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PREFACE 

     For more than a decade, Linux has been the most popular choice for server technol-
ogy, embedded systems, or research work in the networking domain. It slowly gained 
momentum beginning with the student community and slowly reaching researchers 
and the corporate world. Networking, when combined with Linux, gives birth to an 
innovative product line, be it in the high - end telecom sector, data centers, or embed-
ded systems, and so on. 

 In 1996, I was introduced to Linux while doing my fi rst assignment on TCP/IP 
socket programming. At that time, I had a very little knowledge about a server 
program using a unique port number to register itself with the system or a client 
program using the same port number to communicate with the server. I also had 
little knowledge of an IP address that is fed to the client program to identify the 
host. I then set myself to learn about how all that was made possible. 

 Much information needed to be explored at that time, such as system calls, 
protocols, Linux kernel, drivers, and kernel framework that supports the stack, and 
so on. Slowly, I explored the Linux kernel and user – land program interaction with 
that kernel by writing new system calls and kernel modules. 

 This learning process began with the  TCP/IP Illustrated, Volume 1  by the honor-
able Richard Stevens. But it continued to be really diffi cult to map the protocol 
with the implementation on Linux because there was so little documentation, and 
available books provided hardly any information. So, I decided to dive deep into 
the jungle of the huge source base to fi nd out how the stack is implemented. Finally, 
I got hooked to the socket and VFS layer to understand how socket layer is linked 
to the VFS layer. Then slowly I was pointed to the TCP layer and the fi rst routine 
that interfaces TCP protocol to send out data. Then the journey of documenting and 
experimenting with the TCP/IP stack began. When the documentation had grown 
big enough, the idea of making it available to the Linux community emerged. But 
writing a book was beyond my strength and it was too much work, requiring a lot 
of time and dedication. But I was determined to expose the complex topic to the 
Linux community to whatever extent I could even if it demanded many require-
ments. The absence of detailed, leveled documentation or a book that would have 
made the subject easier to understand, forced me to think about the topic. The idea 
of writing a book was supported when I received acceptance on the subject from 
IEEE Computer Society Press and John Wiley & Sons. 

 Working on the book along with offi ce work became diffi cult so I searched for 
a co - author who would help cover some of the topics. After a long struggle, I con-
vinced M. Ajaykumar Venkatesulu to be my co - author and work on a giant and 
most complex routing subsystem and QOS. 
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 This text tries to cover almost all the aspects of TCP/IP stack and supporting 
kernel framework. The idea is to present the topic in a way that dilutes its complex-
ity so that it can be easily understood. To understand TCP/IP implementation on 
any OS, we need to understand the kernel frameworks that support the stack. On 
Linux, these frameworks include VFS layer, socket framework, protocol layer, 
timers, memory management, interrupt handling, softIRQ, kernel threads, kernel 
synchronization mechanism, and so on. This is the kernel perspective of the stack. 
Apart from this, we also need to know the basics of the communication protocol 
and application interfaces (system calls) to open TCP communication sockets and 
the client – server program. This knowledge is helpful as a reference for experienced 
professionals and for students willing to learn the complex subject and contribute 
to the Linux community. 

 This book is written for the Linux kernel 2.4.20. The newest kernel version 2.6 
does not have much variation as far as the TCP/IP stack is considered. Kernel 
version 2.4 is the most widely accepted kernel in the Linux world. Version 2.6 spe-
cifi c changes will be discussed in subsequent revisions of the book.  

AUDIENCE

 The book is targeted for large cross section of audience: 
Researchers at Worldwide Premier Institutes.  Researchers who work on various 

aspects of the TCP/IP stack fi nd BSD the most suitable networking OS. But BSD 
is not a popular choice in the corporate world. So, the next most popular choice of 
researchers is the Linux OS and improvement of the TCP/IP stack performance on 
this OS. Networking is currently the most popular fi eld for research because of 
growing usage and popularity of the Internet. Mostly, researchers prefer an OS with 
commercial viability that can run on cheap hardware. 

Academia.  Advanced academic degree projects, such as MS, M. Tech., B. Tech. 
and PG, are mostly done on Linux because it was the fi rst UNIX - like OS available 
with fairly good documentation and stability. In the networking area, students 
usually choose Linux over TCP/IP for their project work. The project may require 
modifying the router or TCP performance, implementing some new TCP/IP RFC, 
network drivers, implementing secured IP layer, or improving scalability factor to 
handle network traffi c. 

Corporations.  For the most part, the corporate world has widely accepted Linux 
as the base OS for networking products. Many companies are developing network 
products, such as IP security, QOS (class - based routing), developing routers, band-
width management products, cluster servers and many more, which require modify-
ing the TCP/IP stack or writing a new module altogether that fi ts into Linux TCP/IP 
stack somewhere. Linux is not only popular as an open system but is also a major 
choice for embedded products or real - time OS. These embedded products are 
mostly developed for networking domains such as routers, embedded web servers, 
web browsers, and so on. 

Entrepreneurs.  New ideas keep popping up which need to be turned into prod-
ucts. With the Internet gaining popularity, many ideas have been born to develop 
networking products. Linux is once again the most popular choice for development 
among entrepreneurs. 
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The Open Source Community.  Because of the growing popularity of Linux and 
Internet technologies, many fresh college graduates or even software professionals 
want to contribute to Linux networking capabilities. Their goal is to make Linux 
more powerful, stable, secure, and full of network capabilities in order to meet cor-
porate requirements in every possible way. Many professionals want to contribute 
to Linux networking capabilities but don ’ t fi nd enough time to get acquainted with 
its networking stack and the kernel framework. 

Defense Organizations.  There is a growing popularity of Linux as network OS 
in defense organizations with increasing military adoption of Linux IP security with 
some modifi cations for secured military network transactions. 

 All these audiences require a thorough knowledge of Linux TCP/IP stack and 
kernel framework for networking stacks. To understand TCP, IP, BSD sockets, fi re-
wall, IP security, IP forwarding, router network driver, complete knowledge of how 
networking stack implementation and design work is needed. If IP security or fi re-
wall implementation is wanted, then knowledge of how the packet is implemented 
in Linux, how and where packet is passed to the IP layer, how the IP processes the 
packets and adds headers, and fi nally how the IP passes the packet to the device 
driver for fi nal transmission is needed. Similarly, implementation of the QOS or 
some modifi cations in the existing implementation is needed, knowledge of Linux 
routing table implementation, packet structure, packet scheduling and all related 
kernel frame work including network soft IRQs is required. So, anything and every-
thing that requires modifying the Linux network stack or adding a new feature to 
the stack, requires complete knowledge of the design and implementation of Linux 
TCP/IP stack.  

ORGANIZATION OF THIS BOOK 

 This book completely explains TCP/IP protocol, its design, and implementation in 
Linux. Basically, the book begins with simple client – server socket programs and 
ends with complex design and implementation of TCP/IP protocol in Linux. In 
between, we gradually explain the different aspects of socket programming and 
major TCP/IP - related algorithms. These are: 

Linux Kernel and TCP/IP Application Interfaces :  Chapter  1  covers the Linux 
kernel basics and we kick start with kernel interfaces (system calls) to use TCP/IP 
protocol stack for communication. 

Protocols:  Chapter  2  covers TCP/IP protocols and supporting protocols such as 
ARP and ICMP. We cover some of the major RFCs with illustrations to acquaint 
the reader with the protocols so that it will be easy to map Linux implementation 
on Linux in further chapters. 

Sockets:  Chapter  3  explains the implementation of BSD socket implementation 
in the Linux kernel. Here we discuss in detail how socket layer is hooked to VFS 
layer and how various protocols are hooked to BSD socket. 

Kernel Implementation of Connection Setup:  Chapter  4  explains the client –
 server application with the help of the C program. We explain the complete process 
of connection setup with the help of tcp dump output in different chapters. We cover 
kernel implementation of system calls used by application program to implement 
client – server interaction. We see how connections are accepted on the server side 
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and at the same time, learn how the server program registers with the kernel to bind 
to a specifi c listening port. 

Linux Implementation of Network Packet:  Chapter  5  explains sk_buff which 
represents network packet on Linux. We explain important routines that manipulate 
sk_buff. 

Movement of Packet Across the Layers:  Chapter  6  covers the complete TCP/IP 
stack framework, showing how the packet is generated and trickles down the 
network stack until it is out of the system. Similarly we explain the complete path 
taken by a packet received from the device to reach the owning socket, covering 
complete kernel framework that implements TCP/IP stack on Linux. 

TCP recv/send:  Chapters  7  and  8  address TCP receive/send implementation and 
cover all the aspects related to TCP receiving and sending data. We also explain the 
TCP segmentation unit when an ICMP error (mss change for the route) is received 
by the TCP. There is a small description of how urgent data are processed. 

TCP Socket Timers and Memory Management:  The kernel keeps track of 
memory consumed by a connection at the socket layer so that a single - socket con-
nection is not able to hog all the system memory because of a misbehaving applica-
tion. We also try to collapse sequential buffers in the receive queue when the 
application is not reading enough fast and socket has exhausted its quota. This 
aspect of memory management is covered in Chapter  9 . TCP is an event - driven 
protocol. TCP implements timers to track loss of data, to send delayed ACKs, to 
send out zero window probes, and so on. Chapter  10  addresses all these aspects. 

TCP State Machine:  Chapter  11  covers TCP core processing, such as reception 
of packets, sending ACKs, sliding window protocol, Nagle ’ s algorithms, scheduling 
of delayed ACK ’ s, processing of out - of - order segments, processing SACK, D - SACK, 
and so on. The tcp_opt object represents state machine implementation on Linux. 
Chapter  12  covers TCP congestion control algorithms implementation. 

Netlink Sockets:  User – land applications, such as netstat and iproute, and routing 
protocol daemons use special netlink sockets to update/read routes and confi gure 
QOS in the kernel. We cover netlink sockets in Chapter  13 . 

IP Layer and Routing Table Implementation:  Chapter  14  covers implementa-
tion of routing table (FIB) on Linux. We also explain different aspects associated 
with routing, such as multipathing, policy routing, and so on. This chapter also 
explains the different kernel control paths that update kernel routing tables and 
route cache management. 

IP QOS:  IP in today ’ s network is an advanced topic and is used for different 
services in the public network. Linux implements QOS very cleanly and we discuss 
PFIFO and CBQ queuing discipline implementation in Chapter  15 . 

Netfi lter Framework:  Linux provides extensions to the TCP/IP stack by way of 
the netfi lter framework. These extensions can be fi rewall, masquerading, IP security, 
and so on. Chapter  16  covers netfi lter hooks at different layers in the stack and also 
netfi lter implementation. 

SoftIRQ Implementation for Scalability:  Network frames are received in 
the kernel memory in the interrupt handler code but complete processing of the 
packets can ’ t be done in the interrupt handler. Linux associates softIRQ, one each 
for reception and transmission of packets for processing of packets. Chapter  17  
explains net softIRQ framework with the help of illustrations. This chapter com-
pletely explains the high scalability of Linux on SMP architecture in handling 
network traffi c. 
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Link Layer and DMA Ring Buffers:  Chapter  18  covers link layer(device driver) 
processing of packets. Design and working of DMA ring buffer for reception and 
transmission are also addressed and are explained with the help of a device driver 
and interrupt routines for a real device. 

Debug TCP/IP Stack:  Debugging the TCP/IP stack is discussed in Chapter  19 . 
The lkcd (linux kernel crash dump) debugger is used to illustrate the debugging 
technique, peeking into different kernel data - structures associated with TCP/IP 
stack.  

LEVEL OF DISCRIPTION 

 As outlined here, we have touched upon critical portions of the implementation that 
are required to understand core TCP/IP stack and kernel framework. Each chapter 
begins with a chapter outline and ends with a summary that highlights important 
points. Source - level explanations with diagrams are provided where ever required. 
Important routines are explained line - by - line. Code snippets are provided for all 
those routines with line numbers and fi les of code snippet. Sometimes routines are 
so big that they are split into different code snippets. Routines that are called from 
the main routines are explained in different sections. If the called routine is a couple 
of lines long, there is no separate section for those routines. Line number and code -
 snippet number (cs - ) are provided with the explanation to assist understanding. 
When the routines are very big in size, notifi cation is provided at the beginning of 
the section stating,    see cs  •  • . •  • , unless mentioned ; this means that where ever line 
numbers are mentioned, we need to see the code snippet mentioned at the start of 
the section. 

 In the explanation if we encounter some concept that is already explained in 
some other section, a cross reference to that section is provided, as  see Section  •  • .
 •  •     . Cross references are provided because the subject is interrelated, for example 
while explaining queuing of incoming TCP packet, we refer to sockets receive 
buffer. If we have exhausted the receive socket buffer, we need to call routines to 
collapse receive queue to make space for the new TCP data segment. For this we 
may need to refer to a section from the TCP memory management chapter. We have 
explained major data structures with signifi cance separately. Where ever that has 
not been done, fi elds of those data - structures are explained as and when they appear 
in the routines. 

 Examples and illustrations are provided where ever it is required to make 
subject easier to understand. For example, diagrams to link various kernel data 
structures are drawn to illustrate connection requests in the SYN queue. Then we 
illustrate shifting of connection requests from SYN queue to accept queue when a 
three - way handshake is over with the help of diagrams. All these illustrations assist 
in visualizing the complex data structures and scenarios.  

   S ameer  S eth
Bangalore, India 
September 2008 
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