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Introduction 

Mesh generation techniques are widely employed in various engineering fields in- 
cluding those related to physical models described by partial differential equations 
(PDE). Numerical simulations of such models are intensively used for design, di- 
mensioning and validation purposes. One of the most frequently used methods, 
among many others, is the finite element method (FEM). In this method, a contin- 
uous problem (the initial PDE model) is replaced by a discrete problem that can 
actually be computed thanks to the power of currently available computers. The 
solution to this discrete problem is an approximate solution to  the initial problem 
whose accuracy is based on the various choices that were made in the numerical 
process. 

The first step (in terms of actual computation) of such a simulation involves 
constructing a mesh of the computational domain (i.e., the domain where the phys- 
ical phenomenon under interest occurs and evolves) so as to  replace the continuous 
region by means of a finite union of (geometrically simple and bounded) elements 
such as triangles, quadrilaterals, tetrahedra, pentahedra, prisms, hexahedra, etc., 
based on the spatial dimension of the domain. For this reason, mesh construction 
is an essential pre-requisite for any numerical simulation of a PDE problem. More- 
over, mesh construction could be seen as a bottleneck for a numerical process in 
the sense that a failure in this mesh construction step jeopardizes any subsequent 
numerical simulation. 

Ir 
I r k  

Mesh construction in general and more precisely for numerical simulation pur- 
poses involves several different fields and domains. These include (classical) ge- 
ometry, so-called computational geometry and numerical simulation (engineering) 
topics coupled with advanced knowledge about what is globally termed computer 
science. The above classification in terms of disciplines which can interact in 
mesh construction for numerical simulation clearly shows why this topic is not 
so straightforward. Indeed, people with a geometrical, a computational geometry 
or a numerical background may not have the same perception of what a mesh 
(and, a fortiori, a computational mesh) should be, and subsequently do not share 
a common idea of what a mesh construction method could be. 
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To give a rough idea of this problem, we mention, without in any way claim- 
ing to  be exhaustive, some commonly accepted ideas about meshes based on the 
background of those considering the issue. 

From a purely geometrical point of view, meshes are mostly of interest for the 
properties enjoyed by such or such geometrical item, a triangle for instance. In this 
respect, various issues have been investigated regarding the properties of such an 
element including aspect ratios, angle measures, orthogonality properties, affine 
properties and various related constructions (centroids, circumcenters, circumcir- 
cles, incircles, particular (characteristic) points, projections, intersections, etc.). 

A computational geometry point of view mainly focuses on theoretical proper- 
ties about triangulation methods including a precise analysis of the corresponding 
complexity. In this respect, Delaunay triangulation and its dual, the Voronoi’ di- 
agram, have received much attention since nice theoretical foundations exist and 
lead to  interesting theoretical results. However, triangulation methods are not 
necessarily suitable for general meshing purposes and must, to  some extent, be 
adapted or modified. 

Mesh construction from a purely numerical point of view (where, indeed, 
meshes are usually referred to as triangulations or grids) tends to  reduce the mesh 
to a finite union of (simply shaped) elements whose size tends towards 0: 

where 7 h  is provided in some way or other (with no further details given on this 
point). The construction of 7j is no longer a relevant problem if a theoretical 
study is envisaged (such as a convergence issue for a given numerical scheme). 

In contrast to all the previous aspects, people actually involved in mesh con- 
struction methods face a different problem. Provided with some data, the problem 
is to develop methods capable of constructing a mesh (using a computer) that con- 
forms to the needs of “numerical” and more generally “engineering” people. With 
regard to  this, the above subscript h does not vanish, the domain geometry that 
must be handled could be of arbitrary complexity and a series of requirements 
may be demanded based on the subsequent use of the mesh once it has been 
constructed. On the one hand, theoretical results about triangulation algorithms 
(mainly obtained from computational geometry) may not be so realistic when 
viewed in terms of actual computer implementation. On the other hand, engi- 
neering requirements may differ slightly from what the theory states or needs to  
assume. 

Let 7 h  be a triangulation where h tends to 0, then ..., ” 

* 
+ A  

As a brief conclusion, people involved in “meshing” must make use of knowledge 
from various disciplines, mainly geometry and computation, then combine this 
knowledge with numerical requirements (and computational limitations) to  decide 
whether or not an a priori attractive aspect (for a particular discipline) is relevant 
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in a meshing process. In other words, good candidates for mesh construction 
activities must have a sound knowledge in various disciplines in order to be able 
to select from these what they really require for a given goal. 

Fortunately, we should point out that meshing things are becoming increasingly 
recognized as a subject of interest in its own right, not only in engineering but also 
at universities as well. In practice the subject is being addressed in several places 
all over the world, and a numerous people are spending a great deal of time on 
it. A few specialized conferences and workshops do exist and papers on meshing 
technologies can be found in various journals. Currently a few books’ entirely (or 
substantially) devoted to meshing technologies are available. 

Purpose and scope 

The scope of this book is multiple and so are the potential categories of intended 
readers. As a first remark, we like to think that the theoretical background that 
is strictly necessary to understand the book is anything but specialized. We are 
confident that a reasonable knowledge of basic geometry, a touch of computational 
geometry and a good guess of what a numerical simulation is (for instance, some 
basic notions about the finite element method) provide a sufficient background for 
the reader to profit from this material. With regard to this, one of our objectives 
has been to make most of the presentations self-contained. 

One issue underlying some of the discussions developed in the book was what 
material the reader might expect to find in such a book. A tentative answer to 
this point has led us to incorporate some material that could be judged trivial by 
readers who are already familiar with some meshing methods, yet we believe that 
its inclusion may well prove useful to less experienced readers. 

We have introduced some recent developments in meshing activities, even if 
they have not necessarily been well validated (at least to the industrial standard), 
so as to allow advanced readers to initiate new progress based on this material. 

It might be said that constructing a mesh for a given purpose (academic or 

‘Probably the very first significant reference about mesh generation is the book by Thompson, 
Warsi and Mastin, [Thompson et al. 19851, authored in 1985, which mainly discussed structured 
meshes. A few years after, in 1991, a book by George, [George-l991], was written which aimed 
to cover both structured and unstructured mesh construction methods. More recently, a book 
authored in 1993 by Knupp and Steinberg, [Knupp, Steinberg-19931 together with a book by 
Liseikin, [Liseikin-20001, provided an updated view of structured meshes. In 1998, a book fully 
devoted to Delaunay meshing techniques, [George, Borouchaki-19971, appeared. Among books 
that contain significant parts about meshing issues, one can find the book authored by Carey in 
1997, [Carey-19971. 

Thus, it is now possible to  find some references about mesh technology topics. In this respect, 
one needs to  see the publication of the Handbook of Grid Generation, edited by Thompson, Soni 
and Weatherill, [Thompson et al. 19991, which, in about 37 chapters by at least the same number 
of contributors, provides an impressive source of information. To conclude, notice the publication 
of another collective work, “Maillage et Adaptation”, [George-2001], in the MIM (MBcanique et 
IngBnierie des MatBriaux) series published by HermBs, Paris, together with a concise vulgarization 
book, “le maillage facile”, [Frey, George-20031. More recently, the Encyclopedia of Computational 
Mechanics, edited by Stein, de Borst and Hughes, [Stein et al. 20041, offered a chapter on mesh 
generation. 
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industrial) does not strictly require knowing what the meshing technologies are. 
Numerous engineers confronted daily with meshing problems, as well as graduate 
students facing the same problem, have been able to complete what they need 
without necessarily having a precise knowledge of what the software package they 
are familiar with actually does. Obviously, this point of view can be refuted and 
clearly a minimum knowledge of the available meshing technologies is a key to 
making this mesh construction task more efficient. Finally, following the above 
observations, the book is intended for both academic (educational) and industrial 
purposes. 

Synopsis 

Although we could have begun by a general purpose introduction and led on to a 
presentation of classical methods, followed by a discussion of advanced methods, 
specialized topics, etc., we chose to structure the book in such a way that it may be 
read sequentially. Relevant ideas are introduced when they are strictly necessary 
to the discussion, which means that the discussion about simple notions is made 
easy while when more advanced discussions are made, the more advanced ideas are 
given at the same time. Also, some almost identical discussions can be found in 
several sections, in an attempt to make each section as self-contained as possible. 

* * *  
The book contains 24 chapters. The first three chapters introduce some general 

purpose definitions (Chapter 1) and basic data structures and algorithms (Chap- 
ter 2), then classical mesh generation methods are briefly listed prior to more 
advanced techniques (Chapter 3). The following chapters provide a description of 
the various mesh generation methods that are in common use. Each chapter corre- 
sponds to one type of method. We include discussions about algebraic, PDE-based 
or multi-block methods (Chapter 4), quadtree-octree based methods (Chapter 5), 
advancing-front technique (Chapter 6), Delaunay-type methods (Chapter 7), mesh 
generation methods for implicitly defined domains (Chapter 16) and other mesh 
generation techniques (Chapter 8) not covered by the previous cases. Chapter 9 
deals with Delaunay-admissible curve or surface meshes and then discusses medial 
axis construction along with the various applications that can be envisaged based 
on this entity. Prior to a series of five chapters on lines, curves and surfaces, a 
short chapter concerns the metric aspects that are encountered in mesh generation 
activities (Chapter 10). As previously mentioned, Chapters 12 to 16 discuss curves 
and surfaces while Chapter 11 recalls the basic notions regarding differential ge- 
ometry for curves and surfaces. One chapter presents various aspects about mesh 
modification tools (Chapter 17), then, two chapters focus on optimization issues 
(Chapter 18 for planar or volumic meshes and Chapter 19 for surface meshes). 
Basic notions about the finite element method are recalled in Chapter 20 before 
looking at a more advanced mesh generation problems, namely how to construct 
adapted, mobile or deformable meshes (Chapters 21, 22 and 23). Parallel aspects 
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are discussed in Chapter 24. To conclude, an index is provided to  the readers. 
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Symbols and Notations 

refers to  the spatial dimension 
set of integers, set of reals 
refers to  a closed geometric domain of IWd 
refers to  the (discretized) boundary of R 
refers to  the boundary of R 
refers to  a curve, a surface 
refers to  the parametrization of a curve, a surface 
refers to  a triangulation or a mesh 
refers to  a set of vertices 
refers to  a constraint (a set of entities) 
refers to  the convex hull of V 
refers to  a control space 
refers to  a mesh element 
refers to  the surface area, the volume of element K 
shape quality of mesh element K 
(Euclidean) distance between A and B 
Euclidean length of segment PQ 
(normalized) length of edge AB 

V gradient operator 
'FI Hessian tensor 
I a1 absolute value 
1.1 integer part or restriction 

1 1  . I 1  
[a, b] a closed interval 

(u, u) 
( . A . ) 

Euclidean length of a vector 

dot product of two vectors 
cross product of two vectors 

u u transposed (also ut) 
Abbreviations 

ALE 
BRep, F-Rep 
CAD 
CSG 
MAT 
FEM 
PDE 
NURBS 
LIFO 
FIFO 
BST 
AVL 

Arbitrary Lagrangian Eulerian 
Boundary Representation, Function Representation 
Computer Aided Design 
Constructive Solid Geometry 
Medial Axis Transform 
Finite Element Method 
Partial Derivative Equation 
Non Uniform Rational B-Splines 
Last In First Out 
First In First Out 
Binary Search Tree 
Adelson, Velskii and Landis tree 
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Chapter 1 

General Definitions 

Before going further, it seems important to clarify the terminology and to provide 
some basic definitions together with some notions of general interest. First, we 
define the covering-up of a bounded domain, then we present the notion of a 
triangulation before introducing a particular triangulation, namely the well-known 
Delaunay triangulation. 

A domain covering-up simply corresponds to the naive meaning of this word 
and the term may be taken at face value. On the other hand, a triangulation is 
a specific covering-up that has certain specific properties. Triangulation problems 
concern the construction, of a covering-up of the convex hull of a given set of 
points. In general, a triangulation is a set of simplices, triangles in two dimen- 
sions, tetrahedra in three dimensions, with certain properties. If, in addition to  a 
set of vertices, the boundary of a domain (more precisely a discretization of this 
boundary whose vertices are in the above set) is specified or, simply if any set of 
required edges (faces) is provided, we encounter a problem of constrained trian- 
gulation. In this case, the expected triangulation of the convex hull must contain 
these required items. 

In contrast, the notion of a mesh may now be specified. Given a domain, 
namely defined by a discretization of its boundary, the problem comes down to 
constructing a “triangulation” that accurately matches this specific domain. In 
a way, we are dealing with a constrained triangulation but, now, we no longer 
face a convex hull problem and, moreover, the mesh elements are not necessarily 
simplices. 

After having established triangulation and mesh definitions, some other aspects 
are discussed, including a suitable element definition (as an element is the basic 
component of both a triangulation and a mesh), finite element definition as well as 
mesh data structure definition which are the fundamental ingredients of any further 
processing (such as using a finite element method). In addition, we introduce 
some definitions related to  certain data structures which are widely used in mesh 
construction and mesh optimization processes. To conclude, we propose measures 
of mesh quality and of mesh optimality. 

Obviously this chapter cannot claim to be exhaustive. In fact, more specific 
ideas will be introduced and discussed as required throughout the book. 
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1.1 Covering-up and triangulation 

If S is a finite set of points in Rd (d = 2 or d = 3), the convex hull of S, denoted as 
Conw(S), defines a domain R in Rd. Let K be a simplex’ (triangle or tetrahedron 
according to  d ,  always considered as a connected and closed set). Then a covering- 
up 7, of R by means of simplices corresponds to  the following definition: 

Definition 1.1 7, is  a simplicia1 covering-up o f 0  i f  the following conditions hold 

a (HO) The set of element vertices in 7, is  exactly S .  

” 

( H l )  R = u K ,  where K is  a simplex. 

The interior of every element K in 7, 

The intersection of the interior of two 

KEZ 

a (H2)  

(H3)  

is  non empty. 

elements is  an empty set. 

Here is a “natural” definition. With respect to  condition ( H l )  (where while 
not strictly necessary, we restrict ourselves to  simplicial elements), one can see 
that R is the open set corresponding to the domain that means, in particular, that 
R = u K .  Condition ( H 2 )  is not strictly necessary to define a covering-up, but 

KEZ 
it is nevertheless practical with respect to  the context and, thus, will be assumed. 
Condition (H3)  means that element overlapping is proscribed. 

Similarly, we will consider conforming coverings-up, referred to as triangula- 
tions. 

- 

Definition 1.2 7, is  a conforming triangulation or simply a triangulation of fd 
i f  I, is  a covering-up following Definition (1.1) and iJ in addition, the following 
condition holds: 

a (H4)  the intersection of two elements in 7, is  either reduced to 

- the empty set or to 

‘Let us briefly recall the definition of a d-simplex: we consider d + 1 points aj  = (a i j )$ l  E 

W d ,  1 5 j 5 d + 1, not all in the same hyper-plane, i.e., such that the matrix of order d + 
a l l  ... al,d+l f ... A = ”’ “‘ ”. 

ad,d+l ’ ( a? ‘1 1 ) 
is invertible. D-simplex K whose vertices are the aj  is the convex hull of these points aj . 
point x in W d ,  with Cartesian coordinates xi is fully specified by the data of d + 1 scalar 
X j  = Xj(x) that are solutions of the linear system: 

d+ 1 c aijXj =xi with c X j  = 1, 
j=1 j=1  

whose matrix is A. The Xj(x) are the barycentric coodanates of point x with respect 
points a j .  

1: 

Every 
values 

to the 
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- a vertex, an edge or a face (for d = 3). 

More generally, in d dimensions, such an intersection must be a k-face’, for 
k = -1, ..., d - 1, d being the spatial dimension. 

Figure 1.1: 
(right-hand side). Note the vertex located on one edge in this case. 

Conformal triangles (left-hand side) and non-conformal triangles 

Remark 1.1 For the moment, we are not concerned with the existence and pos- 
sibly uniqueness of such a triangulation for  a given set of points. Nevertheless, a 
theorem of existence will be provided below and, based on  some specific assump- 
tions, the particular case of a Delaunay triangulation will be described. 

Euler characteristics. The Euler formula, and its extensions, the Dehn-Som- 
merville relationships, relate the number of k-faces ( k  = 0, ..., d - 1) in a trian- 
gulation of a. Such formula can be used to check the topological validity of a 
given mesh or also for other purposes, such as the determination of the genus of a 
surface. 

Definition 1.3 The Euler characteristics of a triangulation 57, is  the alterned 
summation: 

d 

k=O 

where n k ,  k = 0,  .., d denotes the number of the k-faces in the triangulation. 

When the triangulation is homotopic to the topological ball, its characteristic 
is 1. If the triangulation is homeomorphic to the topological sphere, its Euler 
characteristic is 1 + (-l)d. In two dimensions, the following relation holds: 

n u  - n e  + nt = 2 - c ,  

where nu ,  n e  and nt are respectively the number of vertices, edges and triangles 
in the triangulation, c corresponds to the number of connected components of 

2A (-1)-face is the empty set, a 0-face is a vertex, a 1-face is an edge, a k-face is in fact a 
k-simplex with k < d,  d being the spatial dimension. 
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the boundary of R. More precisely, if the triangulation includes no hole, then 
nu - n e  + nt = 1. In three dimensions, the above formula becomes: 

n u - n e + n f  - n t = 2 - 2 g ,  

where n f is the number of faces, nt the number of tets and g stands for the genus 
of the surface (i.e., the number of holes) of the triangulation. Thus, a triangulation 
of a closed surface is such that n u  - n e  + nf = 2. 

Delaunay triangulation. Among the different possible types of triangulations, 
the Delaunay triangulation is of great interest. Let us recall that S is a set (a 
cloud) of points (sites) and that fd is Conv(S ) ,  the convex hull of S . 

Definition 1.4 
circumscribed to any of its elements does not contain any vertex of S.  

is the Delaunay triangulation of R i f  the open discs (balls) 

Figure 1.2: The empty sphere crite- 
rion is  violated, the disc of K en- 
closes the point P.  Similarly, the cir- 
cumdisc of the triangle with vertex 
P includes the vertex of triangle K 
opposite the common edge (the cri- 
terion is symmetric for any pair of 
adjacent elements). 

This criterion, the so-called empty sphere criterion or Delaunay criterion, 
means that all open balls associated with all elements do not contain any ver- 
tex, a closed ball containing the vertices of the element under consideration only. 
This is the main characterization of the Delaunay triangulation. The Delaunay 
criterion leads to several other characteristics of any Delaunay triangulation. Fig- 
ure 1.2 shows an example of an element K which does not meet the Delaunay 
criterion. 

A basic theoretical issue follows. 

Theorem 1.1 There exists a unique Delaunay triangulation of a set of points. 

The proof is evident by involving the duality with the Voronoi' diagram associ- 
ated with the set of points (cf. Chapter 7). The existence is then immediate and 
the uniqueness is achieved as the points are assumed in general position3 if one 
wishes to have a simplicia1 triangulation. Otherwise, the following remark holds. 

3A set of points is said to be in general position if there is no configuration of more than three 
points that are co-circular (more than four cespherical points) such that the corresponding open 
disk (ball) is empty. 
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Remark 1.2 I n  the case of more than three co-circular (resp. four co-spherical) 
points, a circle (resp. sphere) exists enclosing these points. If the related disk 
(resp. ball) is empty, the Delaunay triangulation exists but contains non-simplicia1 
elements such as polygons (resp. polyhedra). 

Hence, the uniqueness holds i f  non-simplicia1 elements are allowed while i f  
the latter are subdivided by  means of simplices, several solutions can be found. 
Nevertheless, while it may be excessive, we will continue to speak of the Delaunay 
triangulation by  observing that all any partitions of a non-simplicia1 element are 
equivalent after swapping4 a k-face. 

A brief digression. The notion of a Voronoi' diagram (though it had yet to  
be called as such!) first appeared in the work of the French philosopher R. 
Descartes (1596-1650) who introduced this notion in 1644 in his Principia Philoso- 
phiae, which aimed to  give a mathematical description of the arrangement of mat- 
ter in the solar system. In 1850, G. Dirichlet (1805-1859) studied this idea in two 
and three dimensions and this diagram came to be called the Dirichlet tessella- 
tion [Dirichlet-1850]. However, its definitive name came after M.G. Voronoi' (1868- 
1908), who generalized these results in d dimensions [Voronoi'-1908]. 

Nature provides numerous examples of arrangements and quasi-regular paving 
which bear a strange resemblance to Voronoi' diagrams. Figure 1.3 illustrates some 
of these typical arrangements5. 

Constrained triangulation. Provided a set of points and, in addition, a set 
of edges (resp. edges and faces in three dimensions), an important problem is to  
ensure the existence of these edges (resp. these edges and faces) in a triangulation. 
In the following, Const denotes a set of such entities. 

Definition 1.5 Tr is  a constrained triangulation of fd for  Const i f  all and any 
element of Const is  an entity of Tr. 

In particular, a constrained triangulation6 can satisfy the Delaunay criterion 
locally, except in some neighborhood of the constraints. 

Remark 1.3 As  above, provided a set of points and a constraint, we are not 
concerned here with the existence of a solution triangulation. 

4A 2-face swap (flip) consists of replacing the diagonal of the convex quadrilateral made up of 
two adjacent triangles by the alternate configuration, see Chapter 18 for the precise definition. 

5Given a set of geometric objects, an arrangement is a covering-up of the space by means of 
the regions (cells) formed by the given objects and their (potential) intersections. 

Whereas a constrained Delaunay triangulation in two dimensions is a triangulation which 
satisfies the empty sphere criterion, where a open ball can contain a vertex in the case where the 
latter is not seen, due to a constrained edge, by all the vertices of the considered element. In 
other words, a constrained entity exists which separates the above vertices and the others. 
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Figure 1.3: Top, the wings of a dragonfly (doc. A. LeBe'on) show an alveolar 
structure apparently close to a Voronoi' diagram (left-hand side) and one of the 
more representative examples of regular paving (consisting of hexagonal cells) is 
that of a bee's nest (right-hand side). Bottom, two examples of natural arrange- 
ments. Left-hand side: the basaltic rock site of the Giant's Causeway, Co Antrim, 
Northern Ireland (photo credit: John Hinde Ltd.). Right-hand side, desert region 
of Atacama (Chile), the drying earth forms patterns close to Voronoi' cells. 

1.2 Mesh, mesh element, finite element mesh 

Now we turn to a different problem. Let R be a closed bounded domain in R2 or 
R3. The question is how to construct a conforming triangulation of this domain. 
Such a triangulation will be referred to  as a mesh of fd and will be denoted by 7, 
or 7 h  for reasons that will be made clear in the following. Thus, 

Definition 1.6 7 h  is a mesh o f n  i f  
0 

(HI) a =  U K .  
K E l h  

(H2) The interior of every element K in 7 h  is  non-empty. 

(H3) The intersection of the interior of two elements is  empty. 
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Condition (H2)  is clearly not verified for a beam element for instance. Condi- 
tion ( H 3 )  avoids element overlapping. In contrast to the definition of a triangula- 
tion, Condition (HO) is no longer assumed, which means that the vertices are not, 
in general, given a priori (see hereafter) and, in (Hl), the K’s are not necessarily 
simplices. 

Most computational schemes using a mesh as a spatial support assume that 
this mesh is conforming (although, this property is not strictly necessary for some 
solution methods). 

Definition 1.7 7 h  is a conformal mesh of fd i f  Definition (1.6) holds and 

(H4) the intersection of two elements an 7 h  is  either the empty set, a 
vertex, an edge or a face (d = 3). 

Clearly, the set of definitions related to a triangulation is again met. There 
is a fundamental difference between a triangulation and a mesh. A triangulation 
is a covering-up of the convex hull of a given set of points which, in general, 
is composed of simplicial elements. A mesh is a covering-up of a given domain 
defined, in most of the applications, via a given discretization of its boundary, 
this covering-up being composed of possibly non simplicial elements. On the other 
hand, at least two new problems occur, namely: 

the respect or enforcement, in some sense, of the boundary of the domain so 
that the triangulation is a constrained triangulation, 

the necessity of constructing the set of points which will define the vertices of 
the mesh. Usually the boundary points of the given boundary discretization 
are given as sole input and field points must be explicitly created. 

Remark 1.4 For a boundary discretization defining a domain, the existence of a 
mesh conforming to this discretization holds in two dimensions but is still, at least 
from a computer point of view, a delicate question in three dimensions. 

Remark 1.5 I n  the finite element method, the meshes7 are generally denoted by 
7 h ,  where the index h of the notation refers to the diameters of the elements in 
the mesh, these quantities being used in error bound theorems. 

As previously mentioned, a mesh can be composed of elements of different ge- 
ometric natures. A mesh consists of a finite number of segments in one dimension, 
segments, triangles and quadrilaterals (quads for short) in two dimensions and 
the above elements, tetrahedra (tets), pentahedra and hexahedra (hexes) in three 
dimensions. The mesh elements must generally satisfy some specific properties 
depending on the application involved. 

Meshes can be classified into three main classes according to their connectivity. 

71t should be noted that people with a finite element background use the term triangulation 
and use the term mesh synonymously. 



26 MESH GENERATION 

Definition 1.8 The connectivity of a mesh is  the definition of the connection 
between its vertices. 

Then, following this definition 

Definition 1.9 A mesh is  called structured (resp. unstructured) i f  its connectivity 
is  of the finite difference type (resp. any other type). 

A structured mesh can be termed as a grids .  In two dimensions, a grid element 
is a quadrilateral while, in three dimensions, a grid consists of hexahedra. The 
connectivity between nodes is of the type (2 ,  j ,  k ) ,  i.e., assuming the indices of a 
given node, the node with indices (i, j ,  k )  has the node with indices ((i - l), j ,  k )  as 
its “left” neighbor and that with indices ( ( i  + 1), j ,  k )  as its “right” neighbor; this 
kind of mesh is convenient for geometries for which such properties are suitable, 
i.e., for generalized quadrilateral or hexahedral configurations. 

Remark 1.6 Peculiar meshes other than quad or hex meshes could have a struc- 
tured connectivity. For instance, one can consider a classical gr id  of quads where 
each of them are subdivided into two triangles using the same subdivision pattern. 

Such a mesh is usually composed of triangles (tetrahedra) but can also be a 
set of quadrilaterals (hexahedra) or, more generally, a combination of elements of 
a different geometric nature. Note that quad or hex unstructured meshes are such 
that the internal vertices may be shared by more than 4 (8) elements (unlike the 
case of structured meshes). 

For completeness, we introduce two more definitions. 

Definition 1.10 A mesh is  said to be mixed i f  it includes some elements of a 
different geometric nature. 

Definition 1.11 A mesh is said to be hybrid i f  it includes some elements with a 
different spatial dimension. 

A mixed mesh, in two dimensions, is composed of triangles and quads. A 
hybrid mesh, again in two dimensions, is clearly a mixed mesh but, for instance, 
includes some triangles together with some segments. 

To complete this classification, a mesh may be manifold or not. This point 
concerns only surface meshes. 

Definition 1.12 A (conformal) surface mesh is  called manifold i f  its internal 
edges are shared by exactly two elements or only one element in the case of a 
boundary edge for  an open surface. 

Otherwise, the surface mesh is said to  be non-manifold. This is the case of 
surface meshes which include stiffeners or which have two or more connected com- 
ponents. 

‘Note that some authors use the term “grid” to refer to any kind of mesh whatever its 
connectivity. 
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Mesh element 

The elements are the basic components of a mesh. An element is defined by its 
geometric nature (triangle, quadrilateral, etc.) and a list of vertices. This list, 
enriched with some conventions (see hereafter), allows the complete definition of 
an element, including the definition of its edges and faces (in three dimensions). 

Definition 1.13 The connectivity of a mesh element is the definition of the con- 
nections between the vertices at the element level. 

This connectivity, the local equivalent of the mesh connectivity, makes the 
description of the topology of the element possible. 

Definition 1.14 The topology of a mesh element is a definition of the relation- 
ships between its faces, edges and vertices. 

Triangle connectivity and topology. For convenient purposes, the (local) 
numbering of vertices and edges is pre-defined in such a way that some properties 
are implicitly inducedg. This definition is only a convention leading to  implicit 
properties. In particular, a ordered numbering of the vertices enables us to com- 
pute the surface area of a triangle with a positive, or directional, sense. It also 
allows us to  evaluate directional normals for each edge. 

In the case of a triangle with connectivity [l, 2,3] ,  the first vertex (1) having 
been chosen, the numbering of the others is deduced counterclockwise. Then the 
topology can be well defined by means of the edge definition: 

- edge [l] runs from vertex (1) to vertex (2), 

- edge [2] : (2) + (3), 

- edge [3] : (3) + (l), 

- edge [l] is opposite vertex (l), it runs from vertex (2) to vertex (3), 

- edge [2] : (3) + (l), 

- edge [3] : (1) + (2). 

Once a topology has been chosen, all mesh elements must conform to this rule. 
Such an implicit definition will be a source of simplicity hereafter, avoiding explicit 
definitions at  the element level during the computational step, as mentioned earlier. 

or alternatively, 

Usual element connectivities and topologies. 
are now defined in terms of the two above definitions. 

Elements other than triangles 

0 The segment: [1,2], (1) + (2). 

0 The quadrilateral: [l, 2,3,4]  with a numbering as for the triangle, 

edge [2] : (2) + (3) 
edge [4] : (4) + (1) 

edge [l] : (1) + (2) 
edge [3] : (3) + (4) 

gGiven a vertex numbering (index) based on an implicit definition results in implicit definitions 
for both the edges and the faces, thus avoiding an explicit definition of these entities at the element 
level, which would be not unique and memory consuming. 
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Figure 1.4: Local vertex numbering of segment, triangle and quadrilateral, given 
the first vertex index. 

Figure 1.5: Tetrahedron, pentahedron and hexahedron. 

0 The tetrahedron": [l, 2,3,4] with (1>,13,11) assumed to be positive with, 
for the edges: 

edge [l] : (1) + (2) 
edge [4] : (1) + (4) 

and, for the faces: 

edge [2] : (2) + (3) 
edge [5] : (2) + (4) 

edge [3] : (3) + (1) 
edge [6] : (3) + (4) 

face [I] : (1) (3) (2) 
face [3] : (1) (2) (4) 

face [2] : (1) (4) (3) 
face [4] : (2) (3) (4) 

0 The pentahedron: [l, 2,3,4,5,6]  with (1>,13, 12) assumed to be positive, 
with, for the edges: 

edge [l] : (1) + (2) 
edge [4] : (1) + (4) 
edge [7] : (4) + (5) 

edge [2] : (2) + (3) 
edge [5] : (2) + (5) 
edge [8] : (5) + (6) 

edge [3] : (3) -+ (1) 
edge [6] : (3) -+ (6) 
edge [9] : (6) -+ (4) 

and, for the faces: 

face [I] : (1) (3) (2) face PI : (1) (4) (6) (3) 
face [3] : (1) (2) (5) (4) face [4] : (4) (5) (6) 
face [51 : (2) (3) (5) (6) 

l0Similarly to the triangle, an alternative definition also suits well where face [i] is opposite 
vertex (i). Actually, the latter convention leads to  greater simplicity. 


