
The Art of Rails®

Edward Benson

Wiley Publishing, Inc.

The Art of Rails®

Acknowledgments . xi
Introduction . xix

Chapter 1: Emergence(y) of the New Web . 1
Chapter 2: The Rails Concept . 21
Chapter 3: The Server as an Application . 45
Chapter 4: Getting the Most from M, V, and C . 59
Chapter 5: Beautiful Web APIs . 89
Chapter 6: Resources and REST . 115
Chapter 7: The Five Styles of AJAX . 139
Chapter 8: Playing with Blocks. 167
Chapter 9: Mixins and Monkey Patching . 197
Chapter 10: Code That Writes Code (That Writes Code). 225
Chapter 11: How I Learned to Stop Worrying and Love the Schema . 253
Chapter 12: Behavior-Driven Development and RSpec . 275

Index . 297

The Art of Rails®

Edward Benson

Wiley Publishing, Inc.

The Art of Rails®
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2008 by Edward Benson

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-18948-1

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data

Benson, Edward, 1983-
The art of Rails / Edward Benson.

p. cm.
Includes index.
ISBN 978-0-470-18948-1 (pbk.)

1. Web site development. 2. Ruby on rails (Electronic resource) 3. Ruby (Computer program
language) I. Title.

TK5105.888.B4524 2008
005.1’17 — dc22

2008012006

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be
addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317)
572-3447, fax (317) 572-4355, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties
with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties,
including without limitation warranties of fitness for a particular purpose. No warranty may be created or extended
by sales or promotional materials. The advice and strategies contained herein may not be suitable for every
situation. This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting,
or other professional services. If professional assistance is required, the services of a competent professional person
should be sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an
organization or Website is referred to in this work as a citation and/or a potential source of further information
does not mean that the author or the publisher endorses the information the organization or Website may provide
or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may
have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other
countries, and may not be used without written permission. Rails is a registered trademark of David Heinemeier
Hansson. All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated
with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

www.wiley.com

For Grace

About the Author
Edward Benson is a Staff Scientist with BBN Technologies in Arlington, Virginia. Edward’s work at BBN
includes the design and implementation of agent-based logistics and data processing architectures and
semantically-enabled data recording and processing environments (often called the ‘‘Semantic Web’’). He
is a member of the IEEE and has published papers on both grid and agent computing techniques. Edward
is an experienced web applications developer and a co-author of Professional Rich Internet Applications,
also from Wrox. Edward received his B.S. in Computer Science summa cum laude from the University of
Virginia.

Credits
Acquisitions Editor
Jenny Watson

Development Editors
Lori Cerreto
John Sleeva

Technical Editor
Dana Moore

Production Editor
Daniel Scribner

Copy Editor
Susan Christophersen

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Project Coordinator, Cover
Lynsey Stanford

Proofreader
Jen Larsen, Word One

Indexer
Robert Swanson

Acknowledgments

My heartfelt thanks go out to the team at John Wiley & Sons — especially John Sleeva and Lori Cerreto —
and to my colleague and technical editor Dana Moore. Your insight, feedback, and hard work have been
paramount to making the book what it is. Thanks also to Carol Long at Wiley for believing in my ideas
enough to convince me that I should write them down as a book proposal.

I could not have completed this book without the help and love of my fiancée, Grace. At times, writing
can be a painstakingly slow and all-consuming process. Her never-ending encouragement pushed me to
write each chapter with the enthusiasm that prompted me to begin the book in the first place.

Thank you to my parents and brother for their support; to my cousin Emily for her fantastic cartoon ren-
derings of W. Web — they didn’t make it into the book, so now we’ll have to lobby Wiley together for The
Art of Rails, Animated Edition; and to Robert Hiedemann for his grandfatherly advice and encouragement
to make education a part of my life.

Thank you to the many friends at BBN Technologies who provided help and advice to make this book
happen: Pete Pflugrath and Bud Sichler for being understanding of my time constraints and being flex-
ible with my work schedule; Troy Self for providing feedback on early chapter drafts; Rob Battle for
being a sounding board for ideas; and Doug Reid, Dave Kolas, Steve Allen, Jeremy Learner, Andrew
Perez-Lopez, Tony Stein, Jonathan Nilsson, and Greg Joiner for providing their thoughts, humor, and
feedback on ideas over the course of writing. (Steve’s reaction to the title: ‘‘‘The Art of Rails’? Who do
you think you are, Donald Knuth?’’)

Several people on the Internet were kind enough to contribute their advice and code bits. Thank you to
Rob Malda for his thoughts on the early days of web application development; Elaine Wherry of Meebo
for her encouragement and feedback on the AJAX chapter; and Scott Raymond for allowing me to use
his RSS 2.0 template for the XML Builder. Thank you, finally, to the many open source developers and
Rails bloggers whose hard labors have advanced web development to the discipline that it is today.

Contents

Acknowledgments xi
Introduction xix

Chapter 1: Emergence(y) of the New Web 1

Rails, Art, and the New Web 2
Art and Engineering 3
The New Web 3
The Truth about Web Applications 5

Patient History: The World Wide Web 5
From Documents to Interfaces 8
The Decline of Semantics 9
Hello, Web Applications 12

Emergence of the New Web 19

Chapter 2: The Rails Concept 21

One Part Framework 22
The Configuration View 23
The Code View 25
The Process View 26

One Part Language 27
Models on Rails 28
Web-Specific Tasks 30
JavaScript 31
Plug-Ins 32

Two Parts Mindset 32
Web Sites Are MVC Applications 32
Web Applications Are Ecosystems 33
Convention over Configuration 34
A Little Assumption Goes a Long Way 34
Aesthetics Matter 36
Restraint Can Be Liberating 37
You Repeat Yourself Too Much 38

Contents

Testing Isn’t a Choice 40
The Web Is a Set of Resources, Not Services 41

Summary 42
No Silver Bullet 43
Optimize Your Coding Before You Optimize Your Code 43

Chapter 3: The Server as an Application 45

Model-View-Controller: The Abbreviated Version 47
MVC and the Web 48
The MVC Design Process 50

The View Is Your Spec 51
Example: Social Networking for Cooks 51

Managing the Application Lifecycle 55
Think Agile, Not Engineered 55
Think Controlled, Not Organic 56
Beware of Open-Heart Surgery 56

Summary 57

Chapter 4: Getting the Most from M, V, and C 59

The Best API Documentation Is Free 60
The Model 61

Model Objects Should Understand Each Other 62
Use Exceptions to Make Code Cleaner 64
Mapping from Rows to Objects 67
Polymorphic Associations 68
The World Outside of ActiveRecord 70

The View 70
The Variable Problem 70
Rails-Style JavaScript 72
Partials as Atoms and Molecules 73
Picking the Proper Partials 74
The View Isn’t Just HTML 77

The Controller 77
Reusable CRUD 78
Rails Scaffolding Is a Bunch of CRUD 79
Dealing with Two-Step Actions 80
Knowing When to Outsource 83
Knowing When to Refactor 87

Conclusion 88

xiv

Contents

Chapter 5: Beautiful Web APIs 89

Two Big Ideas for Web APIs 91
The New URL: Addressing Concepts, Not Files 91
The Application Is the API 93

Routing 93
Anatomy of the Web API Call 96
Overlaying the API 97

The respond_to Method 97
Writing a Non-HTML Result 99

Adding Custom MIME Types 103
Registering Types with Rails 104
Creating Your Own MIME Type 105

API-Metering, the Rails Way 105
Authenticating the User 105
The Metering Algorithm 107
Applying Metering via Filters 108

What about SOAP/XML-RPC Services? 109
Summary 112

Chapter 6: Resources and REST 115

A Web of Resources 116
Identifying Resources 117
Talking About Resources 117
Representing Resources 118

Representational State Transfer 118
HTTP: The Resource CRUD 119
Defining an Application in Terms of Resources 122
Communicating with the Client: Resources as Your API 126
Put Another Way: The Network Is the Computer 127

REST and Rails 128
Mapping Resources in the Router 129
But It’s the Real World: Named Routes are Still Needed 130
Resource Scaffolds 133
Nested Resources 133
Singleton Resources versus Regular Resources 137

Summary 138

Chapter 7: The Five Styles of AJAX 139

The Big Secrets 141
AJAX Isn’t Necessarily the Hard Part 141

xv

Contents

AJAX Introduces Tough Design Issues 141
You Have Your Pick of JavaScript Frameworks, Even in Rails 143

The Five Styles of AJAX 144
Proxy Style 146
Partial Style 148
Puppet Style 149
Compiled-to-Web Style 151
In-Place Application Style 153

AJAX as Just Another API 155
Rails-Style AJAX 157

Partial-Style AJAX Controllers (and AJAX CRUD) 157
Puppet-Style AJAX Controllers (and RJS) 160

Elegant Degradation 162
Moving Backward from the Partial-Style 163
Moving Backward from Rich User Interfaces 164

Summary 165

Chapter 8: Playing with Blocks 167

The Block Mindset 169
Comparing Methods, Procs, and Blocks 173

Methods 173
Procs 177
Blocks 179
Moving Between Blocks and Procs 180

The Big Scope Experiment 181
Experiment 1: Blocks Are Affected by Changes in Their Source Environment 182
Experiment 2: Blocks Can Affect the Environment from Which They Came 184

Block Patterns, Blocks in Rails 186
Iteration 186
Aspect-Oriented Programming 187
Building Output in HTML and XML 192
Dual-Use Functions 194
The Callback 194

Summary 195

Chapter 9: Mixins and Monkey Patching 197

Mixins 199
Organizing Code into Modules 199
Methods in Modules 201
Mixing Modules into Classes 202
Mixins in Rails 205

xvi

Contents

Monkey Patching 210
Eval: The Interpreter’s Back Door 211
Eval’s Two Siblings 213
Good Monkey Patching Technique 219

Summary 222

Chapter 10: Code That Writes Code (That Writes Code) 225

Dynamic Code and DSLs Revisited 227
Code-Writing Macros 228

Creating Methods on the Fly with define_method 228
define_method Example: The Pentagon and the Kremlin 229
Scope and define_method 230
Using define_method for Rails Macros 232
Macro Summary 234

Calling Methods That Don’t Exist: Objects That Adapt to the Way You Use Them 234
Some Basic Examples 236
Example: A Shortcut for Array.each 237
Beware of Catching Everything 240
method_missing Patterns 241
Implementing method_missing Patterns 242

Reflection 248
Variables and Constants 249
Methods 250
Modules 251

Summary 252

Chapter 11: How I Learned to Stop Worrying and Love the Schema 253

Bringing the Database into the Picture: The LAMP Stack 254
Thinking in Migrations 256

Writing Migrations 257
Performing Schema Migrations 259

Team Schema Development 260
Seeding Data for Production 262

Small Datasets: Seed Migrations 262
Medium Datasets: Seed Fixtures 263
Large Datasets: Dumpfiles 264

When a Database Isn’t Enough 266
Model Object Hierarchies 266
Storing Lists, Hashes, and Other Fun Things 271
Custom Getters and Setters 272

Summary 273

xvii

Contents

Chapter 12: Behavior-Driven Development and RSpec 275

Behavior-Driven Development 276
RSpec: BDD for Ruby and Rails 279

The Spec Development Cycle 279
Writing the Spec 280
Implementing Examples 281
Matchers 282
Custom Matchers 285
Before and After 287

An Example Trip through the Development Cycle 288
Part 1: Writing The Story 288
Part 2: Writing the Specs 288
Part 3: Initializing and Writing a Basic Test 290
Part 4: Writing Behavior Tests That Motivate Development 291
Part 5: Completing the Behavioral Test Implementations 293

But Wait, There’s More 295
Summary 296

Index 297

xviii

I n t roduc t ion

There is a certain state of mind, a certain transient condition that arises, where everything seems to
resonate and effort becomes effortless. Athletes call it being in the zone, some others call it flow. Flow has
nothing to do with triumph or accomplishment; it isn’t the product of your labors. Flow is the merging
of a watchmaker and his watch or an artist and her paints.

The dot-com bust was a confusing time for web development, but rising from the burst dreams of instant
wealth, something strange and exciting happened. The web development community as a whole reached
a kind of flow. In a world filled with duct-tape solutions and proprietary formats, suddenly web devel-
opers were clamoring for standards compliance, for elegance and simplicity. And it wasn’t just to fend
off browser compatibility issues, but because the code looked beautiful.

Through the fits and starts, the competing ideas, and the explosion of development frameworks that
followed, an identity began to emerge. This identity is as much a philosophical statement about what
the web could be as it is a technical statement about how to accomplish those goals. This identity is still
emerging, and there are still many problems to be solved, but one thing is now certain: web application
development has come of age as a rich discipline of programming that stands up on its own.

Ruby on Rails is just one part of this much larger story, but in many ways it is the symbol of this coming
of age. Rails challenged the web development community to rethink what it meant to build a web appli-
cation. It provided an entire application ecosystem when most developers were embedding their code
inside HTML files. It made unit testing not only easy but also cool, and did so at a time when debug-
ging web applications was, at best, a black art. It introduced a new generation of web developers to the
ideas of meta-programming and domain-specific languages. And, most of all, it found the voice of the
change that was taking place: that the web provides a natural and elegant architecture on which to write
applications if only we can create the right metaphors to harness it.

What Is the Art of Rails?
Any programmer knows that an API is only half the story, and with Rails this is especially true. Good
Rails development, and good web development, is much more about the design choices you make than
the framework you have at your disposal. I wrote this book as an attempt to create the resource I wish I
had after settling into Rails development — to pick up where the API leaves off and explain how to take
good Rails code and turn it into beautiful Rails code: simple, effective, reusable, evolvable code.

This book is meant to take your Rails development to the next level, and in doing so, it cuts across a
wide range of topics. Each of these topics is selected to highlight a particular part of the design and
development process that can make the difference between just using the Rails framework and achieving
a state of flow with the framework. Throughout the book, the focus is on the way you code rather than the
mechanics of coding. The book is divided into clusters of chapters that represent the themes listed in the
following sections.

Introduction

Development Philosophy of the New Web
Chapters 1 and 2 discuss the changes in style and focus that have taken place since the web’s inception.
Chapter 1 presents a brief history of the evolution of web development, with a focus on interpreting
that history as it relates to the changes that impact our lives as web developers today. Many aspects of
the modern web application architecture were shaped by earlier programming styles that can still play
invaluable roles in analyzing your design and code. This chapter gives names to some of these styles,
such as code-first development and document-first development, to cast light on some of the design
decisions that we are faced with today.

Chapter 2 presents Ruby on Rails as ‘‘one part framework, one part language extension, and two parts
state of mind.’’ It picks apart Rails from each of these angles so that you can see how it all fits together
mechanically, stylistically, and philosophically. When you are starting out with Rails, just understanding
the mechanics of writing a Rails application is sufficient, but as you advance in your skill, a deeper
understanding of how the framework fits together is necessary. This holistic presentation of the Rails
architecture highlights some of the concerns that you should be factoring into your code as you become
a more seasoned Rails developer.

Advanced Tricks and Patterns for MVC Development
Chapters 3 and 4 focus on getting the most from the MVC paradigm. Strict adherence to MVC is one
of Ruby on Rails’ most prominent contributions to web development, but the benefits you get from this
code-organization structure can vary widely based on how you choose to organize the code within it.
Chapter 3 discusses the MVC design process, including the steps for organizing your design work, a
plan for decomposing functionality into the right objects, and guidance on refactoring your code.

Chapter 4 focuses on the implementation side of MVC with the goal of making your code as clear and
concise as possible. It provides guidance on how to divide your implementation between the model
and controller layers for maximum reusability and seamless error-handling, provides examples of
aspect-oriented programming, and shows you how to decompose your HTML code so that you’ll never
have to repeat yourself, among other things.

Read-Write Web: APIs, Resources, and REST
Chapters 5 and 6 focus on the emerging web application architecture and what this means for APIs,
resources, and REST (Representational State Transfer). Chapter 5 shows how to design web applications
so that API access is overlaid on top of your web controllers from the very start, and it provides tech-
niques for metering API access and managing multiple data formats. Chapter 6 introduces the idea of
resources, one of the foundational metaphors for the future of web development, and presents the REST
application architecture. REST both guides your design toward a simple and consistent style and centers
your application’s operations around a growing standard on the web that supports interoperability and
sharing between web applications.

AJAX Patterns
The wealth of full-featured JavaScript frameworks today means that the hard part of AJAX is no longer
AJAX itself, but all the design issues that begin to arise after you have decided to go that route with your
UI design. Chapter 7 presents five different AJAX design patterns that characterize different approaches
to AJAX integration. It elaborates in depth two of these patterns — partial style and puppet style — that

xx

Introduction

are particularly effective in Rails applications, and it shows how to integrate these styles of AJAX into
your application without losing the simplicity and reusability of your design.

Advanced Ruby and Meta-programming
Much of the style of Ruby on Rails would not be possible without the Ruby language. Chapters 8, 9,
and 10 focus on some of the wonderful advanced features of Ruby that make it so different from other
languages. You will learn how to think and design in ‘‘blocks’’ and discover several design patterns that
blocks make possible, such as adverb-based programming, creative APIs, and code wrappers. Chapter
9 dives into mixin-based development and monkey patching. You will learn how to change the imple-
mentation of an object after it has been loaded in memory and will see how to use this technique to
refine the way the Rails framework behaves. Chapter 10 teaches you how to use message passing and the
method_missing method to create introspective and dynamic APIs such as ActiveRecord.

Group Schema Development and Behavior-Driven
Development

Chapters 11 and 12 address topics outside the ‘‘application’’ component of web applications. They show
you how schema development and code testing can become integral driving factors in your design
and development process. Chapter 11 discusses topics in data management, focusing primarily on
ActiveRecord migrations and how to manage your migrations over the life span of a project and work-
ing with a large team of members. It also dives into other database-related challenges, such as techniques
for seeding production data and encoding complex object models within relational schemas. Chapter 12
presents behavior-driven development (BDD) and a framework called RSpec that implements it. BDD is
a reconsideration of test-driven development that is taking the Rails community by storm. You’ll have to
turn to the chapter to find out why!

Whom This Book Is For
This book is for any developer who has a basic understanding of Ruby on Rails and is looking to expand
his or her skills to become a seasoned Rails designer. Ideally, you have written a few toy applications
and have a general familiarity with the key features that Rails is known for — routing, models, views,
controllers, associations, validations, layouts, and partials. This book provides short refreshers when
these core concepts come up, but quickly moves on to higher-level discussions about how to best use
these concepts for effective development.

Although this is a Ruby on Rails-centric book, many of the topics contained within are relevant to
any developer who wishes to understand the techniques and design patterns that thrive on modern
MVC-style web frameworks. As such, it is a good resource for developers wanting to learn the ‘‘Rails
style’’ even if their target platform is something else. As has been said on the web more than a few times,
learning Ruby on Rails is a great way to become a better PHP developer.

What’s Up With the Stories?
Each chapter begins with a story about a fictional character named W. Web who gets caught up in an
adventure that spans the book and ends online at both the book’s companion web site (www.wrox.com)

xxi

Introduction

and at www.artofrails.com. Each chapter’s segment of the story roughly aligns with the overall topics
and themes of the chapter — some blatantly and some a bit more subtly.

I wanted to add a storyline to the book because I believe that a book so heavily concerned with design
should be something that you can read cover to cover rather than something that just serves as a refer-
ence. Writing each installment of W. Web’s adventure was a way I could remind myself of that goal at
the start of each chapter. My other, much simpler motive was that it was fun. The most entertaining tech-
nical book I have ever read is Why’s (Poignant) Guide to Ruby (http://poignantguide.net). Although
this book lacks Why’s crazy cartoons and chunky bacon, the stories were lots of fun to write and, I hope,
will be fun for you to read.

Conventions
To help you get the most from the text and keep track of what’s happening, I’ve used a number of con-
ventions throughout the book.

Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

Tips, hints, tricks and asides to the current discussion are offset and placed in italics like this.

As for styles in the text:

❑ I highlight new terms and important words when I introduce them.

❑ I show filenames, URLs, and various code elements within the text like so:
persistence.properties.

❑ I present code in two different ways:

I use a monofont type with no highlighting for most code examples.

I use gray highlighting to emphasize code that’s particularly important in the present
context.

Source Code
Good code is concise, sometimes startlingly so, and Rails allows you to program at your best. This book
consciously attempts to steer clear of large code examples in favor of small, targeted segments of code
to demonstrate a particular point or technique. This keeps the signal-to-noise ratio high, and keeps the
focus on what is meaningful about the technique and when you might want to use it.

Any code examples long enough to be run in a stand-alone fashion can be found online for your con-
venience in the source code files that accompany the book. This code is available for download at
http://www.wrox.com. When you’re at the site, simply locate the book’s title (either by using the Search
box or by using one of the title lists) and click the Download Code link on the book’s detail page.

Because many books have similar titles, you may find it easiest to search by ISBN. This book’s ISBN is
978-0-470-18948-1.

xxii

Introduction

After you download the code, just decompress it with your favorite compression tool. Alternatively, you
can go to the main Wrox code download page at http://www.wrox.com/dynamic/books/download.aspx
to see the code available for this book and all other Wrox books.

Errata
I make every effort to ensure that there are no errors in the text or in the code. However, no one is perfect,
and mistakes do occur. If you find an error, such as a spelling mistake or faulty piece of code, I would be
very grateful for your feedback. By sending in errata, you may save another reader hours of frustration
and at the same time you will be helping me provide even higher-quality information.

To find the errata page for this book, go to http://www.wrox.com and locate the title using the Search
box or one of the title lists. Then, on the book details page, click the Book Errata link. On this page, you
can view all errata that has been submitted for this book and posted by Wrox editors.

If you don’t spot ‘‘your’’ error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send me the error you have found. I’ll check the information and,
if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions of the
book.

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based
system for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

At http://p2p.wrox.com you will find a number of different forums that will help you not only as you
read this book but also as you develop your own applications. To join the forums, just follow these steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to
provide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P, but in order to post your own messages, you
must join.

After you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specific to P2P and
Wrox books. To read the FAQs, click the FAQ link on any P2P page.

xxiii

Benson c01.tex V3 - 03/28/2008 1:57pm Page 1

Emergence(y)
of the New Web

W. Web knew immediately that something was wrong. He had suffered stomach pangs before, but
never like this. Stumbling out of the taxi cab and toward the hospital, he mopped the sweat from his
brow and pushed his way through the sidewalk traffic.

Inside, everything was a dizzy blur flowing past him — nurses, patients, a police officer, and several
computer technicians hitting a computer monitor and mumbling something about the Internet going
down.

‘‘I know, I know!’’ Web thought as he struggled past them for the emergency patient entrance.

Luckily for W. Web, this particular hospital uses a triage system, and when you explain to the nurse
at the front desk that you are the Internet, you get bumped to the front of the line. A lot is riding on
your health.

As Web lay in his hospital gurney, passing other familiar technologies as the nurse pushed him down
the hall, he realized that he had made the right decision to stop ignoring the pangs. It was going to
be okay.

This book will make you a better web application developer. And if some of the pundits with
crystal balls are to be believed, we’re all on the path to becoming web application developers. More
specifically, this book will make you a better Ruby on Rails developer. It assumes that you have
written code using Ruby on Rails and now you are thirsty to understand how to design with Ruby
on Rails and how to master the elements of Ruby that make it so successful.

The web is a strange medium for application development. Web applications can’t run by them-
selves, they have little access to a machine’s hardware and disk capabilities, and they require a
menagerie of client and server software providing them with life support. Despite all this, as you
probably already know or are beginning to learn, the Web is a wonderful and exciting place to be
developing applications.

Benson c01.tex V3 - 03/28/2008 1:57pm Page 2

Chapter 1: Emergence(y) of the New Web

Programming for the Web is a blend of art and engineering. Its odd quirks and demands can be har-
nessed to create applications out of clean, concise, elegant code with minimal waste. This book will show
you how.

Programming for the Web is also a task in which good design skills can be the most critical part of a
project because of the lack of features such as compilation and type checking found in the desktop world.

Web applications aren’t programs; they are ecosystems. For each separate task, a separate language is
called upon: SQL for data persistence; Ruby and others for application logic; HTML for UI structure;
CSS for UI appearance; and JavaScript for UI logic. Good design skills must extend past the knowledge
of each individual area and incorporate the ability to coordinate all areas. On top of all that, the rise of
web APIs and RESTful endpoints enable yet another ecosystem of web applications to communicate with
each other and exchange services, adding another layer of abstraction that is built upon the ones below.

The Web is here to stay, and its potential will only grow as a development platform. As Internet access
approaches utility-like status, as telephone and television did before it, the distinction between your
hard drive and ‘‘the cloud’’ will blur to the point that the two are functionally indistinguishable. With
the exception of maybe games and media editors, applications on the Web will be every bit as powerful
as those once deployed on CDs and DVDs, but these new applications will be easier to code, faster to
deploy, and will harness the combined intelligence of swarms of users to enrich their experience.

These changes are already taking place. In 2007, the primary process for both the Democratic and Repub-
lican parties included a presidential debate with a new twist: Questions for the candidates were asked
via YouTube videos submitted by ordinary people through the Web. Web front ends for our banks,
stocks, and bills are now considered requirements instead of features. It is no longer surprising to store
data that we own, such as our documents and photos, to web applications such as Google Docs and
Flickr — space leased for free in exchange for a bit of advertising. The Web is no longer just about
fetching documents; instead, it has become a universal communications medium for both humans and
software.

If you are here reading this page, then you see these changes taking place. The question that remains is
how to best understand and take advantage of this new development medium.

This book aims to be a blend of design and programming. It takes a critical look at what makes the
modern Web tick from the standpoint of Ruby on Rails. The chapters touch on a wide range of topics,
from REST-based web design to domain-specific languages and behavior-driven development. All these
topics represent the cutting edge of thought about web development and will become cornerstones of the
web of applications that will flourish over the coming years.

At times throughout the book, the code will be sparse; elsewhere, it will be frequent. In all chapters, long
code examples will be avoided in favor of small code examples interwoven with the text to demonstrate
an idea. This is a book primarily about concepts, not syntax.

Rails, Art, and the New Web
No development framework understands the new Web better than Ruby on Rails. In a world of general-
purpose languages applied to the Web through libraries and Apache modules, Ruby on Rails was the
application framework to speak the Web language as its native language. Rails is both a programming
framework and a style of development reflected by that framework.

2

Benson c01.tex V3 - 03/28/2008 1:57pm Page 3

Chapter 1: Emergence(y) of the New Web

Ruby on Rails embraces the latest thoughts in web design so thoroughly that in many cases it literally
forces you to use them. Most other frameworks don’t have this option — they have been around so long
that entire industries built around them require legacy support. As a newcomer to the scene, Rails is in
the unique position of being able to cherry pick both its features and the way that it exposes them to
the developer, unifying the framework around these choices. Remember when Apple ditched the floppy
drive? It’s like that.

This our-way-or-the-highway approach is a bit brazen, but it has a wonderful effect: It yields a
remarkably clean framework that makes writing high-quality code in very little time easy. Most of the
‘‘housekeeping’’ involved in writing a web application is done for you by the framework, and the rest
of your coding tasks are assisted by a host of helper functions and code generators (both code-time and
run-time). This means that good Rails developers can spend their time focusing on design-related issues
rather than writing code, making sure that each line written is effective and appropriate.

But Ruby on Rails is still a tool, and as with any other tool, it can be misused. Tools that make a point of
being simple to use often lull their owners into a false sense of security. The quick learning curve creates
the illusion that there isn’t anything else to it. Rails, and the Ruby language, are known for being concise,
but tidy code doesn’t come for free.

Art and Engineering
This book will teach you the finer points of designing and coding in the Ruby on Rails environment — the
points that will transform Ruby on Rails from an easy-to-use web tool into a methodology of program-
ming in which every design choice you make is purposeful. Ruby on Rails is a particularly good platform
on which to practice this type of purposeful, artful programming because of the way it cuts out the fat in
web development to leave only your design remaining.

Software development takes on an inherently artistic quality when the developer truly understands
the environment he or she is working in and the tools that are available. Conversely, if you have ever
watched a watercolor painter work, you know that art has a lot of engineering in it. Watercolor paintings
are intricately designed in advance because each brush stroke can only add to, rather than replace, the
color beneath it. Intricate protective masks are applied and layered with the precision of an Intel engineer
layering the metal on a silicon wafer.

Ruby on Rails operates with this level of attention to the environment of web development — a level that
extends beyond engineering and into art. This book attempts to address the higher-level web application
design issues with this same level of attention. With a solid framework underneath and good design
skills guiding your programming, your development will become both productive and fun, and these
qualities will be reflected in the software that you write.

The New Web
The days of version numbers seemed over when Microsoft Windows suddenly jumped from version 3.11
to 95 overnight, and then advanced 1,905 product releases forward to 2000 in the span of just five years.
So what a throwback it seemed when the masses collectively announced that the Web was versioned,
too, and it had reached 2.0.

Web 1.0 describes the web as a digital version of the traditional publish-subscribe media model in which
a few groups produce content while the majority of users passively consume it. Web 2.0 is a correction

3

Benson c01.tex V3 - 03/28/2008 1:57pm Page 4

Chapter 1: Emergence(y) of the New Web

of this imbalance. Web 2.0 applications provide environments in which users can create and publish
their own content without having to create and maintain web sites by themselves. Applications such as
Blogger, Flickr, Digg, Wikipedia, YouTube, and Facebook turn over the bullhorn to their users, and in
doing so have toppled traditional assumptions about the media industry.

Foreshadowed by the prevalence of APIs on the Web today, Web 3.0, as many are calling it, will bring
a layer of automated reasoning and programmability to the Web. Semantic search engines will be able
to answer questions such as ‘‘which flights will get me to Seattle before lunchtime tomorrow’’ instead of
simply suggesting web sites associated with the topics ‘‘flights,’’ ‘‘Seattle,’’ and ‘‘lunch.’’ These engines
will be able to sift through the Web as a data set, piecing together bits from multiple web sites using
semantic markup to align the meaning of the data elements of each. This roadmap for the Web is shown
in Figure 1-1.

Producers Consumers Producers ProducersConsumers Consumers Hal 3000

Friendly
Robot Goes

Here

Web 1.0 Web 2.0 Web 3.0

Figure 1-1

Another story is taking place beneath the media headlines and business models, and that is what this
book is all about. A true renaissance of web development techniques is making the new capabilities
of the Web possible. These advances are breaking long-held assumptions about the way web sites are
developed and are introducing a completely new discipline of application development. In the world of
web developers, each new ‘‘version’’ of the Web reflects a maturing of the art of web development as a
discipline.

On the client side, Web 2.0 represented the push for refinement and tidying up of web formats, turning
what once was a document markup language into a full-blown client-server application platform. This
new platform was made possible because the web development community chose to place a high value
on excellence in coding. XHTML and CSS validation icons were displayed as badges of honor at the
bottoms of web sites, and the tutorials filling the Web focused on getting rid of the endless TABLE tags
that clogged auto-generated HTML and on moving instead to simple, hand-crafted XHTML designs
decorated entirely via CSS.

On the server side, the changes included new ideas about the ways frameworks should interact with
developers, new interpretations of how URLs represent a web site’s capabilities, and the incorporation
of traditional application programming techniques into web development. In the chapters ahead, you
will see how Ruby on Rails is at the forefront of many of these changes and how to incorporate them into
your own development.

As the technologies of the Semantic Web are refined, Web 3.0 will be made possible by the introduction of
resource-oriented development techniques in web development. The REST development style in Chapter
6 will teach you resource-oriented web design, which is the first step in this process. REST-based web
design paves the way for formal modeling and reasoning systems to be directly integrated into our web
applications, combining modern web design with the Semantic Web vision of an interlinking web of data
and logic. So what is the ‘‘New Web’’? The New Web isn’t one particular set of technologies or content

4

