

Scaling, Fractals and Wavelets

Edited by Patrice Abry Paulo Gonçalves Jacques Lévy Véhel

This page intentionally left blank

Scaling, Fractals and Wavelets

This page intentionally left blank

Scaling, Fractals and Wavelets

Edited by Patrice Abry Paulo Gonçalves Jacques Lévy Véhel

First published in France in 2 volumes in 2002 by Hermes Science/Lavoisier entitled: Lois d'échelle, fractales et ondelettes © LAVOISIER, 2002

First published in Great Britain and the United States in 2009 by ISTE Ltd and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address:

ISTE Ltd 27-37 St George's Road London SW19 4EU UK

www.iste.co.uk

John Wiley & Sons, Inc. 111 River Street Hoboken, NJ 07030 USA www.wiley.com

© ISTE Ltd, 2009

The rights of Patrice Abry, Paulo Gonçalves and Jacques Lévy Véhel to be identified as the authors of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

Library of Congress Cataloging-in-Publication Data

Lois d'échelle, fractales et ondelettes. English Scaling, fractals and wavelets/edited by Patrice Abry, Paulo Gonçalves, Jacques Lévy Véhel. p. cm.
Includes bibliographical references.
ISBN 978-1-84821-072-1
1. Signal processing--Mathematics. 2. Fractals. 3. Wavelets (Mathematics)
I. Abry, Patrice. II. Gonçalves, Paulo. III. Lévy Véhel, Jacques, 1960- IV. Title. TK5102.9.L65 2007
621.382'20151--dc22

2007025119

British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library ISBN: 978-1-84821-072-1

Printed and bound in Great Britain by CPI Antony Rowe Ltd, Chippenham, Wiltshire.

Table of Contents

Preface
Chapter 1. Fractal and Multifractal Analysis in Signal Processing 19 Jacques LÉVY VÉHEL and Claude TRICOT
1.1. Introduction
1.2. Dimensions of sets
1.2.1. Minkowski-Bouligand dimension
1.2.2. Packing dimension
1.2.3. Covering dimension
1.2.4. Methods for calculating dimensions
1.3. Hölder exponents
1.3.1. Hölder exponents related to a measure
1.3.2. Theorems on set dimensions
1.3.3. Hölder exponent related to a function
1.3.4. Signal dimension theorem
1.3.5. 2-microlocal analysis
1.3.6. An example: analysis of stock market price
1.4. Multifractal analysis
1.4.1. What is the purpose of multifractal analysis?
1.4.2. First ingredient: local regularity measures
1.4.3. Second ingredient: the size of point sets of the same regularity 50
1.4.4. Practical calculation of spectra
1.4.5. Refinements: analysis of the sequence of capacities, mutual
analysis and multisingularity
1.4.6. The multifractal spectra of certain simple signals
1.4.7. Two applications
1.4.7.1. Image segmentation
1.4.7.2. Analysis of TCP traffic
1.5. Bibliography

Chapter 2. Scale Invariance and Wavelets	71
2.1. Introduction	71
2.2. Models for scale invariance	72
2.2.1. Intuition	72
2.2.2. Self-similarity	73
2.2.3 Long-range dependence	75
2.2.3. Long range dependence	76
2.2.5. Fractional Brownian motion: paradigm of scale invariance	70
2.2.6. Revond the paradigm of scale invariance	79
2.2.0. Devolut the paradigm of scale invariance	81
2.3.1 Continuous wavelet transform	81
2.3.1. Continuous wavelet transform	82
2.5.2. Discrete wavelet transform	85
2.4. Wavelet analysis of scale invariant processes	86
$2.4.1.5$ Cm ^{-similarity} \dots	88
2.4.2. Long-tange dependence	00
2.4. Beyond second order	02
2.4.4. Depoind Second Order	92
2.5.1 Estimation of the peremeters of scale inversions	92
2.5.1. Estimation of the parameters of scale invariance	93
2.5.2. Emphasis on scaling laws and determination of the scaling large.	90
2.5.5. Robusiness of the wavelet approach	90
2.0. Conclusion	100
2.7. Bibliography	101
Chapter 3. Wavelet Methods for Multifractal Analysis of Functions Stéphane JAFFARD	103
3.1 Introduction	103
3.2 General points regarding multifractal functions	103
3.2.1 Important definitions	104
3.2.2. Wavelets and pointwise regularity	107
3.2.3. Local oscillations	112
3.2.4 Complements	112
3.3 Random multifractal processes	117
3 3 1 Lévy processes	117
3.3.2 Burgers' equation and Brownian motion	120
3.3.3 Random wavelet series	120
3.4 Multifractal formalisms	122
3.4.1 Besov spaces and locuparity	123
3.4.2 Construction of formalisms	125
3.5 Bounds of the spectrum	120
3.5.1 Bounds according to the Besov domain	129
	129

3.5.2. Bounds deduced from histograms	132
3.6. The grand-canonical multifractal formalism	132
3.7. Bibliography	134
Chapter 4. Multifractal Scaling: General Theory and Approach by	
Wavelets	139
Rudolf RIEDI	
4.1 Introduction and summary	130
4.1. Introduction and summary	140
4.2.1 Hölder continuity	140
4.2.2 Scaling of wavelet coefficients	142
4.2.2. Other scaling exponents	1/1/
4.2.5. Other scaling exponents	144
4.3.1 Dimension based spectra	145
4.3.2 Grain based spectra	145
4.3.2. Orall based spectra	140
4.3.4 Deterministic envelopes	14/
4.5.4. Deterministic envelopes	149
4.4. Multiflactal formatishi	151
4.5. Dinomial multification	154
4.5.1. Constituction	157
4.5.2. Waltifractal analysis of the binomial measure	157
4.5.4. Examples	120
4.5.5. Devend dvadie structure	160
4.5.5. Deyond dyadic structure	162
4.0. wavelet based analysis	103
4.0.1. The binomial revisited with wavelets	103
4.6.2. Multifractal properties of the derivative	105
4.7. Self-similarity and LRD	16/
4.8. Multifractal processes	168
4.8.1. Construction and simulation	169
4.8.2. Global analysis	170
4.8.3. Local analysis of warped FBM	170
4.8.4. LRD and estimation of warped FBM	1/3
4.9. Bibliography	173
Charter 5 Salf similar Drassage	170
Albert DENA COLOR de La come a Lorence Lorence	1/9
Albert BENASSI and Jacques ISTAS	
5.1. Introduction	179
5.1.1. Motivations	179
5.1.2. Scalings	182
5.1.2.1. Trees	182
5.1.2.2. Coding of R	183
5.1.2.3. Renormalizing Cantor set	183

5.1.2.4. Random renormalized Cantor set	184
5.1.3. Distributions of scale invariant masses	184
5.1.3.1. Distribution of masses associated with Poisson measures	184
5.1.3.2. Complete coding	185
5.1.4. Weierstrass functions	185
5.1.5. Renormalization of sums of random variables	186
5.1.6. A common structure for a stochastic (semi-)self-similar process .	187
5.1.7. Identifying Weierstrass functions	188
5.1.7.1. Pseudo-correlation	188
5.2. The Gaussian case	189
5.2.1. Self-similar Gaussian processes with <i>r</i> -stationary increments	189
5.2.1.1. Notations	189
5.2.1.2. Definitions	189
5.2.1.3. Characterization	190
5.2.2. Elliptic processes	190
5.2.3. Hyperbolic processes	191
5.2.4. Parabolic processes	192
5.2.5. Wavelet decomposition	192
5.2.5.1. Gaussian elliptic processes	192
5.2.5.2. Gaussian hyperbolic process	193
5.2.6. Renormalization of sums of correlated random variable	193
5.2.7. Convergence towards fractional Brownian motion	193
5.2.7.1. Quadratic variations	193
5.2.7.2. Acceleration of convergence	194
5.2.7.3. Self-similarity and regularity of trajectories	195
5.3. Non-Gaussian case	195
5.3.1. Introduction	195
5.3.2. Symmetric α -stable processes	196
5.3.2.1. Stochastic measure	196
5.3.2.2. Ellipticity	196
5.3.3. Censov and Takenaka processes	198
5.3.4. Wavelet decomposition	198
5.3.5. Process subordinated to Brownian measure	199
5.4. Regularity and long-range dependence	200
5.4.1. Introduction	200
5.4.2. Two examples	201
5.4.2.1. A signal plus noise model	201
5.4.2.2. Filtered white noise	201
5.4.2.3. Long-range correlation	202
5.5. Bibliography	202

Chapter 6. Locally Self-similar Fields	205
6.1. Introduction	205
6.2. Recap of two representations of fractional Brownian motion	207
6.2.1. Reproducing kernel Hilbert space	207
6.2.2. Harmonizable representation	208
6.3. Two examples of locally self-similar fields	213
6.3.1. Definition of the local asymptotic self-similarity (LASS)	213
6.3.2. Filtered white noise (FWN)	214
6.3.3. Elliptic Gaussian random fields (EGRP)	215
6.4. Multifractional fields and trajectorial regularity	218
6.4.1. Two representations of the MBM	219
6.4.2. Study of the regularity of the trajectories of the MBM	221
6.4.3. Towards more irregularities: generalized multifractional	
Brownian motion (GMBM) and step fractional Brownian	
motion (SFBM)	222
6.4.3.1. Step fractional Brownian motion	223
6.4.3.2. Generalized multifractional Brownian motion	224
6.5. Estimate of regularity	226
6.5.1. General method: generalized quadratic variation	226
6.5.2. Application to the examples	228
6.5.2.1. Identification of filtered white noise	228
6.5.2.2. Identification of elliptic Gaussian random processes	230
6.5.2.3. Identification of MBM	231
6.5.2.4. Identification of SFBMs	233
6.6. Bibliography	235
Chapter 7. An Introduction to Fractional Calculus	237
7.1. Introduction	237
7.1.1. Motivations	237
7.1.1.1. Fields of application	237
7.1.1.2. Theories	238
7.1.2. Problems	238
7.1.3. Outline	239
7.2. Definitions	240
7.2.1. Fractional integration	240
7.2.2. Fractional derivatives within the framework of causal distributions	242
7.2.2.1. Motivation	242
7.2.2.2. Fundamental solutions	245
7.2.3. Mild fractional derivatives, in the Caputo sense	246
7.2.3.1. Motivation	246

7.2.3.2. Definition	247
7.2.3.3. Mittag-Leffler eigenfunctions	248
7.2.3.4. Fractional power series expansions of order α (α -FPSE)	250
7.3. Fractional differential equations	251
7.3.1. Example	251
7.3.1.1. Framework of causal distributions	251
7.3.1.2. Framework of fractional power series expansion of order	
one half	252
7.3.1.3. Notes	253
7.3.2. Framework of causal distributions	254
7.3.3. Framework of functions expandable into fractional power series	
$(\alpha$ -FPSE)	255
7.3.4. Asymptotic behavior of fundamental solutions	257
7 3 4 1 Asymptotic behavior at the origin	257
7 3 4 2 Asymptotic behavior at infinity	257
7.3.5 Controlled-and-observed linear dynamic systems of fractional order	261
7.4 Diffusive structure of fractional differential systems	262
7.4.1 Introduction to diffusive representations of pseudo-differential	202
operators	263
7.4.2 General decomposition result	265
7.4.3. Connection with the concept of long memory	265
7.4.4. Particular case of fractional differential systems of commensurate	205
orders	265
7.5 Example of a fractional partial differential equation	205
7.5.1. Physical problem considered	200
7.5.2. Spectral consequences	267
7.5.2. Spectral consequences	200
7.5.3.1 Decomposition into wavetrains	200
7.5.3.2. Duesi model decomposition	209
7.5.3.2. Quasi-modal decomposition	270
7.5.4. Erec problem	271
7.6. Conclusion	212
7.0. Collectusion	213
	213
Chanter & Fractional Synthesis Fractional Filters	270
Liliane REL Georges OPPENHEIM Luc ROBBIANO and Marie-Claude VIANO	21)
Emaile BEE, Georges Of FEMILEIM, Ede ROBBIANO and Marie-Chaude VIANO	
8.1. Traditional and less traditional questions about fractionals	279
8.1.1. Notes on terminology	279
8.1.2. Short and long memory	279
8.1.3. From integer to non-integer powers: filter based sample path design	280
8.1.4. Local and global properties	281
8.2. Fractional filters	282
8.2.1. Desired general properties: association	282

8.2.2. Construction and approximation techniques	282
8.3. Discrete time fractional processes	284
8.3.1. Filters: impulse responses and corresponding processes	284
8.3.2. Mixing and memory properties	286
8.3.3. Parameter estimation	287
8.3.4. Simulated example	289
8.4. Continuous time fractional processes	291
8.4.1. A non-self-similar family: fractional processes designed from	
fractional filters	291
8.4.2. Sample path properties: local and global regularity, memory	293
8.5. Distribution processes	294
8.5.1. Motivation and generalization of distribution processes	294
8.5.2. The family of linear distribution processes	294
8.5.3. Fractional distribution processes	295
8.5.4. Mixing and memory properties	296
8.6. Bibliography	297
Chapter O. Iterated Experies Systems and Some Conceptions	
L cool Degularity Analysis and Multifractal Modeling of Signals	201
Local Regularity Analysis and Multimatian Modeling of Signals Whelid DAOUDI	301
9.1. Introduction	301
9.2. Definition of the Hölder exponent	303
9.3. Iterated function systems (IFS)	304
9.4. Generalization of iterated function systems	306
9.4.1. Semi-generalized iterated function systems	307
9.4.2. Generalized iterated function systems	308
9.5. Estimation of pointwise Hölder exponent by GIFS	311
9.5.1. Principles of the method	312
9.5.2. Algorithm	314
9.5.3. Application	313
9.6. Weak self-similar functions and multifractal formalism	318
9.7. Signal representation by WSA functions	320
9.8. Segmentation of signals by weak self-similar functions	324
9.9. Estimation of the multifractal spectrum	320
9.10. Experiments	327
9.11. Biolography	329
Chapter 10. Iterated Function Systems and Applications in Image	
Processing	333
Franck DAVOINE and Jean-Marc CHASSERY	
10.1. Introduction	333
10.2. Iterated transformation systems	333
10.2.1. Contracting transformations and iterated transformation systems	334
10.2.1.1. Lipschitzian transformation	334

10.2.1.2. Contracting transformation	334
10.2.1.3. Fixed point	334
10.2.1.4. Hausdorff distance	334
10.2.1.5. Contracting transformation on the space $H(\mathcal{R}^2)$	335
10.2.1.6. Iterated transformation system	335
10.2.2. Attractor of an iterated transformation system	335
10.2.3. Collage theorem	336
10.2.4. Finally contracting transformation	338
10.2.5. Attractor and invariant measures	339
10.2.6. Inverse problem	340
10.3. Application to natural image processing: image coding	340
10.3.1. Introduction	340
10.3.2. Coding of natural images by fractals	342
10.3.2.1. Collage of a source block onto a destination block	342
10.3.2.2. Hierarchical partitioning	344
10.3.2.3. Coding of the collage operation on a destination block	345
10.3.2.4. Contraction control of the fractal transformation	345
10.3.3. Algebraic formulation of the fractal transformation	345
10.3.3.1. Formulation of the mass transformation	347
10.3.3.2. Contraction control of the fractal transformation	349
10.3.3.3. Fisher formulation	350
10.3.4. Experimentation on triangular partitions	351
10.3.5. Coding and decoding acceleration	352
10.3.5.1. Coding simplification suppressing the research for	
similarities	352
10.3.5.2. Decoding simplification by collage space orthogonalization	358
10.3.5.3. Coding acceleration: search for the nearest neighbor	360
10.3.6. Other optimization diagrams: hybrid methods	360
10.4. Bibliography	362
Chapter 11. Local Regularity and Multifractal Methods for Image and	267
Signal Analysis	367
Pierrick LEGRAND	
11.1. Introduction	367
11.2. Basic tools	368
11.2.1. Hölder regularity analysis	368
11.2.2. Reminders on multifractal analysis	369
11.2.2.1. Hausdorff multifractal spectrum	369
11.2.2.2. Large deviation multifractal spectrum	370
11.2.2.3. Legendre multifractal spectrum	371
11.3. Hölderian regularity estimation	371
11.3.1. Oscillations (<i>OSC</i>)	371
11.3.2. Wavelet coefficient regression (WCR)	372

11.3.3. Wavelet leaders regression (WL)	372
11.3.4. Limit inf and limit sup regressions	373
11.3.5. Numerical experiments	374
11.4. Denoising	376
11.4.1. Introduction	376
11.4.2. Minimax risk, optimal convergence rate and adaptivity	377
11.4.3. Wavelet based denoising	378
11.4.4. Non-linear wavelet coefficients pumping	380
11.4.4.1. Minimax properties	380
11.4.4.2. Regularity control	381
11.4.4.3. Numerical experiments	382
11.4.5. Denoising using exponent between scales	383
11.4.5.1. Introduction	383
11.4.5.2. Estimating the local regularity of a signal from noisy	
observations	384
11.4.5.3. Numerical experiments	386
11.4.6. Bayesian multifractal denoising	386
11.4.6.1. Introduction	386
11.4.6.2. The set of parameterized classes $S(q, \psi)$	387
11.4.6.3. Bayesian denoising in $S(q, \psi)$	388
11.4.6.4. Numerical experiments	390
11.4.6.5. Denoising of road profiles	391
11.5. Hölderian regularity based interpolation	393
11.5.1. Introduction	393
11.5.2. The method	393
11.5.3. Regularity and asymptotic properties	394
11.5.4. Numerical experiments	394
11.6. Biomedical signal analysis	394
11.7. Texture segmentation	401
11.8. Edge detection	403
11.8.1. Introduction	403
11.8.1.1. Edge detection	406
11.9. Change detection in image sequences using multifractal analysis	407
11.10. Image reconstruction	408
11.11. Bibliography	409
Chapter 12. Scale Invariance in Computer Network Traffic	413
Darryl VEITCH	
12.1 Teletraffic – a new natural phenomenon	413
12.1.1 A phenomenon of scales	413
12.1.2. An experimental science of "man-made atoms"	415
12.1.2. A random current	416
12.1.3. Two fundamental approaches	417
	- T I /

12.2. From a wealth of scales arise scaling laws	419
12.2.1. First discoveries	419
12.2.2. Laws reign	420
12.2.3. Beyond the revolution	424
12.3. Sources as the source of the laws	426
12.3.1. The sum or its parts	426
12.3.2. The on/off paradigm	427
12.3.3. Chemistry	428
12.3.4. Mechanisms	429
12.4. New models, new behaviors	430
12.4.1. Character of a model	430
12.4.2. The fractional Brownian motion family	431
12.4.3. Greedy sources	432
12.4.4. Never-ending calls	432
12.5. Perspectives	433
12.6. Bibliography	434
Chapter 13. Research of Scaling Law on Stock Market Variations Christian WALTER	437
13.1. Introduction: fractals in finance	437
13.2. Presence of scales in the study of stock market variations	439
13.2.1. Modeling of stock market variations	439
13.2.1.1. Statistical apprehension of stock market fluctuations	439
13.2.1.2. Profit and stock market return operations in different scales	442
13.2.1.3. Traditional financial modeling: Brownian motion	443
13.2.2. Time scales in financial modeling	445
13.2.2.1. The existence of characteristic time	445
13.2.2.2. Implicit scaling invariances of traditional financial modeling	446
13.3. Modeling postulating independence on stock market returns	446
13.3.1. 1960-1970: from Pareto's law to Lévy's distributions	446
13.3.1.1. Leptokurtic problem and Mandelbrot's first model	446
13.3.1.2. First emphasis of Lévy's α -stable distributions in finance .	448
13.3.2. 1970–1990: experimental difficulties of iid- α -stable model	448
13.3.2.1. Statistical problem of parameter estimation of stable laws .	448
13.3.2.2. Non-normality and controversies on scaling invariance	449
13.3.2.3. Scaling anomalies of parameters under iid hypothesis	451
13.3.3. Unstable iid models in partial scaling invariance	452
13.3.3.1. Partial scaling invariances by regime switching models	452
13.3.3.2. Partial scaling invariances as compared with extremes	453
13.4. Research of dependency and memory of markets	454
13.4.1. Linear dependence: testing of <i>H</i> -correlative models on returns .	454
13.4.1.1. Question of dependency of stock market returns	454
13.4.1.2. Problem of slow cycles and Mandelbrot's second model	455

 13.4.1.3. Introduction of fractional differentiation in econometrics 13.4.1.4. Experimental difficulties of <i>H</i>-correlative model on returns 13.4.2. Non-linear dependence: validating <i>H</i>-correlative model on 	455 456
 volatilities	456 456 457 457 458
Chapter 14. Scale Relativity, Non-differentiability and Fractal Space-time Laurent NOTTALE	465
 14.1. Introduction	465 466 466 467
14.3.2. From continuity and non-differentiability to fractarity 14.3.3. Description of non-differentiable process by differential equations 14.3.4. Differential dilation operator 14.4. Relativity and scale covariance	467 469 471 472
14.5. Scale differential equations	472 473 474
 14.5.5. Non-linear scale laws: second order equations, discrete scale invariance, log-periodic laws 14.5.4. Variable fractal dimension: Euler-Lagrange scale equations 14.5.5. Scale dynamics and scale force	475 476 478
 14.5.5.1. Constant scale force 14.5.5.2. Scale harmonic oscillator 14.5.6. Special scale relativity – log-Lorentzian dilation laws, invariant 	479 480
14.5.7. Generalized scale relativity and scale-motion coupling 14.5.7.1. A reminder about gauge invariance 14.5.7.2. Nature of gauge fields	481 482 483 484
14.5.7.3. Nature of the charges14.5.7.4. Mass-charge relations14.6. Quantum-like induced dynamics	486 488 488
14.6.1. Generalized Schrödinger equation 14.6.2. Application in gravitational structure formation 14.7. Conclusion 14.8. Bibliography	488 492 493 495
List of Authors	499
Index	503

This page intentionally left blank

Preface

It is a common scheme in many sciences to study systems or signals by looking for *characteristic scales* in time or space. These are then used as references for expressing all measured quantities. Physicists may for instance employ the size of a structure, while signal processors are often interested in correlation lengths: (blocks of) samples whose distance is several times the correlation lengths are considered statistically independent. The concept of *scale invariance* may be considered to be the converse of this approach: it means that there is no characteristic scale in the system. In other words, all scales contribute to the observed phenomenon. This "non-property" is also loosely referred to as scaling law or scaling behavior. Note that we may reverse the perspective and consider scale invariance as the signature of a strong organization in the system. Indeed, it is well known in physics that invariance laws are associated with fundamental properties. It is remarkable that phenomena where scaling laws have been observed cover a wide range of fields, both in natural and artificial systems. In the first category, these include for instance hydrology, in relation to the variability of water levels, hydrodynamics and the study of turbulence, statistical physics with the study of long-range interactions, electronics with the so-called 1/f noise in semiconductors, geophysics with the distribution of faults, biology, physiology and the variability of human body rhythms such as the heart rate. In the second category, we may mention geography with the distribution of population in cities or in continents, Internet traffic and financial markets.

From a signal processing perspective, the aim is then to study *transfer mechanisms* between scales (also called "cascades") rather than to identify relevant scales. We are thus led to forget about scale-based models (such as Markov models), and to focus on models allowing us to study correspondences between many scales. The central notion behind scaling laws is that of *self-similarity*. Loosely speaking, this means that each part is (statistically) the same as the whole object. In particular, information gathered from observing the data should be independent of the scale of observation.

18 Scaling, Fractals and Wavelets

There is considerable variety in observed self-similar behaviors. They may for instance appear through scaling laws in the Fourier domain, either at all frequencies or in a finite but large range of frequencies, or even in the limit of high or low frequencies. In many cases, studying second-order quantities such as spectra will prove insufficient for describing scaling laws. Higher-order moments are then necessary. More generally, the fundamental model of self-similarity has to be adapted in many settings, and to be generalized in various directions, so that it becomes useful in real-world situations. These include self-similar stochastic processes, locally self-similar processes and more. Multifractal analysis, in particular, has developed as a method allowing us to study complex objects which are not necessarily "fractal", by describing the variations of local regularity. The recent change of paradigm consisting of using *fractal methods* rather than studying *fractal objects* is one of the reasons for the success of the domain in applications.

We are delighted to invite our reader for a promenade in the realm of scaling laws, its mathematical models and its real-world manifestations. The 14 chapters have all been written by experts. The first four chapters deal with the general mathematical tools allowing us to measure fractional dimensions, local regularity and scaling in its various disguises. Wavelets play a particular role for this purpose, and their role is emphasized. Chapters 5 and 6 describe advanced stochastic models relevant in our area. Chapter 7 deals with fractional calculus, and Chapter 8 explains how to synthesize certain fractal models. Chapter 9 gives a general introduction to IFS, a powerful tool for building and describing fractals and other complex objects, while Chapter 10, of applied nature, considers the application of IFS to image compression. The four remaining chapters also deal with applications: various signal and image processing tasks are considered in Chapter 11. Chapter 12 deals with Internet traffic, and Chapter 13 with financial data analysis. Finally, Chapter 14 describes a fractal space-time in the frame of cosmology.

It is a great pleasure for us to thank all the authors of this volume for the quality of their contribution. We believe they have succeeded in exposing advanced concepts with great pedagogy.

Chapter 1

Fractal and Multifractal Analysis in Signal Processing

1.1. Introduction

The aim of this chapter is to describe some of the fundamental concepts of fractal analysis in view of their application. We will thus present a simple introduction to the concepts of fractional dimension, regularity exponents and multifractal analysis, and show how they are used in signal and image processing.

Since we are interested in applications, most theoretical results are given without proofs. These are available in the references mentioned where appropriate. In contrast, we will pay special attention to the practical aspects. In particular, almost all the notions explained below are implemented in the FracLab toolbox. This toolbox is freely available from the following site: http://complex.futurs.inria.fr/FracLab/, so that interested readers may perform hands-on experiments.

Before we start, we wish to emphasize the following point: recent successes of fractal analysis in signal and image processing do not generally stem from the fact that they are applied to fractal *objects* (in a more or less strict sense). Indeed, most real-world signals are neither self-similar nor display the characteristics usually associated with fractals (except for the irregularity at each scale). The relevance of fractal analysis instead results from the progress made in the development of fractal *methods*. Such methods have lately become more general and reliable, and they now allow to describe precisely the singular structure of complex signals,

Chapter written by Jacques LÉVY VÉHEL and Claude TRICOT.

without any assumption of "fractality": as a rule, performing a fractal analysis will be useful as soon as the considered signal is irregular and this irregularity contains meaningful information. There are numerous examples of such situations, ranging from image segmentation (where, for instance, contours are made of singular points; see section 1.4.7 and Chapter 11) to vocal synthesis [DAO 02] or financial analysis.

This chapter roughly follows the chronological order in which the various tools have been introduced. We first describe several notions of fractional dimensions. These provide a global characterization of a signal. We then introduce Hölder exponents, which supply local measures of irregularity. The last part of the chapter is devoted to multifractal analysis, a most refined tool that describes the local as well as the overall singular structure of signals. All the concepts presented here are more fully developed in [TRI 99, LEV 02].

1.2. Dimensions of sets

The concept of dimension applies to objects more general than signals. To simplify, we shall consider sets in a metric space, although the notion of dimension makes sense for more complex entities such as measures or classes of functions [KOL 61]. Several interesting notions of dimension exist. This might look like a drawback for the mathematical analysis of fractal sets. However, it is actually an advantage, since each dimension emphasizes a different aspect of an object. It is thus worthwhile to determine the specificity of each dimension. As a general rule, none of these tools outperform the other.

Let us first give a general definition of the notion of dimension.

DEFINITION 1.1.– We call *dimension* an application d defined on the family of bounded sets of \mathbb{R}^n and ranging in $\mathbb{R}^+ \cup \{-\infty\}$, such that:

- 1) $d(\emptyset) = -\infty$, $d(\{x\}) = 0$ for any point x;
- 2) $E_1 \subset E_2 \Rightarrow d(E_1) \leq d(E_2)$ (monotonicity);
- 3) if E has non-zero n-dimensional volume, then d(E) = n;

4) if E is a diffeomorphism T of \mathbb{R}^n (such as, in particular, a similarity with non-zero ratio, or a non-singular affine application), then d(T(E)) = d(E) (invariance).

Moreover, we will say that d is *stable* if $d(E_1 \cup E_2) = \max\{d(E_1), d(E_2)\}$. It is said to be σ -stable if, for any countable collection of sets:

$$d\big(\cup_n E_n\big) = \sup d\big(E_n\big)$$

 $\sigma\text{-stable}$ dimensions may be extended in a natural way to characterize unbounded sets of $\mathbb{R}^n.$

1.2.1. Minkowski-Bouligand dimension

The Minkowski-Bouligand dimension was invented by Bouligand [BOU 28], who named it the *Cantor-Minkowski order*. It is now commonly referred to as the *box dimension*. Let us cover a bounded set E of \mathbb{R}^n with cubes of side ε and disjoint interiors. Let $N_{\varepsilon}(E)$ be the number of these cubes. When E contains an infinite number of points (i.e. if it is a curve, a surface, etc.), $N_{\varepsilon}(E)$ tends to $+\infty$ when ε tends to 0. The box dimension Δ characterizes the rate of this growth. Roughly speaking, Δ is the real number such that:

$$N_{\varepsilon}(E) \simeq \left(\frac{1}{\varepsilon}\right)^{\Delta},$$

assuming this number exists. More generally, we define, for all bounded E, the number:

$$\Delta(E) = \limsup_{\varepsilon \to \infty} \frac{\log N_{\varepsilon}(E)}{|\log \varepsilon|}$$
(1.1)

A lower limit may also be used:

$$\delta(E) = \liminf_{\varepsilon \to \infty} \frac{\log N_{\varepsilon}(E)}{|\log \varepsilon|}$$
(1.2)

Note that some authors refer to the *box dimension* only when both indices coincide, that is, when the limit exists.

Both indices Δ and δ are dimensions in the sense previously defined. However, Δ is stable, contrarily to δ , so that Δ is more commonly used. Let us mention an important property: if \overline{E} denotes the closure of E (the set of all limit points of sequences in E), then:

$$\Delta(\bar{E}) = \Delta(E)$$

This property shows that Δ is not sensitive to the topological type of E. It only characterizes the *density* of a set. For example, the (countable) set of the rational numbers of the interval [0, 1] has one dimension, which is the dimension of the interval itself. Even discrete sequences may have non-zero dimension: let, for instance, E be the set of numbers $n^{-\alpha}$ with $\alpha > 0$. Then $\Delta(E) = 1/(\alpha + 1)$.

Equivalent definitions

It is not mandatory to use cubes to calculate Δ . The original definition of Bouligand is as follows:

- in \mathbb{R}^n , let us consider the *Minkowski sausage*:

$$E(\varepsilon) = \bigcup_{x \in E} B_{\varepsilon}(x)$$

which is the union of all the balls of radius ε centered at E. Denote its volume by $\operatorname{Vol}_n(E(\varepsilon))$. This volume is approximately of the order of $N_{\varepsilon}(E) \varepsilon^n$. This allows us to give the equivalent definition:

$$\Delta(E) = \limsup_{\varepsilon \to 0} \left(n - \frac{\operatorname{Vol}_n \left(E(\varepsilon) \right)}{\log \varepsilon} \right); \tag{1.3}$$

- we may also define $N'_{\varepsilon}(E)$, which is the smallest number of balls of radius ε covering E; or $N''_{\varepsilon}(E)$, the largest number of disjoint balls of radius ε centered on E. Replacing $N_{\varepsilon}(E)$ by any of these values in equation (1.1) still gives $\Delta(E)$.

Discrete values of ε

In these definitions, the variable ε is continuous. The results remain the same if we use a discrete sequence such as $\varepsilon_n = 2^{-n}$. More generally we may replace ε with any sequence which does not converge too quickly towards 0. More precisely, we require that:

$$\lim_{n \to \infty} \frac{\log \varepsilon_n}{\log \varepsilon_{n+1}} = 1.$$

This remark is important, as it allows us to perform numerical estimations of Δ .

Let us now give some well-known examples of calculating dimensions.

EXAMPLE 1.1.— Let (a_n) be a sequence of real numbers such that $0 < 2a_{n+1} < a_n < a_0 = 1$. Let $E_0 = [0, 1]$. We construct by induction a sequence of sets (E_n) such that E_n is made of 2^n closed disjoint intervals of length a_n , each containing exactly two intervals of E_{n+1} . The sets E_n are nested, and the sequence (E_n) converges to a compact set E such that:

$$E = \cap_n E_n.$$

Let us consider a particular case. When all the interval extremities E_n are also interval extremities of E_{n+1} , E is called a *perfect symmetric set* [KAH 63] or sometimes, more loosely, a *Cantor set*. Assume that the ratio $\log a_n / \log a_{n+1}$ tends to 1. According to the previous comment on discrete sequences, we obtain the following values:

$$\delta(E) = \liminf_{n \to \infty} \frac{n \log 2}{|\log a_n|}, \quad \Delta(E) = \limsup_{n \to \infty} \frac{n \log 2}{|\log a_n|}.$$

However, these results are true for any sequence (a_n) . Even more specifically, consider the case where $a_n = a^n$, with $0 < a < \frac{1}{2}$. The ratios a_n/a_{n+1} are then constant and dimensions take the common value $\log 2/|\log a|$. This is the case of the *self-similar* set which satisfies the following relation:

$$E = f_1(E) \cup f_2(E)$$

with $f_1(x) = a x$ and $f_2(x) = a x + 1 - a$. This set is the attractor of the iterated function system $\{f_1, f_2\}$ (see Chapters 9 and 10). It is also called a *perfect symmetric* set with constant ratio.

EXAMPLE 1.2.– We construct a planar self-similar curve with extremities A and B, $A \neq B$ as follows: take N + 1 distinct points $A_1 = A, A_2, \ldots, A_{N+1} = B$, such that $dist(A_i, A_{i+1}) < dist(A, B)$. For each $i = 1, \ldots, N$, define a similarity f_i (that is, a composition of a homothety, an orthogonal transformation and a translation), such that

$$f_i(AB) = A_i A_{i+1}.$$

The ratio of f_i is $a_i = \operatorname{dist}(A_i, A_{i+1})/\operatorname{dist}(A, B)$. Starting from the segment $\Gamma_0 = AB$, define by induction the polygonal curves $\Gamma_n = \bigcup_i f_i(\Gamma_{n-1})$. This sequence (Γ_n) converges to a curve Γ which satisfies the following relation:

$$\Gamma = \cup_i f_i(\Gamma).$$

In other words, Γ is the attractor of the IFS $\{f_1, \ldots, f_n\}$. When Γ is simple, the dimensions δ and Δ assume a common value, which is also the *similarity dimension*, i.e. the unique solution of the equation

$$\sum_{i=1}^{N} a_i^x = 1.$$

In the particular case where all distances $\operatorname{dist}(A_i, A_{i+1})$ are the same, the ratios a_i are equal to a value a such that Na > 1 (necessary condition for the continuity of Γ) and $Na^2 < 1$ (necessary condition for the simplicity of Γ). Clearly, $\delta(\Gamma) = \Delta(\Gamma) = \log N/|\log a|$.

Figure 1.1. Von Koch curve, the attractor of a system of four similarities with common ratio $\frac{1}{3}$

24 Scaling, Fractals and Wavelets

Function scales

The previous definitions all involve ratios of logarithms. This is an immediate consequence of the fact that a dimension is defined as an order of growth related to the scale of functions $\{t^{\alpha}, \alpha > 0\}$. In general, a scale of functions \mathcal{F} in the neighborhood of 0 is a family of functions which are all comparable in the Hardy sense, that is, for any f and g in \mathcal{F} , the ratio f(x)/g(x) tends to a limit (possibly $+\infty$ or $-\infty$) when x tends to 0. Function scales are defined in a similar way in the neighborhood of $+\infty$. Scales other than $\{t^{\alpha}\}$ will yield other types of dimensions. A dimension must be considered as a Dedekind cut in a given scale of functions. The following expressions will make this clearer:

$$\Delta(E) = \inf\{\alpha \text{ such that } \varepsilon^{\alpha} N_{\varepsilon}(E) \to 0\}$$
(1.4)

$$\delta(E) = \sup\{\alpha \text{ such that } \varepsilon^{\alpha} N_{\varepsilon}(E) \to +\infty\}$$
(1.5)

these are equivalent to equations (1.1) and (1.2) (see [TRI 99]).

Complementary intervals on the line

In the particular case where the compact E lies in an interval J of the line, the complementary set of E in J is a union of disjoint open intervals, whose lengths will be denoted by c_n . Let |E| be the Lebesgue measure of E (which means, for an interval, its length). The dimension of E may be written as:

$$\Delta(E) = \limsup_{\varepsilon \to 0} \left(1 - \frac{\log |E(\varepsilon)|}{\log \varepsilon} \right)$$

If |E| = 0, the sum of the c_n is equal to the length of J. The dimension is then equal to the *convergence exponent* of the series $\sum c_n$:

$$\Delta(E) = \inf\left\{\alpha \text{ such that } \sum_{n} c_{n}^{\alpha} < +\infty\right\}$$
(1.6)

Proof. This result may be obtained by calculating an approximation of the length of Minkowski sausage $E(\varepsilon)$. Let us assume that the complementary intervals are ranked in decreasing lengths:

$$c_1 \geqslant c_2 \geqslant \cdots \geqslant c_n \geqslant \cdots$$

If |E| = 0 and if $c_n \ge \varepsilon > c_{n+1}$, then:

$$|E(\varepsilon)| \simeq n\varepsilon + \sum_{i \geqslant n} c_i$$

thus $\varepsilon^{\alpha-1}L(E(\varepsilon)) \simeq n\varepsilon^{\alpha} + \varepsilon^{\alpha-1}\sum_{i \ge n} c_i$. It may be shown that both values

$$\inf\{\alpha \text{ such that } n\varepsilon^{\alpha} < +\infty\} \quad \text{and} \quad \inf\left\{\alpha \text{ such that } \varepsilon^{\alpha-1}\sum_{i \ge n} c_i < +\infty\right\}$$

are equal to the convergence exponent. It is therefore equal to $\Delta(E)$.

EXERCISE 1.1.– Verify formula (1.6) for the perfect symmetric sets of Example 1.1.

If $|E| \neq 0$, then the convergence exponent of $\sum c_n$ still makes sense. It characterizes a degree of *proximity* of the exterior with the set E. More precisely, we obtain

$$\inf\left\{\alpha \text{ such that } \sum_{n} c_{n}^{\alpha} < +\infty\right\} = \limsup_{\varepsilon \to 0} \left(1 - \frac{\log|E(\varepsilon) - E|}{\log\varepsilon}\right) \tag{1.7}$$

where the set $E(\varepsilon) - E$ refers to the Minkowski sausage of E deprived of the points of E.

How can we generalize the study of the complementary set in \mathbb{R}^n with $n \ge 2$? The open intervals must be replaced with an appropriate paving. The results connecting the elements of this paving to the dimension depend both on the geometry of the tiles and on their respective positions. The topology of the complementary set must be investigated more deeply [TRI 87]. The index that generalizes (1.7) (replacing the 1 of the space dimension by n) is the *fact fractal exponent*, studied in [GRE 85, TRI 86b]. In the case of a zero area curve in \mathbb{R}^2 , this also leads to the notion of *lateral dimension*. Note that the dimensions corresponding to each side of the curve are not necessarily equal [TRI 99].

1.2.2. Packing dimension

The packing dimension is, to some extent, a regularization of the box dimension [TRI 82]. Indeed, Δ is not σ -stable, but we may derive a σ -stable dimension from any index thanks to the operation described below.

PROPOSITION 1.1.– Let \mathcal{B} be the family of all bounded sets of \mathbb{R}^n and $\alpha : \mathcal{B} \longrightarrow \mathbb{R}^+$. Then, the function $\hat{\alpha}$ defined for any subsets of \mathbb{R}^n as:

$$\hat{\alpha}(E) = \inf\{\sup \alpha(E_i) / E = \bigcup E_i, E_i \in \mathcal{B}\}\$$

is monotonous and σ -stable.

Proof. Any subset E of \mathbb{R}^n is a union of bounded sets. If $E_1 \subset E_2$, then any covering of E_1 may be completed with a covering of E_2 . This entails monotonicity. Now, let $\varepsilon > 0$ and a sequence $(E_k)_{k \ge 1}$ of sets whose union is E. For any k, there exists a decomposition $(E_{i,k})$ of E_k such that $\sup \alpha(E_{i,k}) \le \hat{\alpha}(E_k) + \varepsilon 2^{-k}$. Since $E = \bigcup_{i,k} E_{i,k}$, we deduce that:

$$\hat{\alpha}(E) \leqslant \sup_{k} \hat{\alpha}(E_{k}) + \varepsilon \sum 2^{-k} = \sup_{k} \hat{\alpha}(E_{k}) + \varepsilon$$

Thus, the inequality $\hat{\alpha}(E) \leq \sup_k \hat{\alpha}(E_k)$ holds. The converse inequality stems from monotonicity.

The packing dimension is the result of this operation on Δ . We set

$$Dim = \hat{\Delta}$$

The term *packing* will be explained later. The new index Dim is indeed a dimension, and it is σ -stable. Therefore, contrarily to Δ , it vanishes for countable sets. The inequality:

$$\operatorname{Dim}(E) \leq \Delta(E)$$

is true for any bounded set. This becomes an equality when E presents a *homogenous* structure in the following sense:

THEOREM 1.1.– Let E be a compact set such that, for all open sets U intersecting E, $\Delta(E \cap U) = \Delta(E)$. Then $\Delta(E) = \text{Dim}(E)$.

Proof. Let E_i be a decomposition of E. Since E is compact, a Baire theorem entails that the E_i are not all nowhere dense in E. Therefore, there exist an index i_0 and an open set U intersecting E such that $\overline{E_{i_0}} \cap U = \overline{E} \cap U$, which yields:

$$\Delta(E_{i_0}) = \Delta(\overline{E_{i_0}}) \geqslant \Delta(\overline{E_{i_0}} \cap U) = \Delta(\bar{E} \cap U) \geqslant \Delta(E \cap U) = \Delta(E)$$

As a result, $\Delta(E) \leq \sup_i \Delta(E_i)$, and thus $\Delta(E) \leq \operatorname{Dim}(E)$. The converse inequality is always true.

EXAMPLE 1.3.– All self-similar sets are of this type, including those presented above: Cantor sets and curves. For these sets, the packing dimension has the same value as $\Delta(E)$. EXAMPLE 1.4.— Dense sets in [0, 1], when they are not compact, do not necessarily have a packing dimension equal to 1. Let us consider, for any real p, 0 , the $set <math>E_p$ of p-normal numbers, that is, those numbers whose frequency of zeros in their dyadic expansion is equal to p. Any dyadic interval of [0, 1], however small it may be, contains points of E_p , so E_p is dense in [0, 1]. As a consequence, $\Delta(E_p) = 1$. In contrast, the value of $Dim(E_p)$ is:

$$Dim(E_p) = \frac{1}{\log 2} |p \log p + (1-p) \log(1-p)|.$$

This result will be derived in section 1.3.2.

1.2.3. Covering dimension

The covering dimension was introduced by Hausdorff [HAU 19]. Here we adopt the traditional approach through Hausdorff measures; a direct approach, using Vitali's covering convergence exponent, may be used to calculate the dimension without using measures [TRI 99].

Covering measures

Originally, the covering measures were defined to generalize and, most of all, to precisely define the concepts of length, surface, volume, etc. They constitute an important tool in geometric measure theory.

Firstly, let us consider a *determining function* $\phi: \mathbb{R}^+ \longrightarrow \mathbb{R}^+$, which is increasing and continuous in the neighborhood of 0, and such that $\phi(0) = 0$. Let E be a set in a metric space (that is, a space where a distance has been defined). For every $\varepsilon > 0$, we consider all the coverings of E by bounded sets U_i of diameter diam $(U_i) \leq \varepsilon$. Let

$$H^{\phi}_{\varepsilon}(E) = \inf \left\{ \sum \phi \left(\operatorname{diam}(U_i) \right) / E \subset \cup_i U_i, \operatorname{diam}(E_i) \leqslant \varepsilon \right\}.$$

When ε tends to 0, this quantity (possibly infinite) cannot decrease. The limit corresponds to the ϕ -Hausdorff measure:

$$H^{\phi}(E) = \lim_{\varepsilon \to 0} H^{\phi}_{\varepsilon}(E)$$

In this definition, the covering sets U_i can be taken in a more restricted family. If we suppose that U_i are open, or convex, the result remains unchanged. The main properties are that of any Borel measure:

$$-E_1 \subset E_2 \Longrightarrow H^{\phi}(E_1) \leqslant H^{\phi}(E_2);$$

- if (E_i) is a collection of countable sets, then

$$H^{\phi}(\cup E_i) \leqslant \sum_i H^{\phi}(E_i)$$

- if E_1 and E_2 are at non-zero distance from each other, any ε -covering of E_1 is disjoint from any ε -covering of E_2 when ε is sufficiently small. Then $H^{\phi}(E_1 \cup E_2) = H^{\phi}(E_1) + H^{\phi}(E_1)$. This implies that H^{ϕ} is a *metric measure*. The Borel sets are H^{ϕ} -measurable and for any collection (E_i) of disjoint Borel sets, $H^{\phi}(\cup_i E_i) = \sum_i H^{\phi}(E_i)$.

The scale of functions t^{α}

In the case where $\phi(t) = t^{\alpha}$ with $\alpha > 0$, we use the simple notation $H^{\phi} = H^{\alpha}$.

Consider the case $\alpha = 1$. For any curve Γ the value $H^1(\Gamma)$ is equal to the length of Γ . Therefore H^1 is a generalization of the concept of length: it may be applied to any subset of the metric space.

Now let $\alpha = 2$. For any plane surface S, the value of $H^2(S)$ is proportional to the area of S. For non-plane surfaces, H^2 provides an appropriate mathematical definition of area – using a triangulation of S is not acceptable from a theoretical point of view.

More generally, when α is an integer, H^{α} is proportional to the $\alpha\text{-dimensional}$ volume.

However, α can also take non-integer values, which makes it possible to define the *dimension* of any set. The use of the term *dimension* is justified by the following property: if aE is the image of E by a homothety of ratio a, then

$$H^{\alpha}(aE) = a^{\alpha}H^{\alpha}(E)$$

Measures estimated using boxes

If we want to restrict the class of sets from which coverings are taken even more, one option would be to cover E with centered balls or dyadic boxes. In each case, the result is a measure $H^{*\alpha}$ which is generally not equal to $H^{\alpha}(E)$; nevertheless, it is an equivalent measure in the sense that we can find two non-zero constants, c_1 and c_2 , such that for any E:

$$c_1 H^{\alpha}(E) \leqslant H^{*\alpha}(E) \leqslant c_2 H^{\alpha}(E)$$

Clearly the $H^{*\alpha}$ measures give rise to the same dimension.