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Preface

The need for an English edition of these lectures has provided the original 
author, Michel Bruneau, with the opportunity to complete the text with the 
contribution of the translator, Thomas Scelo. 

This book is intended for researchers, engineers, and, more generally, 
postgraduate readers in any subject pertaining to “physics” in the wider sense of the 
term. It aims to provide the basic knowledge necessary to study scientific and 
technical literature in the field of acoustics, while at the same time presenting the 
wider applications of interest in acoustic engineering. The design of the book is such 
that it should be reasonably easy to understand without the need to refer to other 
works. On the whole, the contents are restricted to acoustics in fluid media, and the 
methods presented are mainly of an analytical nature. Nevertheless, some other 
topics are developed succinctly, one example being that whereas numerical methods 
for resolution of integral equations and propagation in condensed matter are not 
covered, integral equations (and some associated complex but limiting expressions), 
notions of stress and strain, and propagation in thick solid walls are discussed 
briefly, which should prove to be a considerable help for the study of those fields 
not covered extensively in this book. 

The main theme of the 11 chapters of the book is acoustic propagation in fluid 
media, dissipative or non-dissipative, homogeneous or non-homogeneous, infinite 
or limited, etc., the emphasis being on the “theoretical” formulation of problems 
treated, rather than on their practical aspects. From the very first chapter, the basic 
equations are presented in a general manner as they take into account the non-
linearities related to amplitudes and media, the mean-flow effects of the fluid and its 
inhomogeneities. However, the presentation is such that the factors that translate 
these effects are not developed in detail at the beginning of the book, thus allowing 
the reader to continue without being hindered by the need for in-depth 
understanding of all these factors from the outset. Thus, with the exception of 
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Chapter 10 which is given over to this problem and a few specific sections 
(diffusion on inhomogeneities, slowly varying media) to be found elsewhere in the 
book, developments are mainly concerned with linear problems, in homogeneous 
media which are initially at rest and most often dissipative. 

These dissipative effects of the fluid, and more generally the effects related to 
viscosity, thermal conduction and molecular relaxation, are introduced in the 
fundamental equations of movement, the equations of propagation and the boundary 
conditions, starting in the second chapter, which is addressed entirely to this question. 
The richness and complexity of the phenomena resulting from the taking into account 
of these factors are illustrated in Chapter 3, in the form of 13 related “exercises”, all of 
which are concerned with the fundamental problems of acoustics. The text goes into 
greater depth than merely discussing the dissipative effects on acoustic pressure; it 
continues on to shear and entropic waves coupled with acoustic movement by 
viscosity and thermal conduction, and, more particularly, on the use that can be made 
of phenomena that develop in the associated boundary layers in the fields of thermo-
acoustics, acoustic gyrometry, guided waves and acoustic cavities, etc. 

Following these three chapters there is coverage (Chapters 4 and 5) of 
fundamental solutions for differential equation systems for linear acoustics in 
homogenous dissipative fluid at rest: classic problems are both presented and solved 
in the three basic coordinate systems (Cartesian, cylindrical and spherical). At the 
end of Chapter 4, there is a digression on boundary-value problems, which are 
widely used in solving problems of acoustics in closed or unlimited domain. 

The presentation continues (Chapter 6) with the integral formulation of problems 
of linear acoustics, a major part of which is devoted to the Green’s function 
(previously introduced in Chapters 3 and 5). Thus, Chapter 6 constitutes a turning 
point in the book insofar as the end of this chapter and through Chapters 7 to 9, this 
formulation is extensively used to present several important classic acoustics 
problems, namely: radiation, resonators, diffusion, diffraction, geometrical 
approximation (rays theory), transmission loss and structural/acoustic coupling, and 
closed domains (cavities and rooms). 

Chapter 10 aims to provide the reader with a greater understanding of notions 
that are included in the basic equations presented in Chapters 1 and 2, those which 
concern non-linear acoustics, fluid with mean flow and aero-acoustics, and can 
therefore be studied directly after the first two chapters. 

Finally, the last chapter is given over to modeling of the strong coupling in 
acoustics, emphasizing the coupling between electro-acoustic transducers and the 
acoustic field in their vicinity, as an application of part of the results presented 
earlier in the book. 



Chapter 1 

Equations of Motion in Non-dissipative Fluid 

The objective of the two first chapters of this book is to present the fundamental 
equations of acoustics in fluids resulting from the thermodynamics of continuous 
media, stressing the fact that thermal and mechanical effects in compressible fluids 
are absolutely indissociable. 

This chapter presents the fundamental phenomena and the partial differential 
equations of motion in non-dissipative fluids (viscosity and thermal conduction are 
introduced in Chapter 2). These equations are widely applicable as they can deal 
with non-linear motions and media, non-homogeneities, flows and various types of 
acoustic sources. Phenomena such as cavitation and chemical reactions induced by 
acoustic waves are not considered. 

Chapter 2 completes the presentation by introducing the basic phenomenon of 
dissipation associated to viscosity, thermal conduction and even molecular relaxation. 

1.1. Introduction 

The first paragraph presents, in no particular order, some fundamental notions of 
thermodynamics. 

1.1.1. Basic elements 

The domain of physics acoustics is simply part of the fast science of 
thermomechanics of continuous media. To ensure acoustic transmission, three 
fundamental elements are required: one or several emitters or sources, one receiver 
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and a propagation medium. The principle of transmission is based on the existence 
of “particles” whose position at equilibrium can be modified. All displacements 
related to any types of excitation other than those related to the transmitted quantity 
are generally not considered (i.e. the motion associated to Brownian noise in gases). 

1.1.2. Mechanisms of transmission 

The waves can either be transverse or longitudinal (the displacement of the 
particle is respectively perpendicular or parallel to the direction of propagation). The 
fundamental mechanisms of wave transmission can be qualitatively simplified as 
follows. A particle B, adjacent to a particle A set in a time-dependent motion, is 
driven, with little delay, via the bonding forces; the particle A is then acting as a 
source for the particle B, which acts as a source for the adjacent particle C and so on 
(Figure 1.1). 

 Figure 1.1. Transverse wave Figure 1.2. Longitudinal wave 

The double bolt arrows represent the displacement of the particles. 

In solids, acoustic waves are always composed of a longitudinal and a transverse 
component, for any given type of excitation. These phenomena depend on the type 
of bonds existing between the particles. 

In liquids, the two types of wave always coexist even though the longitudinal 
vibrations are dominant. 

In gases, the transverse vibrations are practically negligible even though their 
effects can still be observed when viscosity is considered, and particularly near 
walls limiting the considered space. 

A B 

Direction of 
propagation

A B CC

Direction of 
propagation
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1.1.3. Acoustic motion and driving motion 

The motion of a particle is not necessarily induced by an acoustic motion 
(audible sound or not). Generally, two motions are superposed: one is qualified as 
acoustic (A) and the other one is “anacoustic” and qualified as “driving” (E); 
therefore, if g defines an entity associated to the propagation phenomenon (pressure, 
displacement, velocity, temperature, entropy, density, etc.), it can be written as 

)t,x(g)t,x(g)t,x(g )E()A( .

This field characteristic is also applicable to all sources. A fluid is said to be at 
rest if its driving velocity is null for all particles. 

1.1.4. Notion of frequency 

The notion of frequency is essential in acoustics; it is related to the repetition of 
a motion which is not necessarily sinusoidal (even if sinusoidal dependence is very 
important given its numerous characteristics). The sound-wave characteristics 
related to the frequency (in air) are given in Figure 1.3. According to the sound 
level, given on the dB scale (see definition in the forthcoming paragraph), the 
“areas” covered by music and voice are contained within the audible area. 

Figure 1.3. The sounds 
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1.1.5. Acoustic amplitude and intensity 

The magnitude of an acoustic wave is usually expressed in decibels, which are 
unit based on the assumption that the ear approximately satisfies Weber-Fechner 
law, according to which the sense of audition is proportional to the logarithm of the 
intensity I  (the notion of intensity is described in detail at the end of this chapter). 
The level in decibel (dB) is then defined as follows: 

r10dB I/Ilog10L ,

where 12
r 10I  W/m2 represents the intensity corresponding to the threshold of 

perception in the frequency domain where the ear sensitivity is maximum 
(approximately 1 kHz). 

Assuming the intensity I  is proportional to the square of the acoustic pressure 
(this point is discussed several times here), the level in dB can also be written as 

rdB p/p10log20L ,

where p  defines the magnitude of the pressure variation (called acoustic pressure) 
with respect to the static pressure (without acoustic perturbation) and where 

Pa5102pr  defines the value of this magnitude at the threshold of audibility 
around 1,000 Hz.

The origin 0 dB corresponds to the threshold of audibility; the threshold of pain, 
reached at about 120–140 dB, corresponds to an acoustic pressure equal to 20–200 
Pa. The atmospheric pressure (static) in normal conditions is equal to 1.013.105 Pa 
and is often written 1013 mbar or 1.013.106 μbar (or baryes or dyne/cm2) or even 
760 mm Hg. 

The magnitude of an acoustic wave can also be given using other quantities, 
such as the particle displacement  or the particle velocity v . A harmonic plane 
wave propagating in the air along an axis x  under normal conditions of temperature 
(22°C) and of pressure can indifferently be represented by one of the following 
three variations of particle quantities 

,kxtsinpp
,kxtsinv

,kxtsin

0

0

0
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where 0000 cp , 0  defining the density of the fluid and 0c  the speed of 
sound (these relations are demonstrated later on). For the air, in normal conditions 
of pressure and temperature, 

13
00

3
0

1
0

smkg400c.

,mkg2.1

,sm8.344c

At the threshold of audibility (0 dB), for a given frequency N  close to 1 kHz, 
the magnitudes are 

.m10
N2

v

,ms10.5
c
pv

,Pa10.2p

110
0
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It is worth noting that the magnitude 0  is 10 times smaller than the atomic 
radius of Bohr and only 10 times greater than the magnitude of the Brownian 
motion (which associated sound level is therefore equal to -20 dB, inaudible). 

The magnitudes at the threshold of pain (at about 120 dB at 1 kHz) are 

.m10

sm10.5v

,Pa20p

5
0

12
0

0

,

These values are relevant as they justify the equations’ linerarization processes 
and therefore allow a first order expansion of the magnitude associated to acoustic 
motions. 

1.1.6. Viscous and thermal phenomena 

The mechanism of damping of a sound wave in “simple” media, homogeneous 
fluids that are not under any particular conditions (such as cavitation), results 
generally from two, sometimes three, processes related to viscosity, thermal 
conduction and molecular relaxation. These processes are introduced very briefly in 
this paragraph; they are not considered in this chapter, but are detailed in the next 
one.
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When two adjacent layers of fluid are animated with different speeds, the 
viscosity generates reaction forces between these two layers that tend to oppose the 
displacements and are responsible for the damping of the waves. If case dissipation 
is negligible, these viscous phenomena are not considered. 

When the pressure of a gas is modified, by forced variation of volume, the 
temperature of the gas varies in the same direction and sign as the pressure 
(Lechatelier’s law). For an acoustic wave, regions of compression and depression 
are spatially adjacent; heat transfer from the “hot” region to the “cold” region is 
induced by the temperature difference between the two regions. The difference of 
temperature over half a wavelength and the phenomenon of diffusion of the heat 
wave are very slow and will therefore be neglected (even though they do occur); the 
phenomena will then be considered adiabatic as long as the dissipation of acoustic 
energy is not considered. 

Finally, another damping phenomenon occurs in fluids: the delay of return to 
equilibrium due to the fact that the effect of the input excitation is not instantaneous. 
This phenomenon, called relaxation, occurs for physical, thermal and chemical 
equilibriums. The relaxation effect can be important, particularly in the air. As for 
viscosity and thermal conduction, this effect can also be neglected when dissipation 
is not important. 

1.2. Fundamental laws of propagation in non-dissipative fluids 

1.2.1. Basis of thermodynamics 

“Sound” occurs when the medium presents dynamic perturbations that modify, 
at a given point and time, the pressure P, the density 0 ,  the temperature T, the 
entropy S, and the speed v  of the particles (only to mention the essentials). 
Relationships between those variables are obtained using the laws of 
thermomechanics in continuous media. These laws are presented in the following 
paragraphs for non-dissipative fluids and in the next chapter for dissipative fluids. 
Preliminarily, a reminder of the fundamental laws of thermodynamics is given; 
useful relationships in acoustics are numbered from (1.19) to (1.23). 
Complementary information on thermodynamics, believed to be useful, is given in 
the Appendix to this chapter. 

A state of equilibrium of n  moles of a pure fluid element is characterized by the 
relationship between its pressure P, its volume V  (volume per unit of mass in 
acoustics), and its temperature T, in the form 0V,T,Pf  (the law of perfect 
gases, PV nRT 0,  for example, where n  defines the number of moles and 
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32.8R  the constant of perfect gases). This thermodynamic state depends only on 
two, independent, thermodynamic variables. 

The quantity of heat per unit of mass received by a fluid element dSTdQ
(where S  represents the entropy) can then be expressed in various forms as a 
function of the pressure P  and the volume per unit of mass V  – reciprocal of the 
density 0 )/1V( 0

hdPdTCdST p , (1.1)

dVdTCdST V , (1.2)

where PC  and VC  are the heat capacities per unit of mass at respectively constant 
pressure and constant volume and where h and  represent the calorimetric 
coefficients defined by those two relations. 

The entropy is a function of state; consequently, dS  is an exact total differential, 
thus

TP

P
P
S

T
h,

T
S

T
C (1.3)

TV

V
V
S

T
,

T
S

T
C

.  (1.4) 

Applying Cauchy’s conditions to the differential of the free energy F
PdVSdTdF  gives 

TV V
S

T
P ,  (1.5) 

which, defining the increase of pressure per unit of temperature at constant density 
as VT/PP  and considering equation (1.4), gives 

.T/P  (1.6) 

Similarly, Cauchy’s conditions applied to the exact total differential of the 
enthalpy G dPVdTSdG  gives 

TP P
S

T
V , (1.7)
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which, defining the increase of volume per unit of temperature at constant pressure 
as PT/VV  and considering equation (1.3), gives 

.T/hV  (1.8) 

Reporting the relation 

dPP/VdTT/VdV TP

Into

dVV/SdTT/SdS TV

leads to 

dPTP/VTV/SdT]PT/VTV/SVT/S[dS

PTVP T/VV/ST/ST/S .  (1.9) 

Finally, combining equations (1.3) to (1.8) yields 

PVTCC VP . (1.10)

In the particular case where n moles of a perfect gas are contained in a volume 
V  per unit of mass, 

T
V

P
nRV  and 

V
R.nP  so nRCC VP .  (1.11) 

Adopting the same approach as above and considering that 

dPP/TdVV/TdT VP ,

the quantity of heat per unit of mass TdSdQ  can be expressed in the forms 

dVV/TCdPP/TCdVdTCdQ PVVVV    (1.12) 

,dPP/TChdVV/TC

,dVhdTCdQor 

VPPP

P
 (1.13) 

dVdPdQor .  (1.14) 
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Comparing equation (1.14) with equation (1.12) (considering, for example, an 
isochoric transformation followed by an isobaric transformation) directly gives 

P
C

P
TC V

V
V  and PP

P
P

C
V
C

V
TC .  (1.15) 

Considering the fact that 1T/PV/TP/V VPT  (directly obtained 
by eliminating the exact total differential of V,PT  and also written as PT )
the ratio /  is defined by 

TT

T

V
P

V1 ,  (1.16) 

where the coefficient of isothermal compressibility T  is 

TT
T P

1
P
V

V
1 , (1.17)

and the ratio of specific heats is 

.C/C VP

For an adiabatic transformation dQ dP dV 0,  the coefficient of adiabatic 
compressibility S  defined by SS P/VV  can also be written as 

T
SS

VP/VV .

Finally, 

/TS  (Reech’s formula).   (1.18) 

The variation of entropy per unit of mass is obtained from equations (1.14) and 
(1.15) as: 

d
T
CdP

TP
C

dS PV . (1.19)

Considering that PT  and S T / ,

d1dP
TP
C

ddP
TP
C

dS
S

V

T

V . (1.20)
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Moreover, equations (1.12) and (1.13) give 

VVVP P/TCP/TCh  and thus P/CCh VP .

Consequently, substituting the latter result into equation (1.13) yields 

dP
TP

CC
dT

T
CdS VPP . (1.21)

Substituting equation (1.10) and PT  into equation (1.21) leads to 

dPPdT
T

C
dS T

P . (1.22)

Lechatelier’s law, according to which a gas temperature evolves linearly with its 
pressure, is there demonstrated, in particular for adiabatic transformations: writing 

0dS  in equation (1.22) brings proportionality between dT  and dP , the 
proportionality coefficient PT C/TP  being positive. 

The differential of the density dTT/dPP/d PT  can be 
expressed as a function of the coefficients of isothermal compressibility T  and of 
thermal pressure variation  by writing that 

TT
T P

1
P
V

V
1  and 

P
T T

1P .

Thus,

]dTPdP[d T . (1.23)

Note: according to equation (1.20), for an isotropic transformation (dS = 0): 

dddP
ST

;

which, for a perfect gas, is 

,dPd
M
RTdP  where 0

V
dV

P
dP ,

leading, by integrating, to 00VPctePV  the law for a reversible adiabatic 
transformation. 
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Similarly, according to equation (1.23), for an isothermal 
transformation 0dT

d1dP
T

. (1.24)

1.2.2. Lagrangian and Eulerian descriptions of fluid motion 

The parameters normally used to describe the nature and state of a fluid are those 
in the previous paragraph: etc. ,,,,, VP CC  for the nature of the fluid and P, V
or , T, S, etc. for its state. However, the variables used to describe the dynamic 
perturbation of the gas are the variations of state functions, the differentials dP, dV
or d , dT, dS, etc. and the displacement (or velocity) of any point in the medium. 
The study of this motion, depending on time and location, requires the introduction 
of the notion of “particle” (or “elementary particle”): the set of all molecules 
contained in a volume chosen which is small enough to be associated to a given 
physical quantity (i.e. the velocity of a particle at the vicinity of a given point), but 
which is large enough for the hypothesis of continuous media to be valid (great 
number of molecules in the particle). 

Finding the equations of motion requires the attention to be focused on a given 
particle. Therefore, two different, but equivalent, descriptions are possible: the 
Lagrangian description, in which the observer follows the evolution of a fluid 
element, differentiated from the others by its location X at a given time 0t  (for 
example, its location can be defined as )t,X( with Xt,X 0  and its velocity 

t/t,X ), and the Eulerian description, in which the observer is not 
interested in following the evolution of an individual fluid element over a period of 
time, but at a given location, defined by r  and considered fixed or at least with 
infinitesimal displacements (for the differential calculus). The Lagrangian 
description has the advantage of identifying the particles and giving their 
trajectories directly; however, it is not straightforward when studying the dynamic 
of a continuous fluid in motion. Therefore, Euler’s description, which uses variables 
that have an immediate meaning in the actual configuration, is most often used in 
acoustics. It is this description that will be used herein. It implies that the differential 
of an ordinary quantity q is written either as 

,t,rqdtt,rdrqdq
or ,t,rqdtt,rqdtt,rqdtt,rdrqdq

or .dtt,rq
t

rddtt,rqdagrdq
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The differential dq  represents the material derivative (noted Dq  in some 
works) if the observer follows the particle in infinitesimal motion with instantaneous 
velocity v , that is dr v dt.  Then, considering the fact that dttqdtdttq  by 
neglecting the 2nd order term 0q / t dt dt,

,dtt,rq
t

dtvt,rqdagrdq

or, using the operator formalism, 

.
t

dagrv
dt
d  (1.25) 

The following brief comparison between those two descriptions highlights their 
respective practical implications. The superscripts (E) and (L) distinguish Euler’s 
from the Lagrangian approaches. 

The instantaneous location r  of a particle is a function of 0r  and t , where 0r  is 
the location of the considered particle at 0tt  ( 0r  is often representing the initial 
position). 

Using Lagrangian variables, any quantity is expressed as a function of two 
variables 0r  and t . For example, the acceleration is represented by the function 

.t,r0
L

Using Eulerian variables, any quantity (the acceleration is used here as an 
example) is expressed as a function of the actual location r  and t, noted .t,rE

This function can be expressed in such form that the expression of r  as a function 
of 0r  and t  appears; it is then written as t,t,rr 0

E , but still represents the 

same function .t,rE

These definitions result in the following relationships 

,v
x

t,rx
t

v
t

,vdagrvv
t

t,t,rrv
dt
d

,t,r
t

t,rv
t

E

j
0

j
j

E

EEE
0

EE

02

2

0
LL
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where .t,rr
t

t,rv 0
E

The physical quantity “acceleration” can either be expressed by t,r0
L  or 

by t,rE .

1.2.3. Expression of the fluid compressibility: mass conservation law 

A certain compressibility of the fluid is necessary to the propagation of an 
acoustic perturbation. It implies that the density , being a function of the location 
r  and the time t , depends on spatial variations of the velocity field (which can 
intuitively be conceived), and eventually on the volume velocity of a local source 
acting on the fluid. This must be expressed by writing that a relation, easily obtained 
by using the mass conservation law, exists between the density t,r  and the 
variations of the velocity field 

tD tD ,dDt,rqdD
dt
d  (1.26) 

The integral is calculated over a domain tD  in motion, consequently 
containing the same particles, and the fluid input from a source t,rq  is expressed 

per unit of volume per unit of time 1sq . In the right hand side of equation 
(1.26), the factor pq  denotes the mass of fluid introduced in tD  per unit of 

volume and of time -1-3.skg.m.q . Without any source or outside its influence, 
the second term is null 0q .

This mass conservation law can be equivalently expressed by considering a 
domain 0D  fixed in space (the domain 0D  can, for example, represent the 
previously defined domain tD  at the initial time 0tt ). The sum of the mass of 
fluid entering the domain 0D  through the fixed surface 0S , per unit of time, 

0 0S D 00 ,dDvdivSdv

(where v  defines the particle velocity, 0Sd  being parallel to the outward normal to 
the domain), and the mass of fluid introduced by an eventual source represented by 
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the factor pq , is equal to the increase of mass of fluid within the domain 0D  per 
unit of time, 

0 0D 0D0 ,dD
t

dD
t

Thus,

0
0

00 D
D

qdDdDvdiv
t

.  (1.27) 

This equation must be valid for any domain 0D , implying that 

.qvdiv
t

 (1.28) 

Substituting equation (1.25) and the general relation: 

,dagrvvdivvdiv

leads to the following form of equation (1.27) 

.qvdiv
dt
d  (1.29) 

One can show that equation (1.26) can also be written as 

tDtD
tD,qdDdDvdiv

dt
d .   (1.30) 

Equation (1.30) is equivalent to equation (1.29) since it is verified for any 
considered domain tD . Equations (1.26) to (1.30) are all equivalent and express 
the mass conservation law for a compressible fluid (incompressibility being defined 
by d / dt 0).


