
TCP/IP ARCHITECTURE, DESIGN,
AND IMPLEMENTATION

IN LINUX

Sameer Seth
M. Ajaykumar Venkatesulu

A JOHN WILEY & SONS, INC., PUBLICATION

Innodata
File Attachment
9780470377840.jpg

TCP/IP ARCHITECTURE, DESIGN,
AND IMPLEMENTATION

IN LINUX

Press Operating Committee

Chair
Linda Shafer

former Director, Software Quality Institute
The University of Texas at Austin

Editor-in-Chief
Alan Clements

Professor
University of Teesside

Board Members
Mark J. Christensen, Independent Consultant

Phillip Laplante, Associate Professor Software Engineering, Penn State University
Richard Thayer, Professor Emeritus, California State University, Sacramento

Donald F. Shafer, Chief Technology Offi cer, Athens Group, Inc.
James Conrad, Associate Professor UNC Charlotte

Janet Wilson, Product Manager, CS Press

IEEE Computer Society Publications
The world-renowned IEEE Computer Society publishes, promotes, and distributes a wide variety of
authoritative computer science and engineering texts. These books are available from most retail
outlets. Visit the CS Store at http://computer.org/cspress for a list of products.

IEEE Computer Society / Wiley Partnership
The IEEE Computer Society and Wiley partnership allows the CS Press authored book program to
produce a number of exciting new titles in areas of computer science, computing and networking with
a special focus on software engineering. IEEE Computer Society members continue to receive a 15%
discount on these titles when purchased through Wiley or at wiley.com/ieeecs

To submit questions about the program or send proposals please e-mail jwilson@computer.org or write
to Books, IEEE Computer Society, 10662 Los Vaqueros Circle, Los Alamitos, CA 90720-1314. Tele-
phone +1-714-821-8380.
Additional information regarding the Computer Society authored book program can also be accessed
from our web site at http://computer.org/cspress.

TCP/IP ARCHITECTURE, DESIGN,
AND IMPLEMENTATION

IN LINUX

Sameer Seth
M. Ajaykumar Venkatesulu

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright © 2008 by IEEE Computer Society.
Published by John Wiley & Sons, Inc., Hoboken, New Jersey. All rights reserved.

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts
in preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifi cally disclaim any implied warranties of
merchantability or fi tness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be
suitable for your situation. You should consult with a professional where appropriate. Neither the
publisher nor author shall be liable for any loss of profi t or any other commercial damages, including
but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print,
may not be available in electronic formats. For more information about Wiley products, visit our web
site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data is available.

ISBN 978-0470-14773-3

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com

v

CONTENTS

Preface xxi

Acknowledgments xxvii

 1 INTRODUCTION 1

1.1 Overview of TCP/IP Stack 2
1.1.1 Moving Down the Stack 3
1.1.2 Moving Up the Stack 5

1.2 Source Code Organization for Linux 2.4.20 5
1.2.1 Source Code Organization for Networking Code 7

1.3 TCP/IP Stack and Kernel Control Paths 7
1.4 Linux Kernel Until Version 2.4 Is Non-preemptible 11

1.4.1 System Call on Linux 14
1.4.2 Adding New System Call 16

1.5 Linux Process and Thread 17
1.5.1 fork() 17
1.5.2 Thread 18
1.5.3 Kernel Threads 19

1.6 Kernel Synchronization Mechanism 22
1.6.1 Semaphore 22
1.6.2 Atomic Operations 23
1.6.3 Spin Lock 23

1.7 Application Interfaces for TCP/IP Programming 24
1.7.1 Server Application 25
1.7.2 Client Application 27
1.7.3 Socket Options 29
1.7.4 Option Values 29

1.8 Shutdown 35
1.8.1 Kernel Shutdown Implementation 36
1.8.2 Send Shutdown 36
1.8.3 Receive Shutdown 36

1.9 I/O 38
1.9.1 read() 38
1.9.2 write() 38

vi CONTENTS

1.9.3 recv() 38
1.9.4 send() 39
1.9.5 select() 39

1.10 TCP State 39
1.10.1 Partial Close 45
1.10.2 tcpdump Output for Partial Close 47

1.11 Summary 48

 2 PROTOCOL FUNDAMENTALS 49

2.1 TCP 50
2.1.1 TCP Header 50

2.2 TCP Options (RFC 1323) 54
2.2.1 mss Option 55
2.2.2 Window-Scaling Option 55
2.2.3 Timestamp Option 56
2.2.4 Selective Acknowledgment Option 57

2.3 TCP Data Flow 58
2.3.1 ACKing of Data Segments 58

2.4 Delayed Acknowledgment 67
2.5 Nagle’s Algorithm (RFC 896) 69
2.6 TCP Sliding Window Protocol 72
2.7 Maximizing TCP Throughput 79
2.8 TCP Timers 82

2.8.1 Retransmission Timer 82
2.8.2 Persistent Timer 83
2.8.3 Keepalive Timer 84
2.8.4 TIME_WAIT Timer 85

2.9 TCP Congestion Control 85
2.10 TCP Performance and Reliability 86

2.10.1 RTTD 86
2.10.2 SACK/DSACK 86
2.10.3 Window Scaling 87

2.11 IP (Internet Protocol) 87
2.11.1 IP Header 88

2.12 Routing 90
2.13 netstat 90
2.14 traceroute 92

2.14.1 traceroute Mechanism 93
2.15 ICMP 93
2.16 ping 95
2.17 ARP/RARP 97
2.18 Summary 99

CONTENTS vii

 3 KERNEL IMPLEMENTATION OF SOCKETS 101

3.1 Socket Layer 102
3.2 VFS and Socket 103
3.3 Protocol Socket Registration 105
3.4 struct inet_protosw 107
3.5 Socket Organization in the Kernel 107
3.6 Socket 108
3.7 inet_create 110

3.7.1 Sock 112
3.8 Flow Diagram for Socket Call 118
3.9 Summary 118

 4 KERNEL IMPLEMENTATION OF TCP CONNECTION SETUP 121

4.1 Connection Setup 122
4.1.1 Server Side Setup 122
4.1.2 Server Side Operations 124

4.2 Bind 124
4.2.1 Data Structures Related to Socket BIND 125
4.2.2 Hash Buckets for tcp Bind 125
4.2.3 tcp_ehash 125
4.2.4 tcp_listening_hash 125
4.2.5 tcp_bhash 125
4.2.6 tcp_hashinfo 126
4.2.7 tcp_bind_hashbucket 129
4.2.8 tcp_bind_bucket 129
4.2.9 bind() 130
4.2.10 sys_bind() 130
4.2.11 sockfd_lookup() 130
4.2.12 fget() 131
4.2.13 inet_bind() 131
4.2.14 tcp_v4_get_port() 133
4.2.15 tcp_bind_confl ict() 135

4.3 Listen 137
4.3.1 sys_listen() 138
4.3.2 inet_listen() 139
4.3.3 tcp_listen_start() 139
4.3.4 Listen Flow 142
4.3.5 struct open_request 142
4.3.6 Accept Queue Is Full 147
4.3.7 Established Sockets Linked in tcp_ehash Hash

Table 150

viii CONTENTS

4.3.8 State of the Connection Request when the Three-Way
Handshake Is Still Pending 150

4.3.9 State of the Connection Request when the Three-Way
Handshake Is Completed 151

4.4 Connection Request Handling by Kernel 151
4.4.1 SYN Queue Processing 155
4.4.2 Accept Queue Processing 155
4.4.3 Flow Control for Handling a New Connection Request 156

4.5 Accept 156
4.5.1 inet_accept() 159
4.5.2 Linking of Inode and Socket Data Structures when the

Three-Way Handshake Has Completed and Is
Accepted by Application 161

4.5.3 Linking of VFS and Socket Data Structures in the
Kernel when a New Connection Is Established 162

4.5.4 File Table Entry of a New Accepted Connected
Socket 162

4.5.5 Flow Control for Accepting New Established
Connections 162

4.6 Client Side Setup 163
4.6.1 Client Side Operations 164
4.6.2 Connect 164
4.6.3 tcp_v4_connect() 167
4.6.4 ip_route_connect() 167
4.6.5 Flow Control for Generating a Connection Request 167
4.6.6 tcp_v4_hash_connect() 170
4.6.7 __tcp_v4_check_established() 171
4.6.8 tcp_connect() 174
4.6.9 tcp_transmit_skb() 176

4.7 Summary 178

 5 sk_buff AND PROTOCOL HEADERS 181

5.1 struct sk_buff 182
5.2 struct skb_shared_info 186
5.3 sk_buff and DMA—SKB_FRAG_STRUCT 187

5.3.1 DMA and Fragmented sk_buff Containing Paged Data 188
5.3.2 sk_buff and IP Fragmentation 188
5.3.3 sk_buff and Fragmentation 190

5.4 Routines Operating on sk_buff 190
5.4.1 alloc_skb() 190
5.4.2 skb_reserve() 191
5.4.3 skb_put() 192
5.4.4 skb_push() 194
5.4.5 skb_pull() 195

CONTENTS ix

5.5 sk_buff Builds Protocol Headers as It Traverses Down the
Protocol Layers 196
5.5.1 Tcp Header Is Added to sk_buff 196
5.5.2 Ip Header Is Added to sk_buff 197
5.5.3 Link Layer Header Is Added to sk_buff 198

5.6 sk_buff Extracts Protocol Headers as It Traverses Up the
Protocol Layers When a Packet Arrives 199
5.6.1 sk_buff Is Made to Point to a Datalink Layer Header

Which Will Be Processed by a Dalalink Driver 199
5.6.2 sk_buff Is Made to Point to an ip Layer Header Which

Will Be Processed by an IP Layer 200
5.6.3 sk_buff Is Made to Point to a tcp Layer Header Which

Will Be Processed by a tcp Layer 200
5.7 Summary 202

 6 MOVEMENT OF sk_buff ACROSS PROTOCOL LAYERS 205

6.1 Packet Traversing Down the TCP/IP Stack 206
6.1.1 Path of Packet Traversal from Socket Layer to Device

for Transmission 207
6.1.2 Kernel Path for TCP Packet Traversing Down the Stack 208

6.2 Routed Packet Ready for Transmission 214
6.3 Kernel Flow for a Packet Moving Down the Stack 214
6.4 Packet Traversing Up the TCP/IP Stack 214

6.4.1 Path of Packet Traversal from Device (Reception)
to Socket Layer 219

6.4.2 Kernel Path for TCP Packet Traversing Up the Stack 219
6.5 Kernel Flow for a Packet Moving Up the Stack 225
6.6 Summary 225

 7 TCP SEND 231

7.1 TCP Segmentation Unit for Sending Data 232
7.1.1 Functioning of Segmentation Unit without Scatter–

Gather Support 232
7.1.2 Segmentation without Scatter–Gather Support 234
7.1.3 1 mss of Data Written over the Socket 235

7.2 Segmentation with Scatter–Gather Technique 235
7.2.1 Segmentation with Scatter–Gather Support 239
7.2.2 Application Writes Y Bytes over the Socket 239
7.2.3 can_coalesce() 239
7.2.4 tcp_copy_to_page() 240
7.2.5 tcp_mark_push() 241
7.2.6 forced_push() 241

x CONTENTS

7.2.7 tcp_push() 242
7.2.8 __tcp_push_pending_frames() 243
7.2.9 tcp_snd_test() 243
7.2.10 tcp_nagle_check() 244
7.2.11 tcp_minshall_ckeck() 245
7.2.12 tcp_write_xmit() 245
7.2.13 update_send_head() 247
7.2.14 tcp_push_one() 247
7.2.15 skb_entail() 248

7.3 Sending OOB Data 249
7.4 Flow for TCP Segmentation Unit and Send Process 250
7.5 Functional Level Flow for Segmentation and Send

Mechanism 250
7.6 Summary 251

 8 TCP RECEIVE 255

8.1 Queuing Mechanism 256
8.1.1 Processing in tcp_rcv_established() 256
8.1.2 tcp_prequeue() 258
8.1.3 Processing of Queues 259
8.1.4 tcp_data_wait() 263
8.1.5 tcp_prequeue_process() 264
8.1.6 lock_sock() 265
8.1.7 __lock_sock() 265
8.1.8 release_sock() 266
8.1.9 __release_sock() 266

8.2 Processing of TCP Data from the Receive Queue 267
8.2.1 cleanup_rbuf() 268
8.2.2 skb_copy_datagram_iovec() 271
8.2.3 Reading Data from Receive Buffer without Paged

Data Area 273
8.2.4 X Bytes Requested from the Application 273
8.2.5 1 mss = n Bytes Requested from the Application 275
8.2.6 n − X Bytes Requested from the Application 275
8.2.7 Consumption of Data from a Paged Buffer 275
8.2.8 n Bytes Requested by the Application 276
8.2.9 One Page of Data Requested by the Application 276

8.3 TCP Urgent Byte Processing 276
8.3.1 Urgent Byte Read as OOB Data 277
8.3.2 tcp_recv_urg() 278
8.3.3 Urgent Mode Processing and Reading an Urgent

Byte as Inline Data 280

CONTENTS xi

8.4 DATA Flow Diagram for Receiving Data over the TCP
Socket 284

8.5 Summary 290

 9 TCP MEMORY MANAGEMENT 291

9.1 Transmit Side TCP Memory Management 291
9.1.1 select_size() 294
9.1.2 tcp_alloc_pskb() 295
9.1.3 alloc_skb() 296
9.1.4 tcp_alloc_page() 297
9.1.5 skb_charge() 298
9.1.6 tcp_mem_schedule() 298
9.1.7 tcp_free_skb() 300
9.1.8 sock_wfree() 300
9.1.9 tcp_write_space() 301
9.1.10 tcp_mem_reclaim() 302
9.1.11 __tcp_mem_reclaim() 302
9.1.12 wait_for_tcp_memory() 303

9.2 Receive Side TCP Memory Management 305
9.2.1 tcp_prune_queue() 308
9.2.2 tcp_clamp_window() 309
9.2.3 tcp_collapse_ofo_queue() 311
9.2.4 tcp_collapse() 312
9.2.5 __skb_queue_purge() 317

9.3 Freeing of Memory Allocated to a Receive Buffer 319
9.4 System-Wide Control Parameters Are Worth Noticing When It

Comes to TCP Memory Management 319
9.5 Summary 321

10 TCP TIMERS 323

10.1 Timers in Linux 324
10.1.1 mod_timer() 324
10.1.2 detach_timer() 325
10.1.3 del_timer() 325
10.1.4 When Are Timer Routines Executed? 326

10.2 TCP Retransmit Timer 326
10.2.1 When Do We Set Retransmit Timer? 327
10.2.2 When Do We Reset or Cancel Retransmit Timers? 327
10.2.3 tcp_enter_loss() 330
10.2.4 tcp_retransmit_skb() 333
10.2.5 tcp_retrans_try_collapse() 334
10.2.6 skb_cloned() 336

xii CONTENTS

10.3 Zero Window Probe Timer 336
10.3.1 When Is the First Time Probe Timer Installed? 337
10.3.2 When Is the Probe Timer Canceled for the Connection? 337
10.3.3 tcp_ack_probe() 338
10.3.4 How Does the Window Probe Timer Work? 338
10.3.5 tcp_probe_timer() 339
10.3.6 tcp_send_probe0() 339
10.3.7 tcp_write_wakeup() 339

10.4 Delay ACK Timer 342
10.4.1 When Is the ACK Scheduled? 344
10.4.2 How and When Is the ACK Segment Sent? 344
10.4.3 Quick ACK Mode 345
10.4.4 __tcp_ack_snd_check() 345
10.4.5 tcp_ack_snd_check() 346
10.4.6 tcp_send_delayed_ack() 347
10.4.7 tcp_delack_timer() 348
10.4.8 tcp_reset_xmit_timer() 349
10.4.9 tcp_write_timer() 351
10.4.10 tcp_clear_xmit_timer() 352

10.5 Keepalive Timer 353
10.5.1 When Is the Keepalive Timer Activated? 353
10.5.2 How Is the Timer Reset? 354
10.5.3 tcp_keepalive_timer() 354

10.6 SYN-ACK Timer 356
10.6.1 When Is the SYN-ACK Timer Activated? 356
10.6.2 When Is the SYN-ACK Timer Stopped? 357
10.6.3 tcp_synack_timer() 357

10.7 TIME_WAIT Timer 361
10.7.1 When Do We Trigger TIME_WAIT Timer? 361
10.7.2 tcp_time_wait() 362
10.7.3 tcp_tw_schedule() 362
10.7.4 Non-recycle Mode 363
10.7.5 Recycle Mode 365
10.7.6 tcp_twkill() 367
10.7.7 tcp_twcal_tick() 370
10.7.8 __tcp_tw_hashdance() 374

10.8 Summary 375

11 TCP CORE PROCESSING 377

11.1 TCP Incoming Segment Processing 378
11.1.1 Prediction Flags 378
11.1.2 Building Prediction Flags 379

CONTENTS xiii

11.1.3 Condition to Enable the Fast Path 380
11.1.4 When to Enable the Slow Path 382
11.1.5 When to Enable the Fast Path 382
11.1.6 Points to Remember about Prediction Flags 383

11.2 Fast Path Processing 384
11.3 Slow Path Processing 386

11.3.1 tcp_sequence() 387
11.3.2 tcp_replace_ts_recent() 387
11.3.3 tcp_event_data_recv() 390
11.3.4 tcp_incr_quickack() 391
11.3.5 tcp_grow_window() 392
11.3.6 __tcp_grow_window() 393
11.3.7 How Do We Calculate Window to Be Advertised? 394
11.3.8 tcp_receive_window() 395
11.3.9 __tcp_select_window() 395
11.3.10 tcp_space() 397
11.3.11 tcp_data_snd_check() 397
11.3.12 __tcp_data_snd_check() 398
11.3.13 tcp_paws_discard() 398

11.4 Processing of Incoming ACK 400
11.4.1 tcp-packets_in_fl ight() 403
11.4.2 tcp_ack_is_dubious() 404
11.4.3 tcp_cong_avoid() 405
11.4.4 tcp_ack_update_window() 406
11.4.5 tcp_may_update_window() 407
11.4.6 tcp_clean_rtx_queue() 408

11.5 Processing of SACK blocks 410
11.5.1 tcp_sacktag_write_queue() 410

11.6 Reordering Length 417
11.7 Processing TCP Urgent Pointer 421

11.7.1 tcp_check_urg() 422
11.8 Processing Data Segments in Slow Path 424

11.8.1 tcp_sack_new_ofo_skb() 433
11.8.2 tcp_sack_maybe_coalesce() 434
11.8.3 tcp_sack_extend() 435
11.8.4 tcp_ofo_queue() 436
11.8.5 tcp_sack_remove() 441

11.9 Overview of Core TCP Processing 442
11.10 Summary 442

xiv CONTENTS

12 TCP STATE PROCESSING 445

12.1 Overview of State Processing 446
12.2 TCP States 448

12.2.1 TCP_CA_CWR 449
12.2.2 Undoing from TCP_CA_CWR 449

12.3 Processing of Duplicate/Partial ACKs in Recovery State 449
12.3.1 tcp_remove_reno_sacks() 450
12.3.2 tcp_try_undo_partial() 451

12.4 Processing of Duplicate/Partial ACKs in Loss State 452
12.4.1 tcp_try_undo_loss() 453
12.4.2 tcp_check_sack_reneging() 455

12.5 Default Processing of TCP States 456
12.5.1 tcp_time_to_recover() 459
12.5.2 tcp_head_timedout() 460
12.5.3 tcp_try_to_open() 461
12.5.4 tcp_update_scoreboard() 462
12.5.5 tcp_xmit_retransmit_queue() 464
12.5.6 tcp_packet_delayed() 466

12.6 Processing of TCP Non-open States when ACKed Beyond
tp → high_seq 467
12.6.1 TCP_CA_Loss 467
12.6.2 TCP_CA_CWR 468
12.6.3 TCP_CA_Disorder 470
12.6.4 tcp_try_undo_dsack() 471
12.6.5 TCP_CA_Recovery 471
12.6.6 tcp_add_reno_sack() 472
12.6.7 tcp_check_reno_reordering() 473
12.6.8 tcp_may_undo() 473
12.6.9 tcp_packet_delayed() 474
12.6.10 tcp_undo_cwr() 475
12.6.11 tcp_mark_head_lost() 475
12.6.12 tcp_sync_left_out() 477

12.7 Summary 477

13 NETLINK SOCKETS 479

13.1 Introduction to Netlink Sockets 479
13.2 Netlink Socket Registration and Initialization at Boot Time 480
13.3 How Is the Kernel Netlink Socket Created? 481
13.4 How Is the User Netlink Socket Created? 482
13.5 Netlink Data Structures 485

13.5.1 nl_table 485
13.5.2 rtnetlink_link 486

CONTENTS xv

13.6 Other Important Data Strutures 488
13.6.1 struct nlmsghdr 488
13.6.2 struct msghdr 489

13.7 Netlink Packet Format 490
13.8 Netlink Socket Example—tc Command for Adding a qdisc 490

13.8.1 tc Command Flow in User Space for Adding a qdisc 490
13.8.2 tc Command in Kernel Space 491
13.8.2.1 sys_sendmsg() 491
13.8.2.2 sock_sendmsg() 492
13.8.2.3 netlink_sendmsg() 492
13.8.2.4 netlink_unicast() 493
13.8.2.5 netlink_data_ready() 494
13.8.2.6 rtnetlink_rcv() 494
13.8.2.7 rtnetlink_rcv_skb() 494
13.8.2.8 rtnetlink_rcv_msg() 495

13.9 Flow Diagram for tc Command in Kernel Space 496
13.10 Summary 496

14 IP ROUTING 499

14.1 Routing 501
14.2 Policy-Based Routing 503
14.3 Multipathing 505
14.4 Record Route Options (RFC 791) and Processing by Linux

Stack 509
14.4.1 Record Routing 510

14.5 Source Routing 510
14.5.1 Strict Record Routing 510
14.5.2 Loose Record Routing 511
14.5.3 SRR Processing Implementation 511

14.6 Linux Kernel Implementation of Routing Table and Caches 517
14.7 Routing Cache Implementation Overview 517

14.7.1 Routing Cache Data Structures 519
14.8 Managing Routing Cache 523

14.8.1 Routing Cache for Local Connections 525
14.8.2 __sk_dst_check() 526
14.8.3 Link Failure and Reporting to Routing Subsystem 527
14.8.4 dst_link_failure() 527
14.8.5 ipv4_link_failure() 527
14.8.6 dst_set_expires() 528
14.8.7 Routing Cache for the Incoming Packets 529
14.8.8 Routing Cache Timer 530
14.8.9 rt_periodic_timer 530

xvi CONTENTS

14.8.10 rt_may_expire() 533
14.8.11 dst_free() 534
14.8.12 __dst_free() 535
14.8.13 dst_destroy() 535
14.8.14 dst_run_gc() 536
14.8.15 Interface down and rt_fl ush_timer 537
14.8.16 rt_cache_fl ush() 538

14.9 Implementation Overview of Forwarding Information Base
(FIB) 540
14.9.1 struct fi b_table 540
14.9.2 struct fn_hash 543
14.9.3 struct fn_zone 543
14.9.4 struct fi b_node 544
14.9.5 struct fi b_info 546
14.9.6 struct fi b_nh 547
14.9.7 struct fi b_rule 548

14.10 Adding New Entry in Routing Table Using ip Command
(RT Netlink Interface) 549
14.10.1 What Happens When the ip Command Is Run

with a Route Option for Adding an Entry in Routing
Table? 550

14.10.2 inet_rtm_newroute() 550
14.10.3 struct rtmsg 551
14.10.4 struct kern_rta 552
14.10.5 fn_hash_insert() 553
14.10.6 fn_new_zone() 554
14.10.7 fi b_create_info() 557
14.10.8 fn_hash_insert() 558

14.11 What Happens When the ip Command Is Run with a Rule
Option for Adding an Entry in the Routing Table? 558
14.11.1 inet_rtm_newrule() 559
14.11.2 FIB Initialization 561

14.12 FIB Traversal Flow Diagram 563
14.12.1 ip_route_output() 563
14.12.2 ip_route_output_key() 564
14.12.3 ip_route_output_slow() 566
14.12.4 ip_dev_fi nd() 576
14.12.5 __in_dev_get() 577
14.12.6 inet_select_addr() 578
14.12.7 ROUTE__SCOPES 580
14.12.8 fi b_lookup() 581

14.13 Summary 589

CONTENTS xvii

15 IP QUALITY OF SERVICE IN LINUX (IP QoS) 591

15.1 Introduction 591
15.2 Basic Components of Linux Traffi c Control 592
15.3 Linux Implementation of pfi fo_fast qdisc 593
15.4 Queueing Discipline Data Structure 596

15.4.1 struct Qdisc 596
15.4.2 struct Qdisc_ops 597
15.4.3 struct Qdisc_class_ops 598
15.4.4 struct cbq_class 599

15.5 tc User Program and Kernel Implementation Details 601
15.5.1 tc_modify_qdisc() 601
15.5.2 qdisc_create() 602
15.5.3 cbq_init() 604
15.5.4 qdisc_graft() 604
15.5.5 dev_graft_qdisc() 605

15.6 The tc Commands for Creating Class Hierarchy for CBQ 605
15.6.1 tc_ctl_tclass() 607
15.6.2 cbq_change_class() 607

15.7 Filters 610
15.7.1 tc_ctl_tfi lter() 611

15.8 u32 Filter Implementation 614
15.8.1 u32_change() 615

15.9 Route Filter Implementation 616
15.9.1 route4_change() 618

15.10 Enqueue 619
15.10.1 cbq_enqueue() 620
15.10.2 cbq_classify() 621
15.10.3 Overview of cbq_enqueue() 621

15.11 Overview of Linux Implementation of CBQ 622
15.12 cbq_dequeue() 622

15.12.1 From net/dev/core.c 626
15.12.2 qdisc_run() 626
15.12.3 qdisc_restart() 626
15.12.4 cbq_dequeue() 627
15.12.5 cbq_dequeue_1() 629
15.12.6 cbq_dequeue_prio() 630

15.13 Summary 633

xviii CONTENTS

16 IP FILTER AND FIREWALL 635

16.1 Netfi lter Hook Framework 636
16.2 Netfi lter Hooks on IP Stack 638

16.2.1 Hooks for Outgoing Packets 638
16.2.2 Hooks for Incoming Packets 639

16.3 Overview of Netfi lter Hooks on Linux TCP-IP Stack 640
16.4 Registration of Netfi lter Hooks 640
16.5 Processing of Netfi lter Hooks 642

16.5.1 nf_hook_slow() 642
16.5.2 nf_iterate() 643
16.5.3 struct nf_hook_ops 644

16.6 Compatibility Framework 644
16.6.1 fw_in() 645

16.7 Ip Chains 647
16.7.1 Filtering with Ipchains 648
16.7.2 Ipchain Chain of Rules 649
16.7.3 struct ip_chain 649
16.7.4 struct ip_fwkernel 650
16.7.5 struct ip_reent 651
16.7.6 struct ip_fw 651
16.7.7 Organization of Tables in Ipchains 652

16.8 How Is the Packet Filtered with Ipchains 653
16.8.1 ip_fw_check() 653
16.8.2 ip_rule_match() 655

16.9 Iptables 655
16.9.1 Registration of Iptables Hooks 657

16.10 Iptables Filter Rules and Target Organization 657
16.10.1 struct ipt_table 658
16.10.2 struct ipt_table_info 658
16.10.3 struct ipt_entry 661
16.10.4 struct ipt_entry_match 662
16.10.5 struct ipt_tcp 663
16.10.6 struct ipt_entry_target 664
16.10.7 struct ipt_standard_target 664

16.11 Organization of Filter Rules and Target for Iptables 664
16.12 Filtering Packets with Iptables 664

16.12.1 ipt_do_table() 664
16.12.2 IPT_MATCH_ITERATE 668

16.13 Summary 668

CONTENTS xix

17 NET SOFTIRQ 671

17.1 Why Net SoftIRQs, and How Do We Raise Them? 672
17.1.1 Transmission 672
17.1.2 Reception 672

17.2 How Are SoftIRQs Are Processed, and When? 675
17.3 Registration of SoftIRQs 678
17.4 Packet Reception and Delayed Processing by Rx SoftIRQ 679
17.5 Processing of Net Rx SoftIRQ 682
17.6 Packet Transmission and SoftIRQ 686
17.7 Summary 696

18 TRANSMISSION AND RECEPTION OF PACKETS 697

18.1 DMA Ring Buffers for Transmission and Reception of Packets 698
18.2 Packet Reception Process 698

18.2.1 Flow of Packet Reception with DMA 698
18.2.2 Reception Ring Buffer 698

18.3 Packet Transmission Process 700
18.3.1 Flow of Packet Transmission with DMA 702
18.3.2 Transmission Ring Buffer 702
18.3.3 Transmission Ring Buffer 703

18.4 Implementation of Reception and Transmission of Packets 704
18.4.1 struct etrax_eth_descr 705
18.4.2 struct etrax_dma_descr 706
18.4.3 Initialization of Device 707
18.4.5 Initialization of DMA Transmit Ring Buffers 707
18.4.6 Initialization of DMA Receive Ring Buffers 709

18.5 Rx Interrupt for Reception of Packets 709
18.5.1 Rx DMA Buffer Initialized 711
18.5.2 e100_rx() 711
18.5.3 Rx Descriptors After Reception of Three Packets in

DMA Buffer Before Rx Interrupt Being Raised 713
18.5.4 Rx Descriptors After First Packet Is Pulled Out of

DMA Buffer and Given to OS in Rx Interrupt
Handler 713

18.6 Transmission of Packets 713
18.6.1 e100_send_packet() 713
18.6.2 Tx DMA Ring Buffer Descriptor After Initialization 717
18.6.3 e100_hardware_send_packet() 717
18.6.4 There Are Two Packets in Device’s DMA Tx Ring

Buffer to Be Transmitted 717
18.6.5 e100tx_interrupt() 720

xx CONTENTS

18.6.6 First Packet from the DMA Queue Is Transmitted and
Second One Is yet to Be Transmitted; After Interrupt Is
Generated, Transmitted Buffer Is Freed 721

18.7 Summary 721

19 lkcd AND DEBUGGING TCP/IP STACK 723

19.1 lkcd Source and Patches 724
19.2 Touching the Socket 724
19.3 Looking into the Receive Socket Buffer 726

19.3.1 Route Information in sk_buff 727
19.4 Peep into Send Socket Buffer 727
19.5 TCP Segmentation Unit 729
19.6 Send Congestion Window and ssthresh 730
19.7 Retransmissions and Route 733
19.8 Peeping into Connection Queues and SYN Queues 733
19.9 Routing and IP Qos lcrash Steps 735

19.9.1 lcrash Steps for Default Queueing Discipline in Linux
(pfi fo_fast) 735

19.10 CBQ (Class-Based) Queueing Discipline lcrash Steps 739
19.11 U32 Filters 739
19.12 Route Filters 743
19.13 FIB Table lcrash Output for Setting Up the Realm Using ip

Command 745
19.14 lcrash Output for Setting Up Route Filter Using tc Command 749
19.15 Netlink Data Structure 755

19.15.1 nl_table 755
19.15.2 rtnetlink_link 755

19.16 Summary 757

20 NEXT EDITION 759

Bibliography 763

Index 765

xxi

PREFACE

 For more than a decade, Linux has been the most popular choice for server technol-
ogy, embedded systems, or research work in the networking domain. It slowly gained
momentum beginning with the student community and slowly reaching researchers
and the corporate world. Networking, when combined with Linux, gives birth to an
innovative product line, be it in the high - end telecom sector, data centers, or embed-
ded systems, and so on.

 In 1996, I was introduced to Linux while doing my fi rst assignment on TCP/IP
socket programming. At that time, I had a very little knowledge about a server
program using a unique port number to register itself with the system or a client
program using the same port number to communicate with the server. I also had
little knowledge of an IP address that is fed to the client program to identify the
host. I then set myself to learn about how all that was made possible.

 Much information needed to be explored at that time, such as system calls,
protocols, Linux kernel, drivers, and kernel framework that supports the stack, and
so on. Slowly, I explored the Linux kernel and user – land program interaction with
that kernel by writing new system calls and kernel modules.

 This learning process began with the TCP/IP Illustrated, Volume 1 by the honor-
able Richard Stevens. But it continued to be really diffi cult to map the protocol
with the implementation on Linux because there was so little documentation, and
available books provided hardly any information. So, I decided to dive deep into
the jungle of the huge source base to fi nd out how the stack is implemented. Finally,
I got hooked to the socket and VFS layer to understand how socket layer is linked
to the VFS layer. Then slowly I was pointed to the TCP layer and the fi rst routine
that interfaces TCP protocol to send out data. Then the journey of documenting and
experimenting with the TCP/IP stack began. When the documentation had grown
big enough, the idea of making it available to the Linux community emerged. But
writing a book was beyond my strength and it was too much work, requiring a lot
of time and dedication. But I was determined to expose the complex topic to the
Linux community to whatever extent I could even if it demanded many require-
ments. The absence of detailed, leveled documentation or a book that would have
made the subject easier to understand, forced me to think about the topic. The idea
of writing a book was supported when I received acceptance on the subject from
IEEE Computer Society Press and John Wiley & Sons.

 Working on the book along with offi ce work became diffi cult so I searched for
a co - author who would help cover some of the topics. After a long struggle, I con-
vinced M. Ajaykumar Venkatesulu to be my co - author and work on a giant and
most complex routing subsystem and QOS.

xxii PREFACE

 This text tries to cover almost all the aspects of TCP/IP stack and supporting
kernel framework. The idea is to present the topic in a way that dilutes its complex-
ity so that it can be easily understood. To understand TCP/IP implementation on
any OS, we need to understand the kernel frameworks that support the stack. On
Linux, these frameworks include VFS layer, socket framework, protocol layer,
timers, memory management, interrupt handling, softIRQ, kernel threads, kernel
synchronization mechanism, and so on. This is the kernel perspective of the stack.
Apart from this, we also need to know the basics of the communication protocol
and application interfaces (system calls) to open TCP communication sockets and
the client – server program. This knowledge is helpful as a reference for experienced
professionals and for students willing to learn the complex subject and contribute
to the Linux community.

 This book is written for the Linux kernel 2.4.20. The newest kernel version 2.6
does not have much variation as far as the TCP/IP stack is considered. Kernel
version 2.4 is the most widely accepted kernel in the Linux world. Version 2.6 spe-
cifi c changes will be discussed in subsequent revisions of the book.

AUDIENCE

 The book is targeted for large cross section of audience:
Researchers at Worldwide Premier Institutes. Researchers who work on various

aspects of the TCP/IP stack fi nd BSD the most suitable networking OS. But BSD
is not a popular choice in the corporate world. So, the next most popular choice of
researchers is the Linux OS and improvement of the TCP/IP stack performance on
this OS. Networking is currently the most popular fi eld for research because of
growing usage and popularity of the Internet. Mostly, researchers prefer an OS with
commercial viability that can run on cheap hardware.

Academia. Advanced academic degree projects, such as MS, M. Tech., B. Tech.
and PG, are mostly done on Linux because it was the fi rst UNIX - like OS available
with fairly good documentation and stability. In the networking area, students
usually choose Linux over TCP/IP for their project work. The project may require
modifying the router or TCP performance, implementing some new TCP/IP RFC,
network drivers, implementing secured IP layer, or improving scalability factor to
handle network traffi c.

Corporations. For the most part, the corporate world has widely accepted Linux
as the base OS for networking products. Many companies are developing network
products, such as IP security, QOS (class - based routing), developing routers, band-
width management products, cluster servers and many more, which require modify-
ing the TCP/IP stack or writing a new module altogether that fi ts into Linux TCP/IP
stack somewhere. Linux is not only popular as an open system but is also a major
choice for embedded products or real - time OS. These embedded products are
mostly developed for networking domains such as routers, embedded web servers,
web browsers, and so on.

Entrepreneurs. New ideas keep popping up which need to be turned into prod-
ucts. With the Internet gaining popularity, many ideas have been born to develop
networking products. Linux is once again the most popular choice for development
among entrepreneurs.

PREFACE xxiii

The Open Source Community. Because of the growing popularity of Linux and
Internet technologies, many fresh college graduates or even software professionals
want to contribute to Linux networking capabilities. Their goal is to make Linux
more powerful, stable, secure, and full of network capabilities in order to meet cor-
porate requirements in every possible way. Many professionals want to contribute
to Linux networking capabilities but don ’ t fi nd enough time to get acquainted with
its networking stack and the kernel framework.

Defense Organizations. There is a growing popularity of Linux as network OS
in defense organizations with increasing military adoption of Linux IP security with
some modifi cations for secured military network transactions.

 All these audiences require a thorough knowledge of Linux TCP/IP stack and
kernel framework for networking stacks. To understand TCP, IP, BSD sockets, fi re-
wall, IP security, IP forwarding, router network driver, complete knowledge of how
networking stack implementation and design work is needed. If IP security or fi re-
wall implementation is wanted, then knowledge of how the packet is implemented
in Linux, how and where packet is passed to the IP layer, how the IP processes the
packets and adds headers, and fi nally how the IP passes the packet to the device
driver for fi nal transmission is needed. Similarly, implementation of the QOS or
some modifi cations in the existing implementation is needed, knowledge of Linux
routing table implementation, packet structure, packet scheduling and all related
kernel frame work including network soft IRQs is required. So, anything and every-
thing that requires modifying the Linux network stack or adding a new feature to
the stack, requires complete knowledge of the design and implementation of Linux
TCP/IP stack.

ORGANIZATION OF THIS BOOK

 This book completely explains TCP/IP protocol, its design, and implementation in
Linux. Basically, the book begins with simple client – server socket programs and
ends with complex design and implementation of TCP/IP protocol in Linux. In
between, we gradually explain the different aspects of socket programming and
major TCP/IP - related algorithms. These are:

Linux Kernel and TCP/IP Application Interfaces : Chapter 1 covers the Linux
kernel basics and we kick start with kernel interfaces (system calls) to use TCP/IP
protocol stack for communication.

Protocols: Chapter 2 covers TCP/IP protocols and supporting protocols such as
ARP and ICMP. We cover some of the major RFCs with illustrations to acquaint
the reader with the protocols so that it will be easy to map Linux implementation
on Linux in further chapters.

Sockets: Chapter 3 explains the implementation of BSD socket implementation
in the Linux kernel. Here we discuss in detail how socket layer is hooked to VFS
layer and how various protocols are hooked to BSD socket.

Kernel Implementation of Connection Setup: Chapter 4 explains the client –
 server application with the help of the C program. We explain the complete process
of connection setup with the help of tcp dump output in different chapters. We cover
kernel implementation of system calls used by application program to implement
client – server interaction. We see how connections are accepted on the server side

xxiv PREFACE

and at the same time, learn how the server program registers with the kernel to bind
to a specifi c listening port.

Linux Implementation of Network Packet: Chapter 5 explains sk_buff which
represents network packet on Linux. We explain important routines that manipulate
sk_buff.

Movement of Packet Across the Layers: Chapter 6 covers the complete TCP/IP
stack framework, showing how the packet is generated and trickles down the
network stack until it is out of the system. Similarly we explain the complete path
taken by a packet received from the device to reach the owning socket, covering
complete kernel framework that implements TCP/IP stack on Linux.

TCP recv/send: Chapters 7 and 8 address TCP receive/send implementation and
cover all the aspects related to TCP receiving and sending data. We also explain the
TCP segmentation unit when an ICMP error (mss change for the route) is received
by the TCP. There is a small description of how urgent data are processed.

TCP Socket Timers and Memory Management: The kernel keeps track of
memory consumed by a connection at the socket layer so that a single - socket con-
nection is not able to hog all the system memory because of a misbehaving applica-
tion. We also try to collapse sequential buffers in the receive queue when the
application is not reading enough fast and socket has exhausted its quota. This
aspect of memory management is covered in Chapter 9 . TCP is an event - driven
protocol. TCP implements timers to track loss of data, to send delayed ACKs, to
send out zero window probes, and so on. Chapter 10 addresses all these aspects.

TCP State Machine: Chapter 11 covers TCP core processing, such as reception
of packets, sending ACKs, sliding window protocol, Nagle ’ s algorithms, scheduling
of delayed ACK ’ s, processing of out - of - order segments, processing SACK, D - SACK,
and so on. The tcp_opt object represents state machine implementation on Linux.
Chapter 12 covers TCP congestion control algorithms implementation.

Netlink Sockets: User – land applications, such as netstat and iproute, and routing
protocol daemons use special netlink sockets to update/read routes and confi gure
QOS in the kernel. We cover netlink sockets in Chapter 13 .

IP Layer and Routing Table Implementation: Chapter 14 covers implementa-
tion of routing table (FIB) on Linux. We also explain different aspects associated
with routing, such as multipathing, policy routing, and so on. This chapter also
explains the different kernel control paths that update kernel routing tables and
route cache management.

IP QOS: IP in today ’ s network is an advanced topic and is used for different
services in the public network. Linux implements QOS very cleanly and we discuss
PFIFO and CBQ queuing discipline implementation in Chapter 15 .

Netfi lter Framework: Linux provides extensions to the TCP/IP stack by way of
the netfi lter framework. These extensions can be fi rewall, masquerading, IP security,
and so on. Chapter 16 covers netfi lter hooks at different layers in the stack and also
netfi lter implementation.

SoftIRQ Implementation for Scalability: Network frames are received in
the kernel memory in the interrupt handler code but complete processing of the
packets can ’ t be done in the interrupt handler. Linux associates softIRQ, one each
for reception and transmission of packets for processing of packets. Chapter 17
explains net softIRQ framework with the help of illustrations. This chapter com-
pletely explains the high scalability of Linux on SMP architecture in handling
network traffi c.

PREFACE xxv

Link Layer and DMA Ring Buffers: Chapter 18 covers link layer(device driver)
processing of packets. Design and working of DMA ring buffer for reception and
transmission are also addressed and are explained with the help of a device driver
and interrupt routines for a real device.

Debug TCP/IP Stack: Debugging the TCP/IP stack is discussed in Chapter 19 .
The lkcd (linux kernel crash dump) debugger is used to illustrate the debugging
technique, peeking into different kernel data - structures associated with TCP/IP
stack.

LEVEL OF DISCRIPTION

 As outlined here, we have touched upon critical portions of the implementation that
are required to understand core TCP/IP stack and kernel framework. Each chapter
begins with a chapter outline and ends with a summary that highlights important
points. Source - level explanations with diagrams are provided where ever required.
Important routines are explained line - by - line. Code snippets are provided for all
those routines with line numbers and fi les of code snippet. Sometimes routines are
so big that they are split into different code snippets. Routines that are called from
the main routines are explained in different sections. If the called routine is a couple
of lines long, there is no separate section for those routines. Line number and code -
 snippet number (cs -) are provided with the explanation to assist understanding.
When the routines are very big in size, notifi cation is provided at the beginning of
the section stating, see cs • • . • • , unless mentioned ; this means that where ever line
numbers are mentioned, we need to see the code snippet mentioned at the start of
the section.

 In the explanation if we encounter some concept that is already explained in
some other section, a cross reference to that section is provided, as see Section • • .
 • • . Cross references are provided because the subject is interrelated, for example
while explaining queuing of incoming TCP packet, we refer to sockets receive
buffer. If we have exhausted the receive socket buffer, we need to call routines to
collapse receive queue to make space for the new TCP data segment. For this we
may need to refer to a section from the TCP memory management chapter. We have
explained major data structures with signifi cance separately. Where ever that has
not been done, fi elds of those data - structures are explained as and when they appear
in the routines.

 Examples and illustrations are provided where ever it is required to make
subject easier to understand. For example, diagrams to link various kernel data
structures are drawn to illustrate connection requests in the SYN queue. Then we
illustrate shifting of connection requests from SYN queue to accept queue when a
three - way handshake is over with the help of diagrams. All these illustrations assist
in visualizing the complex data structures and scenarios.

 S ameer S eth
Bangalore, India
September 2008

xxvii

ACKNOWLEDGMENTS

 For me, this is the heaviest section of the book that carries the most weight. First of
all, I ’ m very thankful to my family for being so supportive and patient when I was
working on the title, with little time left for them. My wife, Sumam, provided selfl ess
support to the work right from day one. She provided me with confi dence to convert
my hard work into a book on the day she provided me with the list of publishers.
When submitting my book proposal, only 20% of the work was done and that too
was not organized.

 I thank my co - author, M. Ajaykumar Venkatesulu, who agreed to join hands
with me at the much - needed hour. His commitment eased the load on my shoulders
and he worked very hard with all dedication to make this possible. He had a really
tough time setting up QOS on Linux, with a couple of Linux boxes, and modifying
the kernel for his illustrations.

 I ’ d like to thank the very fi rst person at the IEEE Computer Society with whom
I interfaced, Deborah Plummer, who worked on the proposal until it was fi nished.
She helped me in many ways to understand the publication process and was very
patient all through, clarifying my doubts. IEEE Staffers, Janet Wilson and Dante
David, were so nice and prompt throughout the review process. Even a small com-
munication gap caused serious concerns because this was the fi rst time I was working
on such a big project. But Janet and Dante were patient and always prompt in their
replies to make sure that all my concerns were addressed. I was introduced to Lisa
Van Horn from Wiley much later, when the book had entered the production phase.
It is a great experience working with her because she spent time educating me at
every point. At times I would be very irritating to her by asking silly doubts but she
tackled them all with grace. She has worked very hard editing the book because
there were grammatical corrections in almost every line. Through the production
process, she was very helpful, cooperative, and prompt in the same way.

 There are a few names without which this book would look incomplete. I thank
Richard McDougall, the respectable author of Solaris Internals, for time spent edu-
cating me on the publication process. His inputs helped me achieve the most from
my hard work. The respectable senior engineer from SGI and owner of the dwarf
extract utility for lkcd, Cliff Wickman, is owed thanks for without him this book
would have looked quite dry. He provided a tool to generate a kernel - type database
(kerntypes) because the basic lkcd utility does not come with all the stubs for kernel
data - structures in kerntypes. Without this tool, the debug chapter would not have
been possible. He not only provided the tool but also helped get the kernel - type
database built for the kernel 2.4 when the tool was compatible only with kernel 2.6.

S. S.

xxviii ACKNOWLEDGMENTS

 Writing or co - authoring a book was never even in my wildest dreams. The oppor-
tunity came by chance and then it became my choice. God has been kind enough
to give me such an amazing opportunity. I have a couple of people to thank with
whom my words fall short. First of all I would like to thank the author of the book
who had faith in me that I could write on this subject. He gave me a lot of trust
when he gave me an opportunity to work on this book. It was solely his brainchild
which he shared with me selfl essly. He gave me guidance whenever I faced any dif-
fi culty in any subject matter. His valuable suggestions and most importantly his
inspirations have made it possible for me to fi nish this assignment.

 I thank my family for all their support: My father who stood beside me through
all the odds and evens of life so that I could concentrate on this project; my newly
wedded wife, Priyanka, who never complained when I had less or sometimes no
time left for her; and lastly, my brother - in - law Balaji who has been a great source
of inspiration in my life.

 Last but not least, I thank Deborah Plummer, Janet Wilson, and Dante David
from IEEE for being so cooperative and nice.

 The book is not a result of any inspiration but the need of the day. When you
have the strong desire to achieve something, then the whole of creation conspires
to accomplish your goal.

 M. A. V.

