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Preface

It is a common scheme in many sciences to study systems or signals by looking for
characteristic scales in time or space. These are then used as references for expressing
all measured quantities. Physicists may for instance employ the size of a structure,
while signal processors are often interested in correlation lengths: (blocks of) samples
whose distance is several times the correlation lengths are considered statistically
independent. The concept of scale invariance may be considered to be the converse
of this approach: it means that there is no characteristic scale in the system. In other
words, all scales contribute to the observed phenomenon. This “non-property” is also
loosely referred to as scaling law or scaling behavior. Note that we may reverse the
perspective and consider scale invariance as the signature of a strong organization in
the system. Indeed, it is well known in physics that invariance laws are associated with
fundamental properties. It is remarkable that phenomena where scaling laws have been
observed cover a wide range of fields, both in natural and artificial systems. In the first
category, these include for instance hydrology, in relation to the variability of water
levels, hydrodynamics and the study of turbulence, statistical physics with the study
of long-range interactions, electronics with the so-called 1/ f noise in semiconductors,
geophysics with the distribution of faults, biology, physiology and the variability of
human body rhythms such as the heart rate. In the second category, we may mention
geography with the distribution of population in cities or in continents, Internet traffic
and financial markets.

From a signal processing perspective, the aim is then to study transfer mechanisms
between scales (also called “cascades”) rather than to identify relevant scales. We are
thus led to forget about scale-based models (such as Markov models), and to focus on
models allowing us to study correspondences between many scales. The central notion
behind scaling laws is that of self-similarity. Loosely speaking, this means that each
part is (statistically) the same as the whole object. In particular, information gathered
from observing the data should be independent of the scale of observation.
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There is considerable variety in observed self-similar behaviors. They may for
instance appear through scaling laws in the Fourier domain, either at all frequencies
or in a finite but large range of frequencies, or even in the limit of high or low
frequencies. In many cases, studying second-order quantities such as spectra will
prove insufficient for describing scaling laws. Higher-order moments are then
necessary. More generally, the fundamental model of self-similarity has to be adapted
in many settings, and to be generalized in various directions, so that it becomes
useful in real-world situations. These include self-similar stochastic processes, 1/ f
processes, long memory processes, multifractal and multifractional processes, locally
self-similar processes and more. Multifractal analysis, in particular, has developed as
a method allowing us to study complex objects which are not necessarily “fractal”,
by describing the variations of local regularity. The recent change of paradigm
consisting of using fractal methods rather than studying fractal objects is one of the
reasons for the success of the domain in applications.

We are delighted to invite our reader for a promenade in the realm of scaling laws,
its mathematical models and its real-world manifestations. The 14 chapters have all
been written by experts. The first four chapters deal with the general mathematical
tools allowing us to measure fractional dimensions, local regularity and scaling in
its various disguises. Wavelets play a particular role for this purpose, and their role
is emphasized. Chapters 5 and 6 describe advanced stochastic models relevant in
our area. Chapter 7 deals with fractional calculus, and Chapter 8 explains how to
synthesize certain fractal models. Chapter 9 gives a general introduction to IFS, a
powerful tool for building and describing fractals and other complex objects, while
Chapter 10, of applied nature, considers the application of IFS to image compression.
The four remaining chapters also deal with applications: various signal and image
processing tasks are considered in Chapter 11. Chapter 12 deals with Internet traffic,
and Chapter 13 with financial data analysis. Finally, Chapter 14 describes a fractal
space-time in the frame of cosmology.

It is a great pleasure for us to thank all the authors of this volume for the quality
of their contribution. We believe they have succeeded in exposing advanced concepts
with great pedagogy.



Chapter 1

Fractal and Multifractal Analysis
in Signal Processing

1.1. Introduction

The aim of this chapter is to describe some of the fundamental concepts of fractal
analysis in view of their application. We will thus present a simple introduction to the
concepts of fractional dimension, regularity exponents and multifractal analysis, and
show how they are used in signal and image processing.

Since we are interested in applications, most theoretical results are given without
proofs. These are available in the references mentioned where appropriate. In
contrast, we will pay special attention to the practical aspects. In particular, almost all
the notions explained below are implemented in the FracLab toolbox. This toolbox is
freely available from the following site: http://complex.futurs.inria
.fr/FracLab/, so that interested readers may perform hands-on experiments.

Before we start, we wish to emphasize the following point: recent successes of
fractal analysis in signal and image processing do not generally stem from the fact
that they are applied to fractal objects (in a more or less strict sense). Indeed, most
real-world signals are neither self-similar nor display the characteristics usually
associated with fractals (except for the irregularity at each scale). The relevance
of fractal analysis instead results from the progress made in the development of
fractal methods. Such methods have lately become more general and reliable, and
they now allow to describe precisely the singular structure of complex signals,

Chapter written by Jacques LEVY VEHEL and Claude TRICOT.
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without any assumption of “fractality”: as a rule, performing a fractal analysis will
be useful as soon as the considered signal is irregular and this irregularity contains
meaningful information. There are numerous examples of such situations, ranging
from image segmentation (where, for instance, contours are made of singular points;
see section 1.4.7 and Chapter 11) to vocal synthesis [DAO 02] or financial analysis.

This chapter roughly follows the chronological order in which the various tools
have been introduced. We first describe several notions of fractional dimensions.
These provide a global characterization of a signal. We then introduce Holder
exponents, which supply local measures of irregularity. The last part of the chapter is
devoted to multifractal analysis, a most refined tool that describes the local as well
as the overall singular structure of signals. All the concepts presented here are more
fully developed in [TRI 99, LEV 02].

1.2. Dimensions of sets

The concept of dimension applies to objects more general than signals. To simplify,
we shall consider sets in a metric space, although the notion of dimension makes
sense for more complex entities such as measures or classes of functions [KOL 61].
Several interesting notions of dimension exist. This might look like a drawback for
the mathematical analysis of fractal sets. However, it is actually an advantage, since
each dimension emphasizes a different aspect of an object. It is thus worthwhile to
determine the specificity of each dimension. As a general rule, none of these tools
outperform the other.

Let us first give a general definition of the notion of dimension.

DEFINITION 1.1.— We call dimension an application d defined on the family of
bounded sets of R” and ranging in R™ U {—o0c}, such that:

1) d(§) = —o0, d({z}) = 0 for any point x;
2) By C By = d(F1) < d(F>) (monotonicity);
3) if E has non-zero n-dimensional volume, then d(E) = n;

4)if E is a diffeomorphism 7" of R™ (such as, in particular, a similarity
with non-zero ratio, or a non-singular affine application), then d(T(E)) = d(E)
(invariance).

Moreover, we will say that d is stable if d(Fy U Ey) = max{d(E1),d(Es)}. Itis
said to be o-stable if, for any countable collection of sets:

d( Un En) = sup d(En)

o-stable dimensions may be extended in a natural way to characterize unbounded
sets of R"™.
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1.2.1. Minkowski-Bouligand dimension

The Minkowski-Bouligand dimension was invented by Bouligand [BOU 28], who
named it the Cantor-Minkowski order. It is now commonly referred to as the box
dimension. Let us cover a bounded set E of R™ with cubes of side ¢ and disjoint
interiors. Let N.(E) be the number of these cubes. When E contains an infinite
number of points (i.e. if it is a curve, a surface, etc.), N (F) tends to +oco when ¢ tends
to 0. The box dimension A characterizes the rate of this growth. Roughly speaking, A
is the real number such that:

assuming this number exists. More generally, we define, for all bounded E, the
number:

log N.(E
A(E) — Jim sup 28 V=(E) (1.1)
c—oo  |loge]
A lower limit may also be used:
log N.(E
5(E) = liminf 22 N=(F) (12)

£—00 |1og g|

Note that some authors refer to the box dimension only when both indices coincide,
that is, when the limit exists.

Both indices A and § are dimensions in the sense previously defined. However,
A is stable, contrarily to ¢, so that A is more commonly used. Let us mention an
important property: if E denotes the closure of E (the set of all limit points of
sequences in F), then:

A(E) = A(B)

This property shows that A is not sensitive to the topological type of E. It only
characterizes the density of a set. For example, the (countable) set of the rational
numbers of the interval [0, 1] has one dimension, which is the dimension of the interval
itself. Even discrete sequences may have non-zero dimension: let, for instance, F/ be
the set of numbers n~% with a > 0. Then A(E) = 1/(a + 1).

Equivalent definitions

It is not mandatory to use cubes to calculate A. The original definition of
Bouligand is as follows:
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—in R"™, let us consider the Minkowski sausage:
E(e) = UpepB:(x)

which is the union of all the balls of radius € centered at E. Denote its volume by
Vol,,(E(g)). This volume is approximately of the order of N.(F)e"™. This allows us
to give the equivalent definition:

A(FE) = limsup (n - VOIH(E(g))); (1.3)
e—0 IOgE

— we may also define N/(E), which is the smallest number of balls of radius e
covering E; or N/ (E), the largest number of disjoint balls of radius ¢ centered on E.
Replacing N.(E) by any of these values in equation (1.1) still gives A(E).

Discrete values of €

In these definitions, the variable ¢ is continuous. The results remain the same if we
use a discrete sequence such as €, = 27". More generally we may replace ¢ with any
sequence which does not converge too quickly towards 0. More precisely, we require
that:

. loge,
lim ——— =
n—eo lOg En+1

This remark is important, as it allows us to perform numerical estimations of A.
Let us now give some well-known examples of calculating dimensions.

EXAMPLE 1.1.— Let (a,,) be a sequence of real numbers such that 0 < 2a,,11 < a, <
ap = 1. Let Ey = [0, 1]. We construct by induction a sequence of sets (E,,) such that
I, is made of 2" closed disjoint intervals of length a,,, each containing exactly two
intervals of E,, ;1. The sets E,, are nested, and the sequence (F,,) converges to a
compact set E such that:

E=n,E,.

Let us consider a particular case. When all the interval extremities [, are
also interval extremities of F, .1, E is called a perfect symmetric set [KAH 63]
or sometimes, more loosely, a Cantor set. Assume that the ratio loga, /log a1
tends to 1. According to the previous comment on discrete sequences, we obtain the
following values:

nlog2 nlog2

d(F) = lim inf A(FE) = limsup

n—oo |1Ogan|7 n—oo ‘loganr
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However, these results are true for any sequence (a, ). Even more specifically,
consider the case where a,, = a™, with 0 < a < % The ratios a, /a1 are then
constant and dimensions take the common value log 2/|log a|. This is the case of the

self-similar set which satisfies the following relation:
E = fi(E)U f2(E)

with fi1(x) = ax and fo(x) = ax + 1 — a. This set is the attractor of the iterated
function system { f1, f2} (see Chapters 9 and 10). It is also called a perfect symmetric
set with constant ratio.

EXAMPLE 1.2.— We construct a planar self-similar curve with extremities A and B,
A # B as follows: take N + 1 distinct points A; = A, Ao, ..., Ay+1 = B, such that
dist(A4;, A;r1) < dist(A, B). Foreachi = 1,..., N, define a similarity f; (that is, a
composition of a homothety, an orthogonal transformation and a translation), such that

fi(AB) = A; Aiy1.

The ratio of f; is a; = dist(A;, A;4+1)/ dist(A, B). Starting from the segment
I’y = AB, define by induction the polygonal curves I';, = U, f;(I",,—1). This sequence
(T',,) converges to a curve I which satisfies the following relation:

T = U fi(I).

In other words, T is the attractor of the IFS {fi,..., fn}. When T is simple, the
dimensions ¢ and A assume a common value, which is also the similarity dimension,
i.e. the unique solution of the equation

In the particular case where all distances dist(A;, A;41) are the same, the ratios a;
are equal to a value a such that Na > 1 (necessary condition for the continuity of I")
and Na? < 1 (necessary condition for the simplicity of I'). Clearly, §(I') = A(T') =
log N/|log al.

0 13 2/3 1

Figure 1.1. Von Koch curve, the attractor of a system of four similarities with common ratio %
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Function scales

The previous definitions all involve ratios of logarithms. This is an immediate
consequence of the fact that a dimension is defined as an order of growth related to the
scale of functions {t*, a > 0}. In general, a scale of functions F in the neighborhood
of 0 is a family of functions which are all comparable in the Hardy sense, that is, for
any f and g in F, the ratio f(x)/g(z) tends to a limit (possibly +o00 or —oo) when x
tends to 0. Function scales are defined in a similar way in the neighborhood of +oc0.
Scales other than {t*} will yield other types of dimensions. A dimension must be
considered as a Dedekind cut in a given scale of functions. The following expressions
will make this clearer:

A(FE) = inf{« such that e*N_.(E) — 0} (1.4)
d(F) = sup{« such that e* N.(E) — +oc} (1.5)

these are equivalent to equations (1.1) and (1.2) (see [TRI 99]).

Complementary intervals on the line

In the particular case where the compact E lies in an interval J of the line, the
complementary set of ' in J is a union of disjoint open intervals, whose lengths will
be denoted by ¢,,. Let | E'| be the Lebesgue measure of E (which means, for an interval,
its length). The dimension of E may be written as:

log |E(5) ’ )

A(FE) = limsup <1 T Toge

e—0

If |[E| = 0, the sum of the ¢,, is equal to the length of J. The dimension is then
equal to the convergence exponent of the series Y ¢y:

A(E) = inf {a such that Zcﬁ < +oo} (1.6)

Proof. This result may be obtained by calculating an approximation of the length of
Minkowski sausage F (). Let us assume that the complementary intervals are ranked
in decreasing lengths:

CL2C 2 2Cp 2 -

If |[E| =0andif ¢, > & > ¢py1, then:

|E(e)| ~ n€—|—Zci

izn
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thus e 1 L(E(g)) ~ ne® + 271 > _i>n Ci- 1t may be shown that both values

inf{c such that ne® < +oo} and inf {a such that e~ 1 Z < +oo}

izn
are equal to the convergence exponent. It is therefore equal to A(E). O

EXERCISE 1.1.— Verify formula (1.6) for the perfect symmetric sets of Example 1.1.

If |E| # 0, then the convergence exponent of Y ¢, still makes sense. It
characterizes a degree of proximity of the exterior with the set /. More precisely, we
obtain

log|E(e) — FE
inf{a such that ch < —l—oo} = lim sup (1 — Ogé?g) (1.7)
e—0

where the set E(¢) — E refers to the Minkowski sausage of E deprived of the points
of I.

How can we generalize the study of the complementary set in R™ with n > 2?7 The
open intervals must be replaced with an appropriate paving. The results connecting
the elements of this paving to the dimension depend both on the geometry of the
tiles and on their respective positions. The topology of the complementary set must be
investigated more deeply [TRI 87]. The index that generalizes (1.7) (replacing the 1 of
the space dimension by n) is the fact fractal exponent, studied in [GRE 85, TRI 86b].
In the case of a zero area curve in R2, this also leads to the notion of lateral dimension.
Note that the dimensions corresponding to each side of the curve are not necessarily
equal [TRI 99].

1.2.2. Packing dimension
The packing dimension is, to some extent, a regularization of the box dimension
[TRI 82]. Indeed, A is not o-stable, but we may derive a o-stable dimension from any

index thanks to the operation described below.

PROPOSITION 1.1.— Let B be the family of all bounded sets of R and o : B — R™T.
Then, the function & defined for any subsets of R™ as:

&(F) = inf{sup«a(FE;)/E = UE;, E; € B}

is monotonous and o-stable.
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Proof. Any subset E of R" is a union of bounded sets. If £y C Eb, then any covering
of E; may be completed with a covering of Es. This entails monotonicity. Now,
let ¢ > 0 and a sequence (E})r>1 of sets whose union is E. For any Fk, there
exists a decomposition (E; ;) of Ej, such that sup a(F; 1) < &(Ey) + 27" Since
E = U; 1 E; ., we deduce that:

a(E) < sup&(Ey) + EZQ_k =sup&(Ey) +¢
k k

Thus, the inequality &(E) < sup;, &(Ey) holds. The converse inequality stems
from monotonicity. O

The packing dimension is the result of this operation on A. We set

Dim = A

The term packing will be explained later. The new index Dim is indeed a
dimension, and it is o-stable. Therefore, contrarily to A, it vanishes for countable
sets. The inequality:

Dim(E) < A(E)

is true for any bounded set. This becomes an equality when E presents a homogenous
structure in the following sense:

THEOREM 1.1.— Let E be a compact set such that, for all open sets U intersecting I,
A(ENU) = A(E). Then A(E) = Dim(E).

Proof. Let IJ; be a decomposition of E. Since E is compact, a Baire theorem entails
that the F; are not all nowhere denseﬁin E. The{efore, there exist an index i and an
open set U intersecting £ such that E;) N U = E N U, which yields:

A(E;) = A(E;,) > A(E,,nU) =AENU) > A(ENU) = A(E)

0

As a result, A(E) < sup,; A(E;), and thus A(E) < Dim(F). The converse
inequality is always true. O

EXAMPLE 1.3.— All self-similar sets are of this type, including those presented above:
Cantor sets and curves. For these sets, the packing dimension has the same value as
A(E).
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EXAMPLE 1.4.— Dense sets in [0, 1], when they are not compact, do not necessarily
have a packing dimension equal to 1. Let us consider, for any real p, 0 < p < 1, the
set I}, of p-normal numbers, that is, those numbers whose frequency of zeros in their
dyadic expansion is equal to p. Any dyadic interval of [0, 1], however small it may
be, contains points of E,, so E,, is dense in [0, 1]. As a consequence, A(E,) = 1. In
contrast, the value of Dim(E),) is:

. 1
Dim(E,) = @\plogp + (1= p)log(1 —p)|.
This result will be derived in section 1.3.2.

1.2.3. Covering dimension

The covering dimension was introduced by Hausdorff [HAU 19]. Here we adopt
the traditional approach through Hausdorff measures; a direct approach, using Vitali’s
covering convergence exponent, may be used to calculate the dimension without using
measures [TRI 99].

Covering measures

Originally, the covering measures were defined to generalize and, most of all,
to precisely define the concepts of length, surface, volume, etc. They constitute an
important tool in geometric measure theory.

Firstly, let us consider a determining function ¢: R™ — R¥, which is increasing
and continuous in the neighborhood of 0, and such that ¢(0) = 0. Let E be a setin a
metric space (that is, a space where a distance has been defined). For every € > 0, we
consider all the coverings of E by bounded sets U; of diameter diam(U;) < ¢. Let

H(E) = mf{z ¢(diam(U3)) /E C U;U;, diam(E;) < 5}.

When ¢ tends to 0, this quantity (possibly infinite) cannot decrease. The limit
corresponds to the ¢-Hausdorff measure:

HY(E) = lim HY(E)

In this definition, the covering sets U; can be taken in a more restricted family.
If we suppose that U; are open, or convex, the result remains unchanged. The main
properties are that of any Borel measure:

- E1 C E2 E=4 H¢(E1) < H¢(E2);
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—if (E;) is a collection of countable sets, then
H?(UE;) <> H(E))

—if E; and Es are at non-zero distance from each other, any e-covering of
E; is disjoint from any e-covering of Es when ¢ is sufficiently small. Then
H?(Ey U Ey) = H?(Ey) + H?(E,). This implies that H? is a metric measure.
The Borel sets are H?-measurable and for any collection (E;) of disjoint Borel sets,
H?(U;E;) =Y, HO(E;).

The scale of functions t*
In the case where ¢(t) = t* with o > 0, we use the simple notation H® = H®.
Consider the case o = 1. For any curve I the value H*(T') is equal to the length

of . Therefore H'! is a generalization of the concept of length: it may be applied to
any subset of the metric space.

Now let a = 2. For any plane surface S, the value of H?(.S) is proportional to the
area of S. For non-plane surfaces, H? provides an appropriate mathematical definition
of area — using a triangulation of S'is not acceptable from a theoretical point of view.

More generally, when « is an integer, H® is proportional to the a-dimensional
volume.

However, o can also take non-integer values, which makes it possible to define
the dimension of any set. The use of the term dimension is justified by the following
property: if aF is the image of £ by a homothety of ratio a, then

H%(aF)=a"H*(E)

Measures estimated using boxes

If we want to restrict the class of sets from which coverings are taken even more,
one option would be to cover I with centered balls or dyadic boxes. In each case, the
result is a measure H** which is generally not equal to H*(F); nevertheless, it is an
equivalent measure in the sense that we can find two non-zero constants, ¢; and co,
such that for any £

1 HY(E) < H*(B) < ¢y HO(E)

Clearly the H*® measures give rise to the same dimension.



