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Preface

Future advanced architectures, such as embedded systems, having a greater
complexity and new quality requirements, will need a more precise specification and
better control of their design process. In order to acquire the corresponding
fundamental knowledge, it is essential to rely upon approaches based on the use of
adequate system models. In particular, such approaches need to acquire a deep
understanding of the system, including its local behaviors and its communications,
based on a well-defined representation of the designed architecture. This
representation should be used as early as possible to analyze and validate the design.
The goal of this volume is to present a family of formal specification models, based
on Petri nets and extensions of Petri nets, because they are defined by simple and
clear semantics, allow easy modeling of system key mechanisms, and are supported
by strong analysis methods and tools. Furthermore, this set of models can be used
for all design aspects, i.e. to specify functional behaviors, and to include temporal or
stochastic requirements.

The main results related to this approach are given in this volume, in two parts,
one presenting the fundamental models, and the other being dedicated to verification
and applications. We have tried to highlight the important characteristics and the
main properties of these models, and to show how they lead to the emergence of a
full design methodology, which is both complete, in terms of all possible functional
and other analysis, and integrated, because the same basic semantics are used for the
full design support. We think that this volume should greatly help any designer to
build the new forthcoming generation of distributed systems.

Lastly, I would like to thank all the authors who contributed to this book, for
their expertise, their seriousness, their technical inputs, and for the great job they
have done.

Michel DIAZ
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Introduction

New technologies in processors and networks allow system designers to
conceive and build advanced and sophisticated parallel and distributed architectures,
which need to integrate non-functional real time and stochastic constraints with
functional distributed processing and communication.

The global behavior of such systems depends first on the local activities and
data, but also on the messages sent and received by the various interconnected sub-
systems. As a matter of fact, understanding, expressing, specifying and validating
such global behaviors proves to be a problem of very high complexity, leading to
many design and implementation difficulties and bugs. For example, when
considering » connected processors, they can run, at a given instant in time, using 2
x 2, 3 x 3 communications, etc., or a full communication, in which all » processors
interact. The sum of the resulting combinations, of the order of 2", shows the
complexity of the resulting conceptual problems, and explains in particular the
increasing difficulty obtained when passing from an interconnection of a few
processors to an interconnection of a large number of processors: when the number
of processors varies from 2 to 10, the difficulty coefficient goes from 4 to about
1,000.

It should then be clearly understood that designing such distributed architectures
leads to a very complex conceptual task, which has to be based on a well-defined
methodology to be able to manage all system requirements and behaviors.

Design and specification

The design process starts by giving the different functions and agents which are
required, and the way they are structured; second, the designers define the behaviors
of the various processes and entities, and the way they communicate; then, if they
want to analyze the correctness of the design as soon as possible, an adequate
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approach is needed to represent, in an explicit way, the (full) system global
behavior, in particular to be able to check potential unanticipated sub-behaviors.

To check the design correctness, it is essential to use a precise model of all
critical mechanisms, functions, sub-systems, etc., and then, whenever possible, to
use a formal model, to define a mathematical representation of the system. Checking
the correctness validation of the design at this step is then conducted by checking
the behavior of this system model.

Note that, after a given adequate sequence of more or less formal validation steps
based on models, the system will be defined as ‘fully designed’ and will be
implemented using adequate tools and languages.

Formal approaches have been used for many years for the verification of
communication protocols. Two principal approaches have been used., i.e. basic
formal models, such as automata, Petri nets, process algebras, etc., and formal
description techniques for protocols, such as Estelle, LOTOS, SDL, etc.

This volume proposes and develops a design and validation methodology that
relies on the use of a family of basic formal models that are rather easy to
understand, and able to:

— describe the semantics of all basic building mechanisms;
— clearly specify the interconnection and communication semantics;
— unambiguously describe the resulting behaviors;

— validate the system during the first phases of its design by using support tools.

In general, basic non-language oriented graphical models, that do not include
language-specific operators and statements, lead to the simplest solutions for
representing basic mechanisms in a very abstract and integrated way.

For this reason too, this volume selected a basic, language-independent set of
models to represent and manipulate the fundamental concepts of communicating
architectures.

Selecting a model

Several models exist, and each model has particular characteristics, more or less
relevant for a specific design. Consequently, the choice of the right model depends
on the designed system and on the properties to be analyzed, as the model must be
able to describe the design, and also to allow the designer to check the validity of the
required properties.
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In general, the designer must have a good understanding of the fundamental
semantics of the system, i.e. of its basic building mechanisms. Thus, for simple
architectures, modeling will be able to represent in a faithful way all details of the
system. However, for complex systems, it will generally be impossible, for economic
reasons, to represent the details of all existing functions, and it will become
necessary to select and validate certain building blocks, i.e those most likely to lead
to erroneous behaviors.

Of all existing models, Petri nets (PN) and their extensions are of undeniable
fundamental interest, because they:

— provided the first modeling approaches for the semantics of concurrent
systems, and were used to model the behaviors of the first parallel and distributed
basic mechanisms;

— define easy graphic support for the representation and the understanding of
these basic mechanisms and behaviors;

— prove to be, starting from state machines, an easy extension of previous
approaches and handle, at the same time, the creation and the analysis of models;

— express very simply the main basic concepts in communication, including
waiting and synchronization, and furthermore take into account their temporal and
stochastic parameters;

— ensure, being unrelated to a particular implementation language, the
independence of the specification with respect to its implementation.

Furthermore, many validation methods have been developed, using a great
number of theoretical results and support tools, able to manipulate functional,
temporal, and stochastic behaviors. Finally, models based on PNs will help us to
understand, define and analyze the behavior of these systems, in the preliminary and
first steps of their design.

For all these reasons, a set of Petri net models was selected in this book to
represent and manipulate the fundamental concepts of communicating architectures.
Petri nets

PNs were introduced by A.C. Petri in 1962 to synchronize communicating
automata, and were then extended to define a large set of models, with increasing

complexity and capabilities.

As will be seen, this family of PNs, starting from the simple traditional state
machines, now allows system designers to handle in an integrated way the
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functional (qualitative) and the non-functional (e.g. quantitative) temporal and
stochastic capabilities of systems.

Extensions of PNs were proposed according to two important axes:

a) for qualitative properties and behaviors, to use simpler and more compact
models, by high level PNs, for handling generic behaviors (e.g. individual) and data,
predicates and functions;

b) complementing this first axis, for quantitative properties and behaviors, to
extend the previous models by integrating quantitative constructs and parameters
related to temporal and stochastic requirements.

It is significant to note that all first and conceptual studies in these quantitative
fields were carried out using PN-based models.

Functional qualitative properties

The first PN model, called the Condition—Event PN, was based on the use of
Boolean values: true or false. It was generalized by Place-Transition PNs, now
simply called PNs, which can use integers. This volume will begin with their
presentation and validation.

Non-functional quantitative properties

The fundamental contributions of the second axis considers:

— time PNs, or TPNs, used for systems whose behaviors depend explicitly on
temporal values;

— stochastic PNs, or SPNs, for which distributions are attached to the model, in
particular for performance evaluation and reliability.

Families of PNs

When applied to the modeling of systems, it rapidly becomes apparent that these
models do not have the same application power, in terms of:

— definition and description of the concepts for parallelism, distribution, and
synchronization;

— understanding and using the temporal and stochastic semantics;

— analyzing the possibly different mechanisms and behaviors, in very different
contexts and applications.
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Figure 1 represents some of the principal models of this family. In this figure, an
arrow means that the model at the end of the arrow was proposed after the model at
the beginning of the arrow, and so gives the steps followed by the research to
propose and develop these principal PN-based models.

Place-transition Timed
Petri nets ——>  petri nets
1962, 1969 1974
High level colored Stochastic Time Timed
Petri nets Petri nets Petri nets hierar‘chical
1970, 1981 1976, 1980 1975 Petri nets
l \ / \ 1990
Well-formed Timed
colored stochastic Time
Petri nets Petri nets Stream
1990 1984 Petri nets
/ 1993
\ }

Well-formed Hierarchical

timed Time
stochastic Strfeam
Petri nets Petri nets
1991 1995

Figure 1. The main Petri net models

Figure 2 gives a more conceptual view of these models, by clarifying their
syntactic and semantic relationships. In this figure, three fields are respectively
defined by:

— a discrete state semantics, for non-temporal and non-stochastic nets, behaviors
being represented by a finite graph of all model states;

— a semantics on continuous time, for extended behaviors based on dense time
models;

— and stochastic semantics, for behaviors including distributions.
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Let us emphasize that these models have three models of reference, respectively
PN, TPN, and SPN. Moreover, each model is a pure extension of a previous one, as
it can by simplified to become a basic PN model.

As seen in the figure, the models derived from the reference models:

— lead to more compact models, i.e. are abbreviations, that do not increase the
expressiveness of the model, but simplify the model and the system specification;

— or are more powerful in terms of expressive power, i.e. are able to describe
mechanisms which could not be described by the unextended models (e.g.
introducing time parameters, stochastic distributions, etc., for real-time or
dependable systems).

Discrete Semantics I Time Semantics Stochastic Semantics
(discrete events ) . (continuous time) I (stochastic processes)

Petri nets with
'generalized distributions:
immediate transitions,
phase-type, etc.

Petri nets
with extended timing:
multiple intervals,
time streams, etc

Petri nets
with generalized firing:
inhibitor arcs,
reset arcs, etc.

Place-transition . Time . Stochastic
Petri nets ﬂﬂl:l::> Petri nets |]|:||_—|_:> Petri nets

g | U

Predicate-transition, . . Stochastic
Colored, etc. PNs I I Colored, etc. PNs
' i
Abbreviations with Increasing the ﬂl]l:> Extending the semantical
equal semantics modeling power domains

Figure 2. Semantics domains of the Petri net-based models

For example:
— PN led to PN with inhibitor arcs (to test the presence of zero token in one
place), PN with reset arcs, etc.;

— TPN led to TPN with streams to compose and synchronize independent
behaviors with independent temporal constraints, etc.;
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— SPN led to SPN with immediate transitions in order to manage the case where
transition cannot be delayed, etc.

Consequently, many different models exist, of different power and for different
fields of application, but they follow the same semantics basis, and will allow the
designers to carry out coherent complementary analyses to validate the correct
operation of the modeled (and designed) systems.

The semantics of these models and their properties were used to select, define,
and study the most important members of the PN family in the two parts of this
volume.

Table of contents of the volume

Part 1 is dedicated to fundamental models and contains 11 chapters. Part 2
addresses verification and applications, and contains the last 7 chapters.

Part 1

Chapter 1 introduces Place—Transition PNs, more simply called Petri Nets (PNs).
It gives their fundamental definitions, presents some basic models and clarifies their
interest.

Chapter 2 illustrates an application in a very important area: communication
protocols; simple PN examples show at the same time the power of the model and
the interest of the formal analysis.

Chapter 3 first introduces the general properties that can be checked using PNs
(blocking, reachability or accessibility, etc.) and the verification approach that uses
the graph of the reachable (or accessible) states. The set of reachable (or accessible)
states is the set of states that are reachable or accessible from a given initial state.
Two optimization methods of analysis are then presented, one based on linear
algebra techniques, and the other one exploiting the topological structure of the PNs.

Chapter 4 deals with the decidability and complexity problems related to
checking these general properties.

Chapters 5 and 6 consider models and behaviors based on explicit values of time,
and show how to model temporal mechanisms.
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Chapter 5 presents the general model, Time PN or TPN, which associates a given
interval (minimum, maximum) to each transition; this gives the first semantics for
handling time and verifying temporal behaviors.

Chapter 6 presents a general model for composing temporal behaviors and
systems. It gives the semantics of temporal composition by a new model, Time
Stream PN, for composing autonomous (temporal) flows. It emphasizes their
interests and applications for systems having independent temporal constraints,
which sometimes interact.

Chapters 7 and 8 again consider PN, i.e. non-temporal PN models, but define an
abbreviation of a PN by a general model, which becomes able to represent, in a very
compact way, a given set of similar parallel behaviors. The problems associated with
this abbreviation are, on the one hand, to define a compact formalism and, on the
other hand, to propose new validation techniques to handle this model, i.e. to avoid
the obvious solution that consists of unfolding it into a very large PN.

Chapter 7 presents the main PN abbreviations, while concentrating on Colored
PNs, which is the most frequently used model.

Chapter 8 gives one well-defined version of this formalism, Well-formed
Colored PNs, which allows the development of efficient analysis techniques.

Chapters 9, 10 and 11 introduce distributions, which take into account
probabilistic properties of systems. They introduce stochastic PNs, or SPNs, and
define their semantics in terms of stochastic processes, and, for some classes of
models, their relationships with Markov chains. The principal methods of analyzing
SPNs are then presented. Chapter 9 introduces stochastic PNs.

Chapter 10 introduces well-formed SPNs by combining the formalisms presented
in Chapter 7 (Well-formed Colored PNs) and Chapter 9. Modeling a multiprocessor
architecture illustrates the expressivity of this formalism and its interest for
performance evaluation. Chapter 11 develops a tensorial composition of classical
and well-formed SPNs, showing that such a compositional approach reduces the
complexity of the corresponding validation.

Part 2

The second part of this volume presents important advanced analysis techniques
and finally gives some significant and illustrative case studies.

Chapters 12 and 13 address checking and verifying non-temporal behaviors.
They present the main approaches that are based on building and manipulating the
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(system) accessibility or reachability graph, i.e. the graph representing all possible
behaviors of the model. Checking these properties, by algorithms applied to the
accessibility graph, suffers from the problems of combinatorial explosion. The
general problems to be solved to control such an increase in the number of states, as
well as general solutions, are then given. Three specific techniques, based
respectively on the unfolding of the colored PNs, on symmetries, and on partial
orders, are then presented.

Chapters 14 and 15 focus on the temporal validation of behaviors. Chapter 14
analyzes the relationships existing between symmetry and temporal logic for the
verification of properties that depend on the specificities of the system. Chapter 15
introduces a parallel-serial hierarchy of temporal behaviors. This hierarchy
simplifies the description of complex systems and is very well adapted for modeling
complex multimedia and hypermedia objects, documents, and systems.

Chapter 16 presents how to use the main relationships that exist between linear
logic and Petri nets for specification and validation. Logical reasoning is constructed
based on the behavior of PNs that does not need to produce the reachability graph.
The interest of linear logic is illustrated by showing in particular how to handle
symbolic temporal intervals (minimum, maximum).

Chapters 17 and 18 present two important case studies that are illustrative while
being manageable and easily understandable. Chapter 17 is devoted to the modeling
and design of a multilayered, multimedia architecture that is able to guarantee
temporal properties at the application level. Chapter 18 presents the application of
PN-based models to performance evaluation in the field of computer-integrated
manufacturing systems.

Finally, a conclusion summarizes the contents of this volume.
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Part 1

Fundamental Models
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