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FOREWORD

Francine Govers

Wageningen University, The Netherlands

The publication of this book is an important breakthrough; it is the first time
that the existing knowledge on Oomycetes has been brought together in one
volume. The Oomycetes, also known as water molds, comprise a diverse group
of filamentous microorganisms that share many characteristics with Fungi (i.e.,
members of the taxonomic entity defined as Fungi). They have an absorptive
mode of nutrition, grow by polarized hyphal extension, and their reproduction
includes the formation of spores. Traditionally the Oomycetes have been
presented in textbooks as a phylum in the kingdom Fungi and have been
lumped together with other organisms of uncertain affinity as “lower fungi” or
“zoosporic fungi.” More recently, the Oomycetes have been placed in another
kingdom, in some systems in the kingdom Stramenopila or the stramenopile
lineage in the supergroup Chromalveolates; in others in the kingdom Chro-
mista. Phylogenetics has clearly demonstrated that Oomycetes are not Fungi
but instead, they are close relatives of heterokont algae. They have lost their
plastids and have adopted a fungal-like lifestyle, absorbing their nutrients from
the surrounding water or soil or invading the body of another organism to feed.
In fact, Oomycetes are “‘algae in disguise” that qualify as fungi (i.e., organisms
sharing the characteristics described above). It is my hope that this book will
stimulate scientists, including mycologists, to adopt or rehabilitate Oomycetes
as subjects of research.

Like Fungi, Oomycetes have a global distribution and prosper in quite
diverse environments. Pathogenic species that live in association with plants,
animals, or other microbes can be devastating and completely destroy their
hosts. Their victims include natural forests, many crop plants, fish in fish farms,
amphibians, and occasionally, humans. In contrast, saprophytic species that

ix



X FOREWORD

feed on decaying material are beneficial; they play important roles in the
decomposition and recycling of biomass. Currently, at least 800 oomycete
species are known, but depending on the definition of a species, this number
might even reach 1500. Still the species richness is low when compared with the
number of species of Fungi known to date (over 100,000), but very likely, there
are many more Oomycetes out there to be discovered. In this respect, the genus
Phytophthora is illustrative. In the last ten years, over 25 new species have been
described, expanding the genus to at least 90 members. A few chapters in the
first section in this book focus on the phylogeny of Oomycetes and the
enormous diversity within the Oomycetes. The diversity at the species level is
addressed in the second section.

Oomycete research has a long history. The type species of Phytophthora, P.
infestans, was described 132 years ago by Anton de Bary, the founding father of
plant pathology and the founder of modern mycology. This notorious plant
pathogen was the cause of the severe late blight epidemic in Europe in the 1840s
that resulted in the Irish potato famine and led to a turning point in history, the
birth of Irish America. Today, late blight is still a major problem for potato
growers worldwide. The same holds for downy mildew on grapes, which is
another well-known oomycete disease that emerged in the nineteenth century.
Less known is the serious outbreak of a disease in 1877 among the salmon in
the rivers Conway and Tweed that spread into most of the rivers of the British
Isles within two years. Again a water mold, Saprolegnia ferax, was to blame. In
the last decade, the rise of industrial fish farming has gone hand-in-hand with
the revival of Saprolegniosis as a major disease. The finding that Oomycetes
can also cause a disease known as Pythiosis in humans is of a more recent date.
The publication of this book is timely; with the (re-)emergence of oomycete
diseases in hosts important for the world food economy, such as fish, soybean,
potato, and other vegetable crops, or in hosts that shape the landscape (e.g.,
oak and alder) and inhabit unique ecological niches, interest in oomycete
biology and pathology should be challenged, and the research should be
intensified and strengthened. This book helps in identifying the challenges.
The chapters dealing with sexual and asexual reproduction and interactions
with plant hosts and animal hosts provide the necessary background but also
point to gaps in our knowledge.

With the head title of this book, Oomycete Genetics and Genomics, the
editors cross a frontier. Mentioning “Oomycete” and “Genetics” in one breath
seems odd, and the search for an Oomycete in a genetics textbook is in vain.
The genetics timeline begins with Gregor Mendel’s discovery of the basic laws
of genetics in 1865 and marks major milestones like the description of the
double helix structure of DNA, the unraveling of the genetic code, and the first
recombinant DNA experiments. Then, in the 1990s, genomics milestones start
to appear: the first whole genome sequence of a prokaryote and a eukaryote,
culminating in the human genome sequence in 2001, an event marked by the
former U.S. President Bill Clinton as one that will change the history of
mankind. Prominent organisms on the genetic timeline are the well-known
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models like Escherichia coli, yeast, Caenorhabditis elegans, or Arabidopsis but
no Oomycete. David Shaw once called Phytophthora a ‘‘geneticist’s night-
mare.” As exampled in this book we can now look beyond this nightmare.
In recent years, many oomycete researchers have experienced that genomics
gives rise to a bright morning with many new milestones at the horizon. To
date, five oomycete genomes have been sequenced. The availability of genomics
resources and technologies has changed the way we can address various long-
standing biological questions and has certainly stimulated researchers to use
genomics as an instrument to tackle Oomycetes. The chapters in the tools
section of this book describe recent advances in technology aimed at either the
functional analysis of individual genes or at overall genome-wide analyses.

This book will serve as an excellent introduction and a valuable resource for
students and researchers at all levels. It echoes the enthusiasm of the oomycete
research community. I advise the newcomers in this field to take part in this
community and to join the oomycete molecular genetics network (OMGN;
http://pmgn.vbi.vt.edu/). Last, but not least, I commend Kurt Lamour and
Sophien Kamoun for taking the initiative to publish this book as well as the
authors for their efforts in writing the chapters.






PREFACE

A bittersweet truth in our fast-paced genetic world is that an organism-specific
book on genetics and genomics is outdated by the time it goes to print. This is
especially true for the burgeoning field of Oomycete genetics and genomics
where the foundations for genetic discovery have only recently been laid. Ten
years ago who would have thought there would be genome sequences for
multiple Phytophthora species, a Hyaloperonospora, and soon, a Pythium?
Strangely enough, these reference genomes may themselves soon be viewed
as archaic. Although only touched on in the chapter on genome sequencing, the
ongoing quest to develop faster and less costly genetic sequencing has led to
sequencing platforms that make it feasible to discover all of the changes
between multiple whole genomes or transcriptomes — without the need for a
reference genome. With so much forward momentum, there is never a good
time to stop and take stock of where we’ve been. Our goal is to provide a useful
overview of this fascinating group: a resource that can be handed to an
incoming graduate student, a new colleague or a potential collaborator.

The book begins by presenting an overview of the evolutionary relationships
within the Oomycetes. The diversity of life forms is astounding, and it is clear
that additional taxa and sequences will continue to clarify this important area
of research. The white blister rusts provide a good example of how genetic data
can resolve relationships among morphologically similar yet evolutionarily
distinct taxa — an important challenge in an age of costly quarantines and
worldwide movement of pathogens. Interesting possibilities spring from the
phylogenetic perspective, including the idea that terrestrial plant pathogens
may have hitched an evolutionary ride from the open sea via nematodes and
switched hosts to plant roots — on more than one occasion. For those
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interested in discovering whole new worlds of diversity, a plethora of lower
oomycetes are waiting, particularly in the Tropics and Polar regions. A
question lingering throughout is whether the parasitic lifestyle is derived
from a saprophytic lifestyle or vice versa.

After the introductory chapters is an overview of asexual and sexual
reproduction. This provides a useful framework for the next sections, which
explore the population structure of representative species in natural popula-
tions, and the interactions with plant and animal hosts. These chapters range
from overviews of the entrenched pathogen of potato, Phytophthora infestans, a
staple crop and staple research area since the dawn of micro-organism research,
to newly emerging invasive species such as the Sudden Oak Death pathogen,
Phytophthora ramorum. For investigators familiar with the impact of Oomy-
cetes on sessile organisms, the chapters on Oomycetes that attack fish,
crustaceans, and humans should be particularly interesting. And finally, there
are specific chapters describing the application and development of molecular
tools to better understand these notoriously intractable organisms.

The response by the authors to contribute their work and perspective was
overwhelmingly positive, and we are hopeful that this snapshot will stimulate
new relationships and research.
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THE EVOLUTIONARY PHYLOGENY
OF OOMYCETES —INSIGHTS
GAINED FROM STUDIES OF
HOLOCARPIC PARASITES OF
ALGAE AND INVERTEBRATES

GorRDON W. BEAKES
School of Biology, Newcastle University, Newcastle upon Tyne, United Kingdom

SATOSHI SEKIMOTO

Department of Botany, University of British Columbia, Vancouver, Canada

... phylogenetic speculations, valueless though these are considered to be....may
stimulate studies in the life-history, cytology, morphology etc.... and clear the
way for laying the foundations of a more logical system of classification.

—E. A. Bessey (1935), A Textbook of Mycology

1.1 INTRODUCTION

The unraveling of the evolutionary phylogeny of organisms has been given a
tremendous impetus by the application of molecular techniques that have
enabled biologists to, in effect, delve for phylogenetic clues in the DNA of
organisms in a manner analogous to fossil hunters searching for physical
evidence a century earlier. As pointed out by Bessey, a sound phylogenetic
framework will hopefully inform and direct future exploration as well as
provide a sound basis for classification. This is particularly pertinent in the era
of bioinformatics, because this knowledge should help in choosing organisms
that might be targeted for genome sequencing. The oomycetes are fungus-like
heterotrophs that are saprophytes or parasites of diverse hosts in marine,
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2 OOMYCETE GENETICS AND GENOMICS

freshwater, and terrestrial environments (Sparrow, 1960; Karling, 1981; Dick,
2001; Johnson et al., 2002). However, as a group, they are best known as
devastating pathogens of plants.

Oomycetes are similar to the true fungi in that they produce complex
branching, tip-growing, hyphal systems (forming mycelia) and have similar
modes of nutrition and ecological roles (Richards et al., 2006). Summaries of the
early speculations as to the likely evolutionary relationships of oomycetes to
other organisms have been reviewed by Karling (1942), Dick (2001), and
Johnson et al. (2002). Candidates cited as their likely ancestors have included
amoebas, heterotrophic flagellates, diverse algal groups, and even chytrid fungi.
However, most opinions tended to divide sharply between those, such as
Scherffel, who considered oomycetes to have evolved from heterotrophic
flagellates (Karling, 1942), and those like Bessey, who thought that photosyn-
thetic algae were the more likely ancestors. In a seminal analysis, Bessey (1942)
outlined two possible alternative evolutionary pathways within the oomycete
lincage (Fig. 1.1a). In the first, it was suggested that oomycetes evolved from
siphonaceous (coenocytic) algae and that they shared a common ancestor with
the xanthophyte alga Vaucheria. The saprotrophic Saprolegniales were consid-
ered to be the most primitive order, which in turn gave rise to the Leptomitales,
after which the lineage split and created the plant pathogenic Peronosporales
along one branch and the holocarpic Lagenidiales along the other. The other
scheme postulated that the most likely ancestor was an unknown ‘‘heterocont
unicellular algae,” which was ancestral to both the uniflagellate hyphochytrids
and the biflagellate oomycetes. In this pathway, the holocarpic Olpidiopsidales
were thought to be the most likely basal family and yielded the Lagenidiales.
From these, the plant pathogenic Peronosporales diverged on one branch and
the water moulds (Saprolegniales via the Leptomitales) on the other. In this
review, we will summarize current views on the likely phylogeny and taxonomy
of these organisms in the light of recent work that we have carried out on some
of the less widely studied parasites of seaweeds, crustacea and nematodes.

1.2 ANIMAL OR VEGETABLE —WHERE DO OOMYCETES
BELONG ON THE TREE OF LIFE?

The sequencing of conserved genes over the past two decades has led to a firm
phylogenetic placement for most groups of living organisms. These studies have
shown that the oomycetes are heterokonts (see Fig. 1.1b based on Cavalier-
Smith and Chao, 2006; Tsui et al., 2008) within the chromalveolate “super
kingdom” (Baldauf et al., 2000). The chromist section contains three, wholly or
partially, photosynthetic lineages: the cryptomonads, haptophytes, and hetero-
konts, although the evidence for the inclusion of the former pair with the
heterokonts is still not particularly strong (discussed by Harper et al., 2005). The
alveolate section contains the parasitic apicocomplexa, phagotrophic ciliates,
and mixotrophic dinoflagellates (Fig. 1.1b). The heterokonts/stramenopiles
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FIG. 1.1 Schematic summaries of the likely phylogenetic relationships of oomycetes
and their relatives. (a) Schematic summary of two possible phylogenetic schemes
showing the likely origins and family relationships within the oomycetes outlined by
Bessey (1942). (b) Summary of the likely relationships between main classes and phyla
within the Chromalveolata Superkingdom based on the terminology and information
presented in Cavalier-Smith and Chao (2006) and Tsui et al. (2008).
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(Fig. 1.1b) are an extraordinarily diverse assemblage (Cavalier-Smith and Choa,
20006) that encompasses both autotrophic and heterotrophic organisms, includ-
ing the chlorophyll c-containing algae (diatoms, chrysophytes, xanthophytes,
phaeophytes, etc.), free-living bacteriotrophic flagellates (bicoecids, etc.), a
group of absorptive gut commensals/parasites (opalanids, proteromonads,
and Blastocystis), as well as the fungal-like osmotrophic representatives (labyr-
inthulids, hyphochytrids, oomycetes, etc.). Recent multigene analyses have
indicated that the Rhizaria (a very diverse group, including filose amoeboid
organisms and flagellates) are the sister group to the “Stramenopiles,” which has
led to this lineage being renamed as the SAR (Stramenopile/Alveolate/Rhizaria)
clade (Burki et al., 2007).

The first published phylogenetic trees, which are mostly based on nuclear-
encoded ribosomal gene (SSU rDNA) sequences, showed that all the early
branching heterokonts were nonphotosynthetic organisms, which suggested the
late acquisition of plastids in the line (Leipe et al., 1996). Most recent evidence
points to the whole chromalveolate lineage having developed from a common
biflagellate (mastigonate) ancestor, which had acquired photosynthetic
capabilities as a result of a single unique red algal enslavement (Patron et al.,
2004; Harper et al., 2005; Cavalier-Smith and Chao, 2006). It is now thought
that chloroplast loss has occurred many times within the lineage, including at
least twice in the heterokont line (Fig. 1.1b; Cavalier-Smith and Chao, 2006;
Tsui et al., 2008). Genomic data have also provided direct evidence for the
photosynthetic ancestry of oomycetes with the discovery of vestigial plastid
genes within the nuclear genome of Phytophthora (Lamour et al., 2007).

1.3 KINGDOM WARS AND FAMILY TIES — A CASE OF
CONFLICTING NOMENCLATURE

There is still debate as to the correct (and taxonomically legal) kingdom/
phylum/class names to be used for the lineage that contains the oomycetes. Dick
(2001) formally proposed (and diagnosed) the kingdom Straminipila for the
heterokont lineage, pointing out the incorrect etymological derivation of the by
then widely used informal term ““‘Stramenopile,” which was first introduced by
Patterson (1989) in reference to the “‘straw-like’ flagellum hairs (mastigonemes)
possessed by most members of this group. However, in their attempt to bring
order and consistency to the naming of protists, algae, and fungi, Adl et al.
(2005) forcefully argued for the continued use of the name Stramenopile for this
lineage, although they side stepped the issue of assigning hierarchical taxonomic
ranks. Cavalier-Smith and Chao (2006) in their review of the phylogeny of
phagotrophic heterokonts considered Dick’s kingdom Straminipila to be
synonymous with the kingdom Chromista erected by Cavalier-Smith (1981);
this is the name that is used in many current nomenclatural databases.

Which phylum the oomycetes should be placed in has been no less
controversial. The name Heterokonta has been used, respectively, to define
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both a “phylum” (Dick, 2001) and an “infrakingdom” (Cavalier-Smith
and Chao, 2006). The Heterokonta infrakingdom was split into three phyla
(see Fig. 1.1b), the Ochrophyta (encompassing all photosynthetic heterokonts),
Bygyra (thraustochytrids, labyrinthulids, opalinids, etc.) and Pseudofungi
(Cavalier-Smith and Chao, 2006). This includes, in addition to the oomycetes,
the anteriorly uniflagellate hyphochytrids and associated sister clade, the
flagellate parasitoid Pirsonia (Kiihn et al., 2004), and the free-living bacterio-
trophic marine zooflagellate Developayella. The latter species usually forms the
sister clade to the oomycetes in small ribosomal subunit phylogenetic trees
(Figs. 1b, 1.2a; Leipe et al., 1996). Patterson (1999) introduced yet another
name, Sloomycetes, for a clade that contains all the osmotrophic fungal-like
heterokonts. Perhaps because of the plethora of conflicting higher level
taxonomic schemes, it is not surprising that many review volumes and text-
books continue to afford the oomycetes/oomycota their own phylum status.

The separation of the photosynthetic ochrophyte and heterotrophic oomycete
lineages into two parallel clades derived from a common ancestor (Fig. 1.1b) is
supported in the most recent phylogenetic trees (e.g., Cavalier-Smith and Chao,
2006; Tsui et al., 2008). This makes evolutionary sense as it explains the often
reciprocal host—pathogen relationships observed between members of these two
groups. For instance, both the hyphochytrid Anisopidium ectocarpi and the
oomycete Eurychasma dicksonii are parasites of ectocarpalean phaeophyte algae
(Kiipper and Miiller, 1999) and Pirsonia, Ectrogella, and Lagenisma all infect
centric marine diatoms (Kiihn et al., 2004; Schnepf et al., 1977, 1978; Raghu
Kumar, 1980), which suggests the coevolution of parasitism between these two
heterokont lineages (Cavalier-Smith and Chao, 2006). Environmental SSU
rDNA sequences derived from small nanoplanktonic organisms sampled from
diverse marine locations and ecosystems have shown that many of these lincages
not only cluster within existing stramenopile clades, such as the hyphochytrids
and oomycetes, but also form many ‘“‘novel stremenopile” clades whose
identities largely remain a mystery (Massana et al., 2004, 2006). The inclusion
of such environmental sequence data in phylogenetic analyses significantly alters
the topography of the heterokont tree and suggests that the Pirsonia/hyphochy-
trid clade may not be related as closely to the oomycetes as shown in Fig. 1.1b,
although they undoubtedly share a common ancestor (Massana et al., 2004,
20006). It is to be expected that a systematic multigene approach to determining
phylogeny in this lineage, as well as a significantly increased taxon sampling, will
result in a much better understanding of the precise branching relationships of
these various groups.

1.4 THE NAME GAME —THE TAXONOMY
OF “CROWN” OOMYCETES

The current taxonomic organization of the oomycetes has largely been forged
by two eminent scholars of zoosporic fungi, Frederick Sparrow (Sparrow, 1960,
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1976) and Michael Dick (Dick et al., 1984; Dick, 2001). In his encyclopedic
treatise on aquatic fungi, Sparrow (1960) split the oomycetes into four orders,
the Lagenidiales, Leptomitales, Peronosporales, and Saprolegniales. In his final
synthesis, Sparrow (1976) suggested that all oomycetes could be assigned to one
of two groups, which he informally termed ‘““galaxies.” Within the “‘saproleg-
nian galaxy,” he placed the order Saprolegniales (in which he included the
Leptomitaceae as a family) and introduced a new order the Eurychasmales, in
which he placed many marine oomycete families. Within the “peronosporalean
galaxy,” he placed the Peronosporales (in which the Peronosporaceae, Pythia-
ceae, and Rhipidiaceac were included as families) and the holocarpic
Lagenidiales.

Dick continued to refine oomycete classification culminating in his final
synthesis, which he outlined in his magnum opus Straminipilous Fungi, in which
he expanded the number of orders to around 12 (Dick, 2001). Sparrow (1976)
had pointed out the inappropriateness of the name oomycete, which had been
first introduced in 1879, and this was acted on by Dick (1998, 2001) who
formally renamed the class the Peronosporomycetes. However, there has been a
general reluctance to abandon the traditional name, and its retention does not
apparently contravene the International Code of Nomenclature. Dick’s major
revision was substantially carried out before the advent of wide-ranging
molecular studies and was based mostly on a scholarly reinterpretation of
the available morphological and ecological data. The application of molecular
methodologies has revolutionized understanding of the likely phylogenic
relationships throughout biology, and it has become increasingly apparent
that many of the more radical changes introduced by Dick (2001) are not
supported by molecular data and will require revision.

For oomycetes, most molecular studies have used the sequences of either the
nuclear-encoded SSU (Dick et al., 1999; Spencer et al., 2002), large ribosomal
subunit (LSU) genes (Riethmiiller et al., 1999, 2002; Petersen and Rosendahl,
2000; Leclerc et al., 2000) or associated internal spacer region (ITS) sequences
(Cooke et al., 2000), or the mitochondrial-encoded cytochrome c oxidase
subunit II (cox2) gene (Hudspeth et al., 2000; Cook et al., 2001; Thines
et al., 2008). Phylogenetic sequence data for the oomycetes is still far from
complete, and the current analyses should be viewed as work in progress. It is
not possible, for instance, to assemble all species for which molecular data are
available into a single all-encompassing tree. There are also significant gaps in
data, particularly for many of the less economically important taxa and,
particularly, for those holocarpic species that cannot be brought into labora-
tory culture.

The early molecular studies all supported both the monophyletic origins of
the oomycetes (Riethmiiller et al., 1999; Hudspeth et al., 2000; Petersen and
Rosendahl, 2000) and the broad “galaxy split” proposed by Sparrow (1976),
which were assigned formal subclass rank (Saprolegniomycetidae and Pero-
nosporomycetidae) by Dick et al. (1999). However, it seems likely that these
higher taxonomic ranks will also require major revision, particularly if the
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oomycetes are considered to be a phylum in their own right. The two main
plant pathogenic orders, the Pythiales and Peronosporales, were also fairly well
supported by sequence data (Cooke et al., 2000; Riethmiiller et al., 2002;
Hudspeth et al., 2003). Most analyses revealed the genus Phytophthora to be
part of the Peronosporales rather than the Pythiales where it had traditionally
been placed (Cooke et al., 2000; Riethmiiller et al., 2002). Some larger genera of
plant pathogenic oomycetes, such as Phytophthora (Cooke et al., 2000; Blair
et al., 2008) and Pythium (Lévesque and de Cock, 2004), have been split into
several clades, which ultimately may warrant at least genus-level separation.
The K-clade of Pythium is phylogenetically interesting because it seems to form
a clade that is intermediate between the Pythiales and Peronosporales orders as
currently constituted (Lévesque and de Cock, 2004).

Another major surprise was the early divergence within this line of the white
blister rusts (4/bugo) and their clear separation from all other members of the
Peronosporales (Fig. 1.2b; Petersen and Rosendahl, 2000; Hudspeth et al.,
2003). They have now been placed in their own order, the Albuginales
(Fig. 1.2b; Riethmiiller et al., 2002; Voglmayr and Riethmiiller, 2006). On
the basis of their unusually long and unique COII amino acid sequence (derived
from the cox2 gene analysis), Hudspeth et al. (2003) considered them to be the
earliest diverging clade in the Peronosporomycetidae, and they have been
assigned their own subclass rank, which is called Albugomycetidae in some
analyses (Thines et al., 2008).

The Rhipidiales are a small group of saprotrophic species associated with
submerged twigs and fruit, most of which show restricted thallus development,
consisting of a basal cell, holdfasts, and constricted (jointed) hyphal branches
(Sparrow, 1960). They are a phylogenetically significant group that sits at the
cusp of the saprolegnian-peronosporalean clade divergence (Figs. 1.2 and 1.3).
Dick (2001) proposed that they be given their own order and subclass status
(Rhipidiales, Rhipidiomycetidae), although he acknowledged the limited data
on which this was based. Unfortunately, Sapromyces elongatus is still the only
representative of this clade to have been sequenced and is a species whose
placement has proven problematic (compare Fig. 1.2a and b). It has been
reported as the basal clade to the Peronospomycetidae in cox2 trees (Hudspeth
et al., 2000) and the basal clade to the Saprolegniomycetidae in LSU rDNA
trees (Riethmiiller et al., 1999; Petersen and Rosendahl, 2000). In our SSU
rDNA trees (Fig. 1.2a), it forms part of a clade together with the holocarpic
nematode parasite Chlamydomyzium, which diverges before both the major
subclasses. However, the derived COII amino acid sequence showed that
Sapromyces has the same signature amino acid insertion-deletion (indel)
sequence (LEF/T) as that found in members of the Pythiales in contrast to
the YTD indel sequence found in members of the Leptomitaceae (Hudspeth
et al., 2000, 2003; Cook et al., 2001). Other members of the genus, such as
C. oviparasiticum (Glockling and Beakes, 2006a), are diplanetic and have
K-bodies in their zoospores (saprolegnian characteristics) but release their
zoospores into a transient vesicle (a peronosporalean characteristic). Nakagiri
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FIG. 1.3 Schematic summary of the likely phylogenetic relationships between the main
orders within the oomycetes, based on molecular sequence data. The species listed are
those for which sequence data are available. Some main ecological and morphological
characteristics are also mapped onto this scheme. See the text for sources.

(2002) has also reported that Halophytophthora spinosa is not closely related to
other members of the genus and apparently clusters close to Sapromyces.
The sequence data that support the early divergence of the Leptomitales
clade in Saprolegniomycetidae comes from two taxa Apodachlya and Lepto-
mitus, which are both members of the family Leptomitaceae (Riethmiiller et al.,
1999; Dick et al., 1999; Petersen and Rosendahl, 2000). This order, however,
also includes the Leptolegnielliaceae, which contains many holocarpic genera,
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such as Aphanomycopsis, Brevilegniella, Leptolegniella, and the nematode
parasite Nematophthora. Cornumyces was also tentatively included in this
family by Dick (2001). Cornumyces isolates form a clade close to the
Leptomitales at the base of the saprolegnian line (Inaba and Harayama,
2006) and also close to Chlamydomyzium when this species is included in the
analyses (Inaba unpublished data). Unfortunately, no sequence data are
available for any other of the genera in the Leptolegniellaceae. From the
current, scant, molecular data, it seems that the clades located close to the point
where the two main subclasses diverge (encompassing the Rhipidiales, Lepto-
mitales, Atkinsiellales etc. Figs. 1.2 and 1.3) cannot be properly resolved until
there has been far greater taxon and gene sampling.

1.5 ALL AT SEA—THE EARLIEST DIVERGING
OOMYCETE CLADES

The first indication that some genera might fall outside the two main ““‘crown”
subclasses came from the study of Cook et al. (2001) who sequenced the cox2
gene for several parasites of marine crustaceans. Two genera, Haliphthoros
(Fig. 1.4p) and Halocrusticida (Fig. 1.4n and o), which has been reclassified as
Halodaphnea by Dick, 1998, 2001), formed a well-supported clade that diverged
before the main crown subclasses (Cook et al., 2001). However, another
enigmatic marine crustacean parasite, Atkinsiella, formed a deeply branched
clade basal to the Saprolegniomycetidae. This study indicated that these
obscure marine genera might hold the key to understanding the evolutionary
origins of the oomycetes as a whole. This conclusion was reinforced when it was
reported that E. dicksonii, which is a holocarpic parasite of brown seaweeds
(Fig. 1.4a and b), was found to be the earliest diverging member of the
oomycete lineage (Kiipper et al., 20006).

A range of marine parasites of seaweeds and invertebrates was selected for
an integrated study into their molecular phylogeny, morphological develop-
ment, and ultrastructural characteristics (Sekimoto, 2008; Sekimoto et al.,
2007, 2008a—c). Phylogenetic trees based on the SSU rDNA (Fig. 1.2a) and
cox2 genes (Fig. 1.2b) revealed that most of these marine holocarpic species fell
into one of two deeply branched early diverging clades, which we have termed
“basal oomycetes” (Fig. 1.3). The first clade in both SSU rDNA (Fig. 1.2a) and
cox2 gene (Fig. 1.2b) trees encompassed two genera, Eurychasma and Hap-
toglossa (Beakes et al., 2006; Hakariya et al., 2007; Sekimoto et al., 2008b).
These two genera have few apparent morphological and structural features in
common (cf. Fig. 1.4a,b, f-1) and would never have been linked without
molecular data. These two genera may merit their own order status, the
Eurychasmales and Haptoglossales, although they do seem to form a distinct
clade, albeit showing long branch separation (Fig. 1.2a and b). Eurychasma is
an obligate parasite of filamentous brown seaweeds, mostly in the Ectocarpales
(Fig. 1.4a and b), but it has a broad host range (Kiipper and Miiller, 1999).



