics

95363c01.indd 195363c01.indd 1 1/25/09 4:39:27 PM1/25/09 4:39:27 PM

95363c01.indd 295363c01.indd 2 1/25/09 4:39:27 PM1/25/09 4:39:27 PM

3

This chapter begins by addressing many of the basics of a Mac OS X system.
This includes the general architecture and the tools necessary to deal with the
architecture. It then addresses some of the security improvements that come
with version 10.5 “Leopard”, the most recent version of Mac OS X. Many of these
security topics will be discussed in great detail throughout this book.

Basics

Before we dive into the tools, techniques, and security of Mac OS X, we need to
start by discussing how it is put together. To understand the details of Leopard,
you need fi rst to understand how it is built, from the ground up. As depicted
in Figure 1-1, Mac OS X is built as a series of layers, including the XNU kernel
and the Darwin operating system at the bottom, and the Aqua interface and
graphical applications on the top. The important components will be discussed
in the following sections.

C H A P T E R

1

Mac OS X Architecture

95363c01.indd 395363c01.indd 3 1/25/09 4:39:27 PM1/25/09 4:39:27 PM

4 Part I ■ Mac OS X Basics

Applications

GUI

Application Environments

Libraries

Kernel

Firmware

Hardware

Safari, Mail, iCal, etc.

Aqua

BSD, X11, Carbon, Cocoa, AWT, Swing

URL parsing, Networking, Core Audio, HTML rendering, etc.

BSD (signals, sockets, etc.) Mach (virtual memory, IPC, etc.)

EFI

Apple hardware

Figure 1-1: Basic architecture of a Mac OS X system

XNU
The heart of Mac OS X is the XNU kernel. XNU is basically composed of a
Mach core (covered in the next section) with supplementary features provided
by Berkeley Software Distribution (BSD). Additionally, XNU is responsible for
providing an environment for kernel drivers called the I/O Kit. We’ll talk about
each of these in more detail in upcoming sections. XNU is a Darwin package,
so all of the source code is freely available. Therefore, it is completely possible
to install the same kernel used by Mac OS X on any machine with supported
hardware; however, as Figure 1-1 illustrates, there is much more to the user
experience than just the kernel.

From a security researcher’s perspective, Mac OS X feels just like a FreeBSD
box with a pretty windowing system and a large number of custom applications.
For the most part, applications written for BSD will compile and run without
modifi cation on Mac OS X. All the tools you are accustomed to using in BSD are
available in Mac OS X. Nevertheless, the fact that the XNU kernel contains all
the Mach code means that some day, when you have to dig deeper, you’ll fi nd
many differences that may cause you problems and some you may be able to
leverage for your own purposes. We’ll discuss some of these important differ-
ences briefl y; for more detailed coverage of these topics, see Mac OS X Internals:
A Systems Approach (Addison-Wesley, 2006).

Mach
Mach, developed at Carnegie Mellon University by Rick Rashid and Avie Tevanian,
originated as a UNIX-compatible operating system back in 1984. One of its pri-
mary design goals was to be a microkernel; that is, to minimize the amount of
code running in the kernel and allow many typical kernel functions, such as fi le

95363c01.indd 495363c01.indd 4 1/25/09 4:39:27 PM1/25/09 4:39:27 PM

 Chapter 1 ■ Mac OS X Architecture 5

system, networking, and I/O, to run as user-level Mach tasks. In earlier Mach-
based UNIX systems, the UNIX layer ran as a server in a separate task. However,
in Mac OS X, Mach and the BSD code run in the same address space.

In XNU, Mach is responsible for many of the low-level operations you expect
from a kernel, such as processor scheduling and multitasking and virtual-
memory management.

BSD
The kernel also involves a large chunk of code derived from the FreeBSD code
base. As mentioned earlier, this code runs as part of the kernel along with Mach
and uses the same address space. The FreeBSD code within XNU may differ
signifi cantly from the original FreeBSD code, as changes had to be made for it
to coexist with Mach. FreeBSD provides many of the remaining operations the
kernel needs, including

 Processes ■

 Signals ■

 Basic security, such as users and groups ■

 System call infrastructure ■

 TCP/IP stack and sockets ■

 Firewall and packet fi ltering ■

To get an idea of just how complicated the interaction between these two sets
of code can be, consider the idea of the fundamental executing unit. In BSD the
fundamental unit is the process. In Mach it is a Mach thread. The disparity is
settled by each BSD-style process being associated with a Mach task consisting
of exactly one Mach thread. When the BSD fork() system call is made, the BSD
code in the kernel uses Mach calls to create a task and thread structure. Also, it
is important to note that both the Mach and BSD layers have different security
models. The Mach security model is based on port rights, and the BSD model is
based on process ownership. Disparities between these two models have resulted
in a number of local privilege-escalation vulnerabilities. Additionally, besides
typical system cells, there are Mach traps that allow user-space programs to
communicate with the kernel.

I/O Kit
I/O Kit is the open-source, object-oriented, device-driver framework in the XNU
kernel and is responsible for the addition and management of dynamically loaded
device drivers. These drivers allow for modular code to be added to the kernel
dynamically for use with different hardware, for example. The available drivers

95363c01.indd 595363c01.indd 5 1/25/09 4:39:27 PM1/25/09 4:39:27 PM

6 Part I ■ Mac OS X Basics

are usually stored in the /System/Library/Extensions/ directory or a subdirectory.
The command kextstat will list all the currently loaded drivers,

$ kextstat

Index Refs Address Size Wired Name (Version) <Linked

Against>

 1 1 0x0 0x0 0x0 com.apple.kernel (9.3.0)

 2 55 0x0 0x0 0x0 com.apple.kpi.bsd (9.3.0)

 3 3 0x0 0x0 0x0 com.apple.kpi.dsep (9.3.0)

 4 74 0x0 0x0 0x0 com.apple.kpi.iokit (9.3.0)

 5 79 0x0 0x0 0x0 com.apple.kpi.libkern

(9.3.0)

 6 72 0x0 0x0 0x0 com.apple.kpi.mach (9.3.0)

 7 39 0x0 0x0 0x0 com.apple.kpi.unsupported

(9.3.0)

 8 1 0x0 0x0 0x0

com.apple.iokit.IONVRAMFamily (9.3.0)

 9 1 0x0 0x0 0x0 com.apple.driver.AppleNMI

(9.3.0)

 10 1 0x0 0x0 0x0

com.apple.iokit.IOSystemManagementFamily (9.3.0)

 11 1 0x0 0x0 0x0

com.apple.iokit.ApplePlatformFamily (9.3.0)

 12 31 0x0 0x0 0x0 com.apple.kernel.6.0 (7.9.9)

 13 1 0x0 0x0 0x0 com.apple.kernel.bsd (7.9.9)

 14 1 0x0 0x0 0x0 com.apple.kernel.iokit

(7.9.9)

 15 1 0x0 0x0 0x0 com.apple.kernel.libkern

(7.9.9)

 16 1 0x0 0x0 0x0 com.apple.kernel.mach

(7.9.9)

 17 17 0x2e2bc000 0x10000 0xf000 com.apple.iokit.IOPCIFamily

(2.4.1) <7 6 5 4>

 18 10 0x2e2d2000 0x4000 0x3000 com.apple.iokit.IOACPIFamily

(1.2.0) <12>

 19 3 0x2e321000 0x3d000 0x3c000

com.apple.driver.AppleACPIPlatform (1.2.1) <18 17 12 7 5 4>

…

Many of the entries in this list say they are loaded at address zero. This just
means they are part of the kernel proper and aren’t really device drivers—i.e.,
they cannot be unloaded. The fi rst actual driver is number 17.

Besides kextstat, there are other functions you’ll need to know for loading
and unloading these drivers. Suppose you wanted to fi nd and load the driver
associated with the MS-DOS fi le system. First you can use the kextfi nd tool to
fi nd the correct driver.

$ kextfind -bundle-id -substring ‘msdos’

/System/Library/Extensions/msdosfs.kext

95363c01.indd 695363c01.indd 6 1/25/09 4:39:27 PM1/25/09 4:39:27 PM

 Chapter 1 ■ Mac OS X Architecture 7

Now that you know the name of the kext bundle to load, you can load it into
the running kernel.

$ sudo kextload /System/Library/Extensions/msdosfs.kext

kextload: /System/Library/Extensions/msdosfs.kext loaded successfully

It seemed to load properly. You can verify this and see where it was loaded.

$ kextstat | grep msdos

 126 0 0x346d5000 0xc000 0xb000

com.apple.filesystems.msdosfs (1.5.2) <7 6 5 2>

It is the 126th driver currently loaded. There are zero references to it (not sur-
prising, since it wasn’t loaded before we loaded it). It has been loaded at address
0x346d5000 and has size 0xc000. This driver occupies 0xb000 wired bytes of
kernel memory. Next it lists the driver’s name and version. It also lists the index
of other kernel extensions that this driver refers to—in this case, looking at the
full listing of kextstat, we see it refers to the “unsupported” mach, libkern, and
bsd drivers. Finally, we can unload the driver.

$ sudo kextunload com.apple.filesystems.msdosfs

kextunload: unload kext /System/Library/Extensions/msdosfs.kext

succeeded

Darwin and Friends
A kernel without applications isn’t very useful. That is where Darwin comes
in. Darwin is the non-Aqua, open-source core of Mac OS X. Basically it is all
the parts of Mac OS X for which the source code is available. The code is made
available in the form of a package that is easy to install. There are hundreds of
available Darwin packages, such as X11, GCC, and other GNU tools. Darwin
provides many of the applications you may already use in BSD or Linux for
Mac OS X. Apple has spent signifi cant time integrating these packages into
their operating system so that everything behaves nicely and has a consistent
look and feel when possible.

On the other hand, many familiar pieces of Mac OS X are not open source.
The main missing piece to someone running just the Darwin code will be Aqua,
the Mac OS X windowing and graphical-interface environment. Additionally,
most of the common high-level applications, such as Safari, Mail, QuickTime,
iChat, etc., are not open source (although some of their components are open
source). Interestingly, these closed-source applications often rely on open-
source software, for example, Safari relies on the WebKit project for HTML
and JavaScript rendering. For perhaps this reason, you also typically have
many more symbols in these applications when debugging than you would
in a Windows environment.

95363c01.indd 795363c01.indd 7 1/25/09 4:39:27 PM1/25/09 4:39:27 PM

8 Part I ■ Mac OS X Basics

Tools of the Trade

Many of the standard Linux/BSD tools work on Mac OS X, but not all of them. If
you haven’t already, it is important to install the Xcode package, which contains
the system compiler (gcc) as well as many other tools, like the GNU debugger
gdb. One of the most powerful tools that comes on Mac OS X is the object fi le
displaying tool (otool). This tool fi lls the role of ldd, nm, objdump, and similar
tools from Linux. For example, using otool you can use the –L option to get a
list of the dynamically linked libraries needed by a binary.

$ otool -L /bin/ls

/bin/ls:

/usr/lib/libncurses.5.4.dylib (compatibility version 5.4.0, current

version 5.4.0)

/usr/lib/libgcc_s.1.dylib (compatibility version 1.0.0, current version

1.0.0)

/usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version

111.0.0)

To get a disassembly listing, you can use the –tv option.

$ otool -tv /bin/ps

/bin/ps:

(__TEXT,__text) section

00001bd0 pushl $0x00

00001bd2 movl %esp,%ebp

00001bd4 andl $0xf0,%esp

00001bd7 subl $0x10,%esp

…

You’ll see many references to other uses for otool throughout this book.

Ktrace/DTrace

You must be able to trace execution fl ow for processes. Before Leopard, this
was the job of the ktrace command-line application. ktrace allows kernel trace
logging for the specifi ed process or command. For example, tracing the system
calls of the ls command can be accomplished with

$ ktrace -tc ls

This will create a file called ktrace.out. To read this file, run the kdump
command.

$ kdump

 918 ktrace RET ktrace 0

95363c01.indd 895363c01.indd 8 1/25/09 4:39:27 PM1/25/09 4:39:27 PM

 Chapter 1 ■ Mac OS X Architecture 9

 918 ktrace CALL execve(0xbffff73c,0xbffffd14,0xbffffd1c)

 918 ls RET execve 0

 918 ls CALL issetugid

 918 ls RET issetugid 0

 918 ls CALL

__sysctl(0xbffff7cc,0x2,0xbffff7d4,0xbffff7c8,0x8fe45a90,0xa)

 918 ls RET __sysctl 0

 918 ls CALL __sysctl(0xbffff7d4,0x2,0x8fe599bc,0xbffff878,0,0)

 918 ls RET __sysctl 0

 918 ls CALL

__sysctl(0xbffff7cc,0x2,0xbffff7d4,0xbffff7c8,0x8fe45abc,0xd)

 918 ls RET __sysctl 0

 918 ls CALL __sysctl(0xbffff7d4,0x2,0x8fe599b8,0xbffff878,0,0)

 918 ls RET __sysctl 0

…

For more information, see the man page for ktrace.

In Leopard, ktrace is replaced by DTrace. DTrace is a kernel-level tracing
mechanism. Throughout the kernel (and in some frameworks and applications)
are special DTrace probes that can be activated. Instead of being an application
with some command-line arguments, DTrace has an entire language, called
D, to control its actions. DTrace is covered in detail in Chapter 4, “Tracing and
Debugging,” but we present a quick example here as an appetizer.

$ sudo dtrace -n ‘syscall:::entry {@[execname] = count()}’

dtrace: description ‘syscall:::entry ‘ matched 427 probes

^C

 fseventsd 3

 socketfilterfw 3

 mysqld 6

 httpd 8

 pvsnatd 8

 configd 11

 DirectoryServic 14

 Terminal 17

 ntpd 21

 WindowServer 27

 mds 33

 dtrace 38

 llipd 60

 SystemUIServer 69

 launchd 182

 nmblookup 288

 smbclient 386

 Finder 5232

 Mail 5352

95363c01.indd 995363c01.indd 9 1/25/09 4:39:27 PM1/25/09 4:39:27 PM

10 Part I ■ Mac OS X Basics

Here, this one line of D within the DTrace command keeps track of the num-
ber of system calls made by processes until the user hits Ctrl+C. The entire
functionality of ktrace can be replicated with DTrace in just a few lines of D.
Being able to peer inside processes can be very useful when bug hunting or
reverse-engineering, but there will be more on those topics later in the book.

Objective-C

Objective-C is the programming language and runtime for the Cocoa API used
extensively by most applications within Mac OS X. It is a superset of the C
programming language, meaning that any C program will compile with an
Objective-C compiler. The use of Objective-C has implications when applica-
tions are being reverse-engineered and exploited. More time will be spent on
these topics in the corresponding chapters.

One of the most distinctive features of Objective-C is the way object-oriented
programming is handled. Unlike in standard C++, in Objective-C, class meth-
ods are not called directly. Rather, they are sent a message. This architecture
allows for dynamic binding; i.e., the selection of method implementation occurs at
runtime, not at compile time. When a message is sent, a runtime function looks
at the receiver and the method name in the message. It identifi es the receiver’s
implementation of the method by the name and executes that method.

The following small example shows the syntactic differences between C++
and Objective-C from a source-code perspective.

 #include <objc/Object.h>

 @interface Integer : Object

 {

 int integer;

 }

 - (int) integer;

 - (id) integer: (int) _integer;

 @end

Here an interface is defi ned for the class Integer. An interface serves the role
of a declaration. The hyphen character indicates the class’s methods.

 #import “Integer.h”

 @implementation Integer

 - (int) integer

 {

 return integer;

 }

 - (id) integer: (int) _integer

95363c01.indd 1095363c01.indd 10 1/25/09 4:39:27 PM1/25/09 4:39:27 PM

 Chapter 1 ■ Mac OS X Architecture 11

 {

 integer = _integer;

 }

 @end

Objective-C source fi les typically use the .m fi le extension. Within Integer.m
are the implementations of the Integer methods. Also notice how arguments to
functions are represented after a colon. One other small difference with C++ is
that Objective-C provides the import preprocessor, which acts like the include
directive except it includes the fi le only once.

 #import “Integer.h”

 @interface Integer (Display)

 - (id) showint;

 @end

Another example follows.

#include <stdio.h>

#import “Display.h”

 @implementation Integer (Display)

 - (id) showint

 {

 printf(“%d\n”, [self integer]);

 return self;

 }

 @end

In the second fi le, we see the fi rst call of an object’s method. [self integer]
is an example of the way methods are called in Objective-C. This is roughly
equivalent to self.integer() in C++. Here are two more, slightly more compli-
cated fi les:

 #import “Integer.h”

 @interface Integer (Add_Mult)

 - (id) add_mult: (Integer *) addend with_multiplier: (int) mult;

 @end

and

#import “Add_Mult.h”

 @implementation Integer (Add_Mult)

 - (id) add_mult: (Integer *) addend with_multiplier:(int)mult

 {

 return [self set_integer: [self get_integer] + [addend get_integer]

* mult];

}

@end

95363c01.indd 1195363c01.indd 11 1/25/09 4:39:28 PM1/25/09 4:39:28 PM

12 Part I ■ Mac OS X Basics

These two fi les show how multiple parameters are passed to a function. A
label, in this case with_multiplier, can be added to the additional parameters.
The method is referred to as add_mult:with_multiplier:. The following code
shows how to call a function requiring multiple parameters.

#include <stdio.h>

#import “Integer.h”

#import “Add_Mult.h”

#import “Display.h”

 int main(int argc, char *argv[])

 {

 Integer *num1 = [Integer new], *num2 = [Integer new];

 [num1 integer:atoi(argv[1])];

 [num2 integer:atoi(argv[2])];

 [num1 add_mult:num2 with_multiplier: 2];

 [num1 showint];

 }

Building this is as easy as invoking gcc with an additional argument.

$ gcc -g -x objective-c main.m Integer.m Add_Mult.m Display.m -lobjc

Running the program shows that it can indeed add a number multiplied
by two.

$./a.out 1 4

9

As a sample of things to come, consider the disassembled version of the
add_mult:with_multiplier: function.

0x1f02 push ebp

0x1f03 mov ebp,esp

0x1f05 push edi

0x1f06 push esi

0x1f07 push ebx

0x1f08 sub esp,0x1c

0x1f0b call 0x1f10

0x1f10 pop ebx

0x1f11 mov edi,DWORD PTR [ebp+0x8]

0x1f14 mov edx,DWORD PTR [ebp+0x8]

0x1f17 lea eax,[ebx+0x1100]

0x1f1d mov eax,DWORD PTR [eax]

0x1f1f mov DWORD PTR [esp+0x4],eax

0x1f23 mov DWORD PTR [esp],edx

0x1f26 call 0x400a <dyld_stub_objc_msgSend>

0x1f2b mov esi,eax

95363c01.indd 1295363c01.indd 12 1/25/09 4:39:28 PM1/25/09 4:39:28 PM

