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Preface

Earning tenure at an academic institution and running a steeplechase
race successfully have a lot in common. Both require extensive training before
the event begins, both involve hurdles to overcome and pitfalls to avoid, and
both are grueling events that inevitably lead to a few twisted ankles or broken
marriages. Unlike the steeplechase race where there exists a single winner
(second place is considered “first loser””), multiple winners can be found in
the tenure race, however.

Tenure decisions are often based on some institutionally defined, linear
combination of teaching, research, and service to the community. However,
not all institutions share the same values, nor do they have the same goals.
While some institutions focus mainly on teaching and others focus primarily
on research, they all share the common theme of ensuring that competent and
caring teachers are interfacing with their students.

For those colleges and universities that emphasize research in the tenure
portfolio, another common theme is that they all want their new hires to be
successful in their research endeavors. This usually means providing reduced
teaching loads for those new faculty during the first academic year, assigning
mentors to oversee new faculty teaching and/or research strategies so as to
help them avoid pitfalls that might derail an otherwise successful career,
and providing startup funding so that those new faculty members can obtain
the requisite equipment, supplies, and personnel needed to jump-start their
research careers.

One often hears, anecdotally, how much a particular institution paid in
startup funding to attract a highly regarded candidate to accept its offer in lieu
of one from a competing institution. Sometimes those funds include valuable
but inflationary content such as laboratory renovation costs, machine time
fees, repair shop costs, partial summer salaries, and so on, which, superficially,
balloon the startup costs to the point of extravagance. So, what are the startup
packages in academic laboratories nowadays, and, are those packages really as
extravagant as some are saying? Moreover, with respect to the readership of
this book series, how do computational chemists fare with respect to experi-
mentalists in this regard?
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Figure 1 Representative set of startup packages provided by American chemistry
departments in doctoral-granting institutions during the 20062007 academic year.
Black lines are for computational chemists.

Some of these questions can be answered with data provided by the
American Chemical Society’s Petroleum Research Fund (PRF). The PRF asks
new faculty members applying for a grant to delineate startup costs along with
other information such as space allocations, teaching loads, etc. Figures 1 and
2 contain a random selection of startup packages during the 2006-2007 aca-
demic year. These plots show the data (sorted by increasing amount) for
approximately 100 new investigators applying from universities with doctoral
programs (Figure 1) and 45 new investigators from BS and MS granting insti-
tutions (Figure 2). Note that the scales are NOT the same in these figures, with
doctoral institutions, providing significantly more research startup funds than
do primarily undergraduate institutions, as expected.

The data in these plots are for Chemistry Departments only; excluded are
data from engineering, geology, and physics departments (data for new inves-
tigators in the fields of chemical biology were not available). Parenthetically,
chemists do significantly better in terms of their startup packages than do the
people in these excluded groups, but this is a topic for another day. Also
omitted are startup packages from non-American institutions because,
frequently, one ends up comparing apples versus oranges in this regard.

The data depicted include real dollars made available for new investiga-
tors at American chemistry departments to use as they feel would be best for
their research careers. Removed from these numbers are the costs of labora-
tory renovations and other such obligatory spending by an institution,
as well as “in-kind” funds such as nuclear magnetic resonance (NMR) or
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Figure 2 Representative set of startup packages provided by American chemistry
departments in BS- and MS-granting institutions during the 2006-2007 academic year.
Black lines are for computational chemists.

computer time, glass and machine shop time, and so on, each of which are
desirable and meant to help the new faculty member but that were removed
nonetheless because not all new faculty would think to put this kind of infor-
mation into their PRF grant application. Also removed were summer salaries,
travel monies, months of teaching assistant (TA) support, new journal costs,
and other types of support that is already earmarked by a department for a
particular use. What remains, then, is a noninflated, barebones, startup pack-
age that the new faculty member can use for what he or she thinks will best
ensure success for the research component of his or her tenure portfolio. The
data provided here, then, represents a lower bound on the level of support
given by American institutions.

While some doctoral institutions are providing startup packages in
excess of $800,000, most are giving $600,000 or less. Is this extravagant or
is this necessary? The answer to that question clearly depends on the expecta-
tions each of those institutions have for their faculty, but also on their ability
to provide those funds, especially when two or three new faculty are being
hired in the same year (many institutions spread out their startup costs over
2-3 years). Given the cost of glassware, solvents/chemicals, spectrometers,
chromatographs, and research assistantship line items, we will let you decide
if these startup packages are reasonable or extravagant.

The undergraduate/MS-level schools can, in some cases, rival some of the
doctoral program startup packages, but their packages are significantly less
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than those provided by doctoral institutions in general. Some institutions pro-
vide more than $100,000, but the majority of them provide startup packages
between $20,000 and $75,000 (it is not clear if these funds are to be used
exclusively for research or if they are intended also for teaching/curriculum
development). Nonetheless, a clear gradation in research support exists for
both undergraduate and doctoral institutions alike.

What is surprising and somewhat disconcerting is that computational
chemists are given far fewer startup dollars to jumpstart their careers than is
given to experimentalists. A decade ago a Silicon Graphics workstation with
dual processors cost about $25,000, a cost that was comparable to a liquid
chromatograph. One can argue that chromatographic columns are costly
(some columns were typically $1500 each and prone to easy degradation),
as are the costs for high-purity solvents to justify more funding for the experi-
mentalist, but, that chromatograph would likely last for 10-15 years with
proper maintenance while the workstation would be outdated and in need
of replacement every 3-5 years. One might also argue that the computational
scientist could use departmental or school computing resources (if they exist)
or perhaps receive a user’s grant from a nationally funded supercomputing
center, but, that does not obviate the fact that experimentalists usually have
access to expensive department-provided resources such as NMR and mass
spectrometers. What is not arguable, however, is that the costs of hiring a
postdoctoral researcher to get any new faculty member’s research going on
a fast track is exactly the same for computational chemists as it is for experi-
mentalists at a given institution, yet it appears, on the whole, that computa-
tional scientists are being short changed in their startup packages. This is an
issue that senior computational chemists need to pay attention to and insist,
when new hires are made, that theorists be treated on the same footing as
experimentalists. The irony in all this is that a disproportionate number of
computational chemists are cited heavily in the scientific literature compared
to researchers in other disciplines. Indeed, in the preface of Volume 13 of this
book series, we carried out a thorough assessment of citation trends and
pointed out that 25% of the top-cited chemists are computational scientists,
even though computational chemists constitute only about 5% of all chemists.
Despite the shortcomings associated with less funding for computational
chemistry than for experimental chemistry, we can say that computational
chemists, as a group, are doing more than their fair share of having an impact
on science.

Because computational chemistry is so important in today’s laboratory
setting, we know that many experimentalists want to use the theories and
the associated software developed by computational scientists for their own
needs. The theoretical underpinnings and philosophical approaches used by
theorists and software developers are often buried in terse mathematics or
hidden in other ways from the view of a traditional black-box-using bench
chemist who has little time to become truly proficient as a theorist, or who
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might stumble into some theoretical pitfall that would detract from the expla-
nations of their scientific findings. Yet, those experimentalists want very much
to use computational tools to rationalize their results or, in some instances, to
make predictions about what next to do along their research trajectory.
Because of this need we started the Reviews in Computational Chemistry
book series that, in hindsight, could just as well have been called “Tutorials
in Computational Chemistry.”

Because the emphasis of the material covered in this book series is direc-
ted toward the novice bench chemist wanting to learn about a particular
method to solve his or her problems (or for that matter, the seasoned veteran
computational chemist needing to learn a new technique with a modicum of
effort), we have again asked our authors to provide a tutorial on the topic to
be covered in that chapter. As before, they have risen to the occasion and
prepared pedagogically driven chapters with the novice in mind.

We begin this volume with a tutorial on quantum mechanical calcula-
tions of noncovalent © interactions because of their significance in directing
crystal packing, supramolecular assembly, protein folding, drug binding,
and the like. These interactions, especially m stacking of aromatic rings in
the domain of organic and biological science, have a history of being perplex-
ing to understand and difficult to assess numerically because they are generally
weak interactions and they compete with other kinds of stabilizing interac-
tions. In Chapter 1 C. David Sherrill outlines the challenges for computing
7 interactions by describing the problems associated with computing those
interactions. He describes the application of robust electronic structure meth-
ods to compute 7 interactions reliably and reliable approximations one can
make for speeding up the calculations. Covered are electron correlation and
basis set requirements, counterpoise corrections, and additive basis/correlation
approximations. The emphasis in this tutorial is on the prototype of aromatic
7T interactions, the benzene dimer. Many of the traps one could fall into with
modern commercially available software are uncovered and revealed for the
novice in the first part of the chapter. In the second part of the chapter the
author explains how one can reduce computational costs while still maintain-
ing a reasonable degree of accuracy. Described are truncated basis sets, Paul-
ing points, and resolution of the identity, along with spin-component-scaled
second-order Mgller-Plesset (MP2) and explicitly correlated R12 and F12
methods to accelerate convergence to the complete basis set limit. Sherrill
ends the tutorial by focusing on symmetry-adapted perturbation theory to
compute the individual components of intermolecular interactions, e.g., elec-
trostatic, induction, dispersion, and exchange repulsions, so that a rational
framework can be constructed for describing the binding of even simple
systems such as the benzene—toluene sandwich complex.

Gregory S. Tschumper expands on this topic in Chapter 2 where he
describes ab initio and density functional calculations for weak, noncovalent
interactions in clusters. Following an introduction that defines the scope of the
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chapter and a historical perspective of the nature of weak interactions, the
author provides a tutorial for the novice on fundamental concepts with a sim-
ple model system consisting of cyclic hydrogen fluoride molecules (trimer,
tetramer, and pentamer). The rigid monomer approximation and supermole-
cular dissociation and interaction energies are described first, followed by a
pedagogical section on counterpoise corrections for treating basis set superpo-
sition errors. Two-body approximations and cooperative/nonadditive effects
are defined and described. Higher order cooperative effects are also described
and a many-body decomposition scheme for weakly bound clusters is
explained in detail with an application to hydrogen fluoride (HF) clusters.
Because energy is an extensive property, a pedagogical section on size consis-
tency and extensivity is provided for the reader. A section on high-accuracy
computational strategies is then presented, beginning with a primer on elec-
tron correlation and a primer on atomic orbital (AQO) basis sets that includes
extrapolation methods and explicitly correlated methods. Linear scaling meth-
ods are described and a tutorial on estimating E;; in the CCSD(T) CBS (com-
plete basis set) limit is given. The author balances this with a section on less
demanding computational strategies using MP2 and density functional theory
(DFT) techniques. Other computational issues are brought to light and illu-
strated with results from calculations on water clusters. Aspects of computing
geometries and vibrational frequencies for noncovalent clusters are presented.

The theme of quantum mechanics is continued in Chapter 3 where Peter
Elliott, Filipp Furche, and Kieron Burke describe how to compute excited-state
properties using time-dependent density functional theory (TDDFT). Ground-
state DFT has become the de facto standard, especially for chemists, biologists,
and materials scientists for predicting ground-state properties of molecules,
but it cannot in its typical implementation treat electronic excitations. TDDFT
can be used to do this, and here the authors provide a state-of-the-art overview
of the method. They begin with a review of the ground state covering the
formalism, approximate functionals, and basis sets, and then introduce
time-dependent theory. Here the Runge—Gross theorem is explained, Kohn—
Sham equations described, and linear response to external fields is presented.
While formally exact, a TDDFT calculation also requires an approximation
for the exchange—correlation (XC) potential, and those approximations are
then introduced. With that background the authors describe the implementa-
tion of TDDFT and the basis sets used commonly nowadays, using as an
example the naphthalene molecule. That section is followed by one that
assesses the performance of TDDFT, using naphthalene as an example. The
authors examine the influence of the ground-state potential, the influence of
the XC kernel, the errors in potential versus kernel, and then they describe
how to understand linear response TDDFT. Also included in the chapter is
a close look at how well TDDFT performs for noble-gas atoms. The authors
then take a look beyond standard functionals by examining double excita-
tions, polymers, solids, and charge-transfer systems. The chapter ends with
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coverage of topics where TDDFT is being applied and where development
goes beyond simple extractions from linear response theory.

The theme of quantum mechanics is again continued in Chapter 4 where
Thomas Vojta provides a tutorial on quantum phase transitions. Understand-
ing and describing phase transitions is important because of their ubiquitous
nature and how they shape our world. The phase transitions that most of us
are aware of take place at nonzero temperature where, for example, the
ordered state of ice becomes less ordered water at the melting point or where
iron loses its ferromagnetic character at its Curie point to become paramag-
netic. Attention has now shifted to the study of another type of phase transi-
tion that occurs at zero temperature and is induced by nonthermal parameters
such as pressure, magnetic field strength, or even chemical composition. Thus,
at an applied magnetic field strength, of about 5 T, LiHoF, undergoes a phase
transition from a ferromagnet to a paramagnet; one can envision the impact
that such transitions have in defining magnetic, optical, and electrical proper-
ties of materials that technologists will soon employ to make advanced pro-
ducts for consumption. The purpose of this chapter is to introduce the
theory of quantum phase transitions, showing similarities to and differences
from typical thermal transitions that most of us are more familiar with and
to point out the computational challenges presented by quantum phase transi-
tions and successful approaches used to meet those challenges. Vojta begins by
describing phase transitions and critical behavior. Landau theory, scaling, and
renormalization group theory, finite-size scaling, and quenching disorder are
then covered. Then, classical versus quantum phase transitions are described
including quantum scaling and quantum-to-classical mapping, going beyond
the Landau—Ginzburg-Wilson paradigm, and impurity quantum phase transi-
tions. There exist formidable challenges to computing quantum transitions,
which are explained clearly by the author. Also covered in this chapter are
the classical Monte Carlo (MC) approaches, including the simplest models dis-
playing quantum phase transitions—the quantum Ising model in a transverse
field, the dissipative transverse-field Ising chain, and other such methods. This
is followed by a discussion of quantum Monte Carlo approaches to the pro-
blem, including the world-line MC algorithm and the stochastic series expan-
sion algorithm. The chapter ends with a brief overview of other computational
approaches to quantum phase transitions.

We continue in the ensuing chapters with several tutorials tied together by
the theme of how to exploit and/or treat multiple length scales and multiple time
scales in simulations. In Chapter 5§ Thomas Beck introduces us to real-space and
multigrid methods used in computational chemistry. Real-space methods are
iterative numerical techniques for solving partial differential equations on grids
in coordinate space. They are used because the physical responses from many
chemical systems are restricted to localized domains in space. This is a situation
that real-space methods can exploit because the iterative updates of the desired
functions need information in only a small area near the updated point.
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A problem with this approach, however, is that the solver tends to stall due to
the long wavelength components of the errors if the iterations are performed on
only a single, fine grid. Multigrid methods overcome this problem by using
information from a range of length scales. In this tutorial Beck gives us a
few examples of where such computational methods can be used and then
introduces us to the basics of representing partial differential equations in real
space. Two of the most basic and useful equations used by computational
chemists and engineers are considered: the Poisson equation and the Schrodinger
equation. Finite-element representations, finite-difference representations, itera-
tive updates of functions, and limitations of real-space methods for a single, fine
grid are described. Multigrid methods are then introduced and explained in a
pedagogical manner. Because eigenvalue problems are more difficult to solve
than those encountered in solving the Poisson equation, a section is dedicated
to this. Thereafter, treatments for nonlinear scaling for electronic structure
calculations are described. Other nonlinear problems such as solving the
Poisson—-Boltzmann and Poisson—Nernst-Planck equations are then introduced
and explained. The author provides some tips and advice about writing
multigrid solvers and then provides a literature review of applications in
chemistry, biophysics, and materials science. The chapter ends with a listing
of real-space and multigrid codes for use in the areas of electronic structure,
electrostatics, and transport, and speculation on research directions that may
be pursued in the near future.

In Chapter 6 Francesca Tavazza, Lyle E. Levine, and Anne M. Chaka
provide a tutorial on hybrid methods for atomic-level simulations that span
multiple length scales in the solid state. To examine the mechanical behavior
of materials, one needs to account for bond making/breaking, atom rearrange-
ments, or defect properties using simulation techniques on the atomistic,
nanoscale, but, one also needs to account for micro- or macroscale phenomena
such as long-range stress fields that cover hundreds of nanometers and larger.
Because one cannot yet simulate macroscopically large systems with atomic-
level resolution, the use of hybrid technologies is commonly implemented
where different length scales are simulated simultaneously in a coupled fash-
ion. The main obstacle to overcome is the development of efficient and physi-
cally correct coupling schemes. The interface between different computational
models is a region that is sometimes called the “handshake” region where non-
physical forces (ghost forces) can arise due to the intrinsically different inter-
action range associated with each of the computational models employed and
where, for hybrid methods that deal with dynamical processes, wave reflec-
tions can occur at artificial boundaries. In this tutorial the authors divide
the methodologies into two main classes: those dealing with coupling classical
atomistic models to continuum models and those coupling classical atomistic
models to quantum models. In the section on atomistic-continuum coupling
the authors begin with zero temperature equilibrium methods including
FEAt (finite-element coupled with atomistic modeling), the quasi-continuum
(QC) method, the coupled atomistic and discrete dislocation method, the
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atomic size finite-element method, and Green’s function boundary condition
methods. Finite-temperature equilibrium methods are then discussed including
the QC-free energy functional method, the quasi-continuum Monte Carlo
method, and others before turning to hybrid methods used to explore the
dynamical evolution of systems composed of a continuum region. These sys-
tems are usually described with finite-element methods coupled to a discrete-
described region that is usually modeled with molecular dynamics algorithms
implementing classical potentials. Domain decomposition methods, adaptive
model refinement techniques, coarse-grain molecular dynamics, and boundary
conditions methods are introduced and then described in a straightforward
manner. The second half of the tutorial involves the coupling of classically
described domains to quantum mechanically described regions. Static and
semistatic methods are described along with the first-principles Green’s func-
tion boundary condition method and the quantum atomistic static interface
method. Then the authors describe dynamics methodologies including the
coupling of length scales method, the learn-on-the-fly method, and Ogata’s
method. The authors provide examples of applications of each method as
they appear throughout the chapter. Also provided are easy to comprehend
diagrams that illustrate what is being described.

The focus shifts in Chapter 7 from materials science to biology, but the
theme remains multiscale modeling. In this chapter Alfredo E. Cardenas and
Eric Barth present a tutorial on extending the time scale in atomically detailed
simulations. The authors begin by introducing the Verlet method and the
potential functions used in molecular dynamics (MD) simulations. They
then explain what multiple time step (MTS) methods are, and then they exam-
ine several such techniques. Cardenas and Barth begin with the idea of split-
ting the forces that require different time steps for numerical resolution based
on a simple distance parameter, and then they describe an alternative method
of numerical integration with force splitting to deal with fast and slow com-
ponents of the forces. An assessment of limitations on the size of the time steps
allowed is presented before Langevin dynamics is introduced. Then a
MATLAB-based tutorial is presented on impulse and extrapolation MTS
methods. While MTS methodologies can extend simulation time scales some-
what, they are not useful for many applications such as examining large con-
formational changes in proteins. Accordingly, the authors introduce a different
approach to extending the time scale that involves techniques that are gener-
ally referred to as “path methods.” This includes transition path sampling,
maximization of the diffusive flux (MaxFlux), discrete path sampling with
the string method, and optimization of action. The latter path method
described by the authors emphasizes the stochastic difference equation in
length (SDEL). Here they use literature examples from the realm of biology
such as protein folding, B-Z DNA transitions, and the like to make their point.
An appendix containing MATLAB scripts for the tutorial is included.

The final chapter returns to the topic of materials science. In Chapter 8
Edward J. Maginn provides a historical account of atomistic simulations of
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ionic liquids, especially room temperature ionic liquids (RTILs). After defining
what RTILs are, he provides a short (pre)history of computational efforts in
this field. Then, in a didactic fashion, Maginn reviews the history of early
simulations by first introducing the potential functions used, then assessing
the limitations of those functions, and, finally, examining sampling issues asso-
ciated with simulations of this class of liquids, which differ (electrostatically)
from most traditional liquids that have been studied to date. With that back-
ground Maginn delves into more refined models for RTILs focusing on how
best to compute structures, energies, properties such as heat capacities,
Henry’s law constants, and other issues related to solubility in ionic liquids.
Of particular note, especially for novices, are the implications of slow
dynamics of RTILs when computing transport properties. Because of this
potential “road block,” the author presents a full section dedicated to this
topic. That section is followed by one on computing macroscopic properties
such as self-diffusivities, viscosities, electrical conductivities, and thermal con-
ductivities of ionic liquids. Compared and contrasted are equilibrium and
nonequilibrium methods used for calculating these properties. Coarse-graining
techniques and ab initio MD methods are then described. Finally, Maginn
takes the novice modeler through a tutorial on how to carry out an RTIL
simulation. This tutorial contains an ample selection of “Do’s and Don’ts”
associated with the selection of codes one might use, the choice of force field
to implement, how to analyze the data derived from the simulations, and the
use of operating systems and parallel computing for large-scale atomistic
simulation.

Reviews in Computational Chemistry is highly rated and well received
by the scientific community at large; the reason for these accomplishments
rests firmly on the shoulders of the authors we have contacted to provide
the pedagogically driven reviews that have made this ongoing book series so
popular. To those authors we are especially grateful.

We are also glad to note that our publisher now makes our most recent
volumes available in an online form through Wiley InterScience. Please consult
the Web (http://www.interscience.wiley.com/onlinebooks) or contact referen-
ce@wiley.com for the latest information. For readers who appreciate the
permanence and convenience of bound books, these will, of course, continue.

We thank the authors of this and previous volumes for their excellent
chapters.

Kenny B. Lipkowitz
Washington

Thomas R. Cundari
Denton

February, 2008
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