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The original aim of this book was a discussion of weak approximation results 
for Markov processes. The scope has widened with the recognition that each 
technique for verifying weak convergence is closely tied to a method of charac- 
terizing the limiting process. The result is a book with perhaps more pages 
devoted to characterization than to convergence. 

The lntroduction illustrates the three main techniques for proving con- 
vergence theorems applied to a single problem. The first technique is based on 
operator semigroup convergence theorems. Convergence of generators (in an 
appropriate sense) implies convergence of the corresponding sernigroups, 
which in turn implies convergence of the Markov processes. Trotter’s original 
work in this area was motivated in part by diffusion approximations. The 
second technique, which is more probabilistic in nature, is based on the mar- 
tingale characterization of Markov processes as developed by Stroock and 
Varadhan. Here again one must verify convergence of generators, but weak 
compactness arguments and the martingale characterization of the limit are 
used to complete the proof. The third technique depends on the representation 
of the processes as solutions of stochastic equations, and is more in the spirit 
of classical analysis. If the equations “converge,” then (one hopes) the solu- 
tions converge. 

Although the book is intended primarily as a reference, problems are 
included in the hope that it  will also be useful as a text in a graduate course on 
stochastic processes. Such a course might include basic material on stochastic 
processes and martingales (Chapter 2, Sections 1-6). an introduction to weak 
convergence (Chapter 3, Sections 1-9, omitting some of the more technical 
results and proofs), a development of Markov processes and martingale prob- 
lems (Chapter 4, Sections 1-4 and 8). and the martingale central limit theorem 
(Chapter 7, Section I ) .  A selection of applications to particular processes could 
complete the course. 

V 



V i  PREFACE 

As an aid to the instructor of such a course, we include a flowchart for all 
proofs in the book. Thus, if one's goal is to cover a particular section, the chart 
indicates which of the earlier results can be skipped with impunity. (It also 
reveals that the course outline suggested above is not entirely self-contained.) 

Results contained in standard probability texts such as Billingsley (1979) or 
Breiman (1968) are assumed and used without reference, as are results from 
measure theory and elementary functional analysis. Our standard reference 
here is Rudin (1974). Beyond this, our intent has been to make the book 
self-contained (an exception being Chapter 8). At points where this has not 
seemed feasible, we have included complete references, frequently discussing 
the needed material in appendixes. 

Many people contributed toward the completion of this project. Cristina 
Costantini, Eimear Goggin, S. J. Sheu, and Richard Stockbridge read large 
portions of the manuscript and helped to eliminate a number of errors. 
Carolyn Birr, Dee Frana, Diane Reppert, and Marci Kurtz typed the manu- 
script. The National Science Foundation and the University of Wisconsin, 
through a Romnes Fellowship, provided support for much of the research in 
the book. 

We are particularly grateful to our editor, Beatrice Shube, for her patience 
and constant encouragement. Finally, we must acknowledge our teachers, 
colleagues, and friends at Wisconsin and Michigan State, who have provided 
the stimulating environment in which ideas germinate and flourish. They con- 
tributed to this work in many uncredited ways. We hope they approve of the 
result. 

STEWART N. ETHIER 
THOMAS G. KURTZ 

Salt Lake City, Utah 
Madison, Wisconsin 
August 198s 



CONTENTS 

Introduction 

1 Operator Semigroups 

Definitions and Basic Properties, 6 
The Hille-Yosida Theorem, 10 
Cores, 16 
Multivalued Operators, 20 
Semigroups on Function Spaces, 22 
Approximation Theorems, 28 
Perturbation Theorems, 37 
Problems, 42 
Notes, 47 

2 Stochastic Processes and Martingales 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Stochastic Processes, 49 
Martingales, 55 
Local Martingales, 64 
The Projection Theorem, 71 
The Doob-Meyer Decomposition, 74 
Square Integrable Martingales, 78 
Semigroups of Conditioned Shifts, 80 
Martingales Indexed by Directed Sets, 
Problems, 89 
Notes, 93 

84 

49 

vii 



viii CONTENTS 

3 Convergence of Probability Measures 

1 The Prohorov Metric, 96 
2 Prohorov’s Theorem, 103 
3 Weak Convergence, 107 
4 Separating and Convergence Determining Sets, 11 1 
5 The Space D,[O, GO), 116 
6 The Compact Sets of DEIO, a), 122 
7 Convergence in Distribution in &[O, m), 127 
8 Criteria for Relative Compactness in DKIO, a), 132 
9 Further Criteria for Relative Compactness 

in D,[O, oo), 141 
10 Convergence to a Process in C,[O, a), 147 
11 Problems, 150 
12 Notes, 154 

4 Generators and Markov Processes 

1 Markov Processes and Transition Functions, 156 
2 Markov Jump Processes and Feller Processes, 162 
3 The Martingale Problem: Generalities and Sample 

Path Properties, 173 
4 The Martingale Problem: Uniqueness, the Markov 

Property, and Duality, 182 
5 The Martingale Problem: Existence, 196 
6 The Martingale Problem: Localization, 216 
7 The Martingale Problem: Generalizations, 22 I 
8 Convergence Theorems, 225 
9 Stationary Distributions, 238 

10 Perturbation Results, 253 
I 1  Problems, 261 
12 Notes, 273 

5 Stochastic Integral Equations 

1 Brownian Motion, 275 
2 Stochastic Integrals, 279 
3 Stochastic Integral Equations, 290 
4 Problems, 302 
5 Notes, 305 

6 Random Time Changes 

1 One-Parameter Random Time Changes, 306 
2 Multiparameter Random Time Changes, 31 1 
3 convergence, 321 

95 

155 

275 

306 



4 Markov Processes in Zd, 329 
5 Diffusion Processes, 328 
6 Problems, 332 
7 Notes, 335 

7 Invariance Principles and Diffusion Approximations 

1 The Martingale Central Limit Theorem, 338 
2 Measures of Mixing, 345 
3 Central Limit Theorems for Stationary Sequences, 350 
4 Diffusion Approximations, 354 
5 Strong Approximation Theorems, 356 
6 Problems, 360 
7 Notes, 364 

8 Examples of Generators 

1 Nondegenerate Diffusions, 366 
2 Degenerate Diffusions, 371 
3 Other Processes, 376 
4 Problems, 382 
5 Notes, 385 

9 Branching Processes 

1 Galton-Watson Processes, 386 
2 Two-Type Markov Branching Processes, 392 
3 Branching Processes in Random Environments, 396 
4 Branching Markov Processes, 400 
5 Problems, 407 
6 Notes, 409 

10 Genetic Models 

I The Wright-Fisher Model, 41 1 
2 Applications of the Diffusion Approximation, 41 5 
3 Genotypic-Frequency Models, 426 
4 Infinitely-Many-Allele Models, 435 
5 Problems, 448 
6 Notes, 451 

11 Density Dependent Population Processes 

1 Examples, 452 
2 Law of Large Numbers and Central Limit Theorem, 455 

337 

365 

386 

410 

452 



3 Diffusion Approximations, 459 
4 Hitting Distributions, 464 
5 Problems, 466 
6 Notes, 467 

12 Random Evolutions 

1 Introduction, 468 
2 Driving Process in a Compact State Space, 472 
3 Driving Process in a Noncompact State Space, 479 
4 Non-Markovian Driving Process, 483 
5 Problems, 491 
6 Notes, 491 

Appendixes 

1 Convergence of Expectations, 492 
2 Uniform Integrability, 493 
3 Bounded Pointwise Convergence, 495 
4 Monotone Class Theorems, 496 
5 Gronwall’s Inequality, 498 
6 The Whitney Extension Theorem, 499 
7 Approximation by Polynomials, 500 
8 Bimeasures and Transition Functions, 502 
9 Tulcea’s Theorem, 504 

10 Measurable Selections and Measurability of Inverses, 506 
11 Analytic Sets, 506 

References 

Index 

Flowchart 

168 

492 

508 

521 

529 



The development of any stochastic model involves !he identification of proper- 
ties and parameters that, one hopes, uniquely characterize a stochastic process. 
Questions concerning continuous dependence on parameters and robustness 
under perturbation arise naturally out of any such characterization. In fact the 
model may well be derived by some sort of limiting or approximation argu- 
ment. The interplay between characterization and approximation or con- 
vergence problems for Markov processes is the central theme of this book. 
Operator semigroups, martingale problems, and stochastic equations provide 
approaches to the characterization of Markov processes, and to each of these 
approaches correspond methods for proving convergence resulls. 

The processes of interest to us here always have values in a complete, 
separable metric space E,  and almost always have sample paths in DE(O, m), 
the space of right continuous E-valued functions on [O, 00) having left limits. 
We give DEIO, 00) the Skorohod topology (Chapter 3), under which it also 
becomes a complete, separable metric space. The type of convergence we 
are usually concerned with is convergence in distribution; that is, for a 
sequence of processes { X J  we are interested in conditions under which 
limn.+m E[f(X.)J = &ff(X)] for everyfg C(D,[O, 00)). (For a metric space S,  
C(S) denotes the space of bounded continuous functions on S. Convergence in 
distribution is denoted by X, =. X . )  As an introduction to the methods pre- 
sented in this book we consider a simple but (we hope) illuminating example. 

For each n 2 1, define 

U x )  = 1 + 3x x - - , y,(x) = 3x + + - t>(. - r>. 
( 1 )  ( :> 

1 



2 INTRODUCTION 

and let U, be a birth-and-death process in b, with transition probabilities 
satisfying 

(2) P{ K(r + h) = j + I I ~ ( t )  a j }  = n~,,(:)h + ~ ( h )  

and 

(3) 

as Ado+. In this process, known as the sChlo8l model, x(r) represents the 
number of molecules at time t of a substance R in a volume n undergoing the 
chemical reactions 

(4) 

with the indicated rates. (See Chapter 11, Section 1.) 

(5) x,,(t) = n’/*(n- yn(n1/2r) - 1). r 2 0. 

The problem is to show that X, converges in distribution to a Markov process 
X to be characterized below. 

The first method we consider is based on a semigroup characterization of 
X .  Let En = {n‘/*(n-‘y - I )  : y E Z+}, and note that 

1 3 

3 1 
Ro R,  R2 + 2R S 3R, 

We rescale and renormalize letting 

(6) ~ w m  = Erm.(t)) I x m  = XJ 

defines a semigroup { T,(I)} on B(E,) with generator of the form 

(7) G, / ( x )  =: n3’2L,( 1 + n - ‘ / ‘x){f(x + n - ’I4) - /(x)} 

+ n3/2pn( 1 + n - l / *x ) { / (x  - - 3/41 - ~ ~ x ~ ~ .  

(See Chapter I.) Letting A(x) = 1 + 3x2, p(x) = 3x + x3, and 

(8) G~’ (x )  = 4/”(x) - x ~ ’ ( x ) ,  

a Taylor expansion shows that 

(9) G, f ( x )  = Gf(x)  + t1”~{,4,,( I + n .- ‘/*x) - A( 1 + n -‘ l4x)}{f(x + n - ’ I* )  - / ( x ) }  

+ n3/3{p,( 1 + n - ‘ l4x) - I( 1 + ~t - I/*x)} { J(X - n - 3/4) -f(x)} 

+ A(1 + n - l / * x )  I’ (1 - u){f”(x + un-”*) - r ( x ) }  du 



for all/€ C2(R) withf‘ E Cc(R) and all x E Em. Consequently. for such/; 

lim sup I G,f(x) - Gf(x) 1 = 0. 
n - m  x c E .  

Now by Theorem 1.1 of Chapter 8, 

( 1  1) A E ( ( A  Gf):f€ C[-00 ,  001 n C’(R), G/E C[-aO, 001) 

is the generator of a Feller semigroup { T(t)} on C[ - 00, 001. By Theorem 2.7 
of Chapter 4 and Theorem I .  I of Chapter 8, there exists a diffusion process X 
corresponding to (T(t)) ,  that is, a strong Markov process X with continuous 
sample paths such that 

(12) ECJ(X(t)) I *.*I = - S)S(X(d) 

for a l l fe  C[  - 00, a03 and t 2 s 2 0. (4c: = a(X(w): u 5 s).) 
To prove that X ,  3 X (assuming convergence of initial distributions), it 

suffices by Corollary 8.7 of Chapter 4 to show that (10) holds for all / in zt core 
D for the generator A, that is, for all f in a subspace D of 9 ( A )  such that A is 
the closure of the restriction of A to D. We claim that 

(13) D -= (/+ g : / I  Q E C’(R),/’ E: Cc(W), (x’g)‘ E Cc(W)} 

is  a core, and that (10) holds for all/€ D. To see that D is a core, first check 
that 

(14) ~ ( A ) = ( J E C [ - C Q , ~ ]  n C 2 ( R ) : f ” ~ ~ ( W ) , x 3 f ’ ~ C [ - o o , o o ] } .  

Then let h E C;(R) satisfy xI - 5 h s 
f E 9 ( A ) ,  choose g E: D with (x’g)’ E Cc(W) and x 3 ( f -  g)’ E e(R) and define 

(15) 

Thenj,, + g E D for each m,f ,  + g -+f, and G(fm + Q)-+ C/. 

a martingale problem. Observe that 

and put h,(x) = h(x/m). Given 

SdX) = S(0) - do) + (j - gY( Y )hm( Y 1 d ~ .  s: 
The second method is based on the characterization of X as the solution of 

is an {.Ffn)-martingale for each /E B(E,) with compact support. Conse- 
quently, if some subsequence {A’,,,) converges in distribution to X ,  then, by the 
continuous mapping theorem (Corollary 1.9 of Chapter 3) and Problem 7 of 
Chapter 7, 
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is an {Pf)-martingale for eachfe C,'(R), or in other words, X is a solution of 
the martingale problem for { ( A  G f ) : f c  C,'(W)}. But by Theorem 2.3 of 
Chapter 8, this property characterizes the distribution on Dn[O, 00) of X .  
Therefore, Corollary 8.16 of Chapter 4 gives X, = X (assuming convergence of 
initial distributions), provided we can show that 

Let (p(x) I ex + e-x, and check that there exist constants C , , a O  such.that 
C,,a < G,cp I; C,,,rp on [-a, u] for each n 2 I and ct > 0, and Ka+- 

00. Letting = inf ( f  2 0: I X,,(t) I 2 a},  we have 

I inf C P ( Y ) ~  SUP Ixn(t)lk a { ostsr  
e -G. 4 T 

Irl L a  
(1 9)  

ELeXP - Cn, a(?n, 8 A 73) cp(Xn(Tn, a A VJ 
5 QdXn(O))l 

by Lemma 3.2 of Chapter 4 and the optional sampling theorem. An additional 
(mild) assumption on the initial distributions therefore guarantees (1  8). 

Actually we can avoid having to verify (18) by observing that the uniform 
convergence of G, f to Gf for f e C:(R) and the uniqueness for the limiting 
martingale problem imply (again by Corollary 8.16 of Chapter 4) that X ,  =. X 
in Dad[O, 00) where WA denotes the one-point compactification of R. Con- 
vergence in &LO, 00) then follows from the fact that X, and X have sample 
paths in DRIO, 00). 

Both of the approaches considered so far have involved characterizations in 
terms of generators. We now consider methods based on stochastic equations. 
First, by Theorems 3.7 and 3.10 of Chapter 5,  we can characterize X as the 
unique solution of the stochastic integral equation 

where W is a standard one-dimensional, Brownian motion. (In the present 
example, the term 2JW(t) corresponds to the stochastic integral term.) A 
convergence theory can be developed using this characterization of X, but we 
do not do so here. The interested reader is referred to Kushner (1974). 

The final approach we discuss is based on a characterization of X involving 
random time changes. We observe first that U, satisfies 



where N, and N - are independent, standard (parameter I), Poisson processes. 
Consequent I y , X, satisfies 

X,(r)  = X,(O) + n- 3 /4R+ ( n 3/2  A,( I + n - ' /*X,(s))  ds (22) 

- n-"'R.(nl" 6'p,(l + n-'/4X,(s)) d s )  

+ n3l4 [ ( A ,  - p&I + n - ''4X,(s)) ds, 

where R + ( u )  = N + ( u )  - u and R _ ( u )  = N-(u) - u are independent, centered, 
standard, Poisson processes. Now i t  i s  easy to see that 

(23) ( n  ' /*R + (n3/2 * 1, n 'l4R - (n3'2 .)) =. ( W+ , W- 1, 
where W+ and W- are independent, standard, one-dimensional Brownian 
motions. Consequently, i f  some subsequence {A'".) converges in distribution to 
X, one might expect that 

X ( t )  = X(0)  + W+(4t) + W ( 4 t )  - X ( S ) ~  ds. 
(24) s.' 
(In this simple example, (20) and (24) are equivalent, but they wi l l  not be so in 
general.) Clearly, (24) characterizes X, and using the estimate (18) we conclude 
X, - X (assuming convergence of initial distributions) from Theorem 5.4 of 
Chapter 6. 

For a further discussion of the Schlogl model and related models see 
Schlogl (1972) and Malek-Mansour et al. (1981). The martingale proof of 
convergence is  from Costantini and Nappo (1982), and the time change proof 
i s  from Kurtz(1981c). 

Chapters 4-7 contain the main characterization and convergence results 
(with the emphasis in Chapters 5 and 7 on diffusion processes). Chapters 1-3 
contain preliminary material on operator semigroups, martingales, and weak 
convergence, and Chapters 8- I 2  are concerned with applications. 
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Operator semigroups provide a primary tool in the study of Msrkov pro- 
cesses. In this chapter we develop the basic background for their study and the 
existence and approximation results that are used later as the basis for exis- 
tence and approximation theorems for Markov processes. Section 1 gives the 
basic definitions, and Section 2 the Hille-Yosida theorem, which characterizes 
the operators that are generators of semigroups. Section 3 concerns the 
problem of verifying the hypotheses of this theorem, and Sections 4 and 5 are 
devoted to generalizations of the concept of the generator. Sections 6 and 7 
present the approximation and perturbation resuJts. 

Throughout the chapter, L denotes a real Banach space with norm 11 * 11. 

OPERATOR SEMICROUPS 

1. DEFINITIONS AND BASIC PROPERRES 

A one-parameter family { T(t): t 2 0)  of bounded linear operators on a 
Banach space L is called a semigroup if T(0) = I and T(s + t )  = T(s)T(c) for all 
s, t 2 0. A semigroup (T(t))  on L is said to be strongly continuous if lim,,o T(r)/ 
=/for everyfe L; it is said to be a contraction semigroup if 11 T(t)II 5 1 for all 
t 2 0. 

Given a bounded linear operator B on L, define 
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A simple calculation gives e'"')' = e""e'' for all s, t 2 0, and hence {e'"} is a 
semigroup, which can easily be seen to be strongly continuous. Furthermore 
we have 

An inequality of this type holds in general for strongly continuous serni- 
groups. 

1.1 Proposition 
there exist constants M 2 1 and o 2 0 such that 

(1  -3) II T(t)lI 5 Me"', t 2 0. 

Let (T(t))  be a strongly continuous semigroup on L. Then 

Proof. Note first that there exist constants M 2 I and ro > 0 such that 
11 T(t) 11 5 M for 0 I t s t o .  For if not, we could find a sequence (t,} of positive 
numbers tending to zero such that 11 T(t,)(( -+ 00, but then the uniform 
boundedness principle would imply that sup,(( T(rJfI1 = 00 for some f E L, 
contradicting the assumption of strong continuity. Now let o = t i  log M. 
Given t 2 0, write t = kt,  + s, where k is a nonnegative integer and 0 s s < 
t,;  then 

( 1.4) 0 I( T(t)I( = II 'f(~)T(t,,)~Il s MM' r; MM'/'O = Me"'. 

1.2 Corollary 
each$€ L, t -+ T(t)/is a continuous function from [0, 00) into L. 

Let { T(r)) be a strongly continuous semigroup on L. Then, for 

1.3 Remark Let { T(r)} be a strongly continuous semigroup on L such that 
(1.3) holds, and put S(t) = e-"'T(r) for each t 2 0. Then {S(t)) is a strongly 
continuous semigroup on L such that 

(1.7) II W II s M, t 2 0. 
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In particular, if M = 1, then {S(t)} is a strongly continuous contraction semi- 
group on L. 

Let {S(t)} be a strongly continuous semigroup on L such that (1.7) holds, 
and define the norm 111 111 on L by 

Then 11f11 5; I I I J I I I  5; Mllfll for each f E L, so the new norm is equivalent to 
the original norm; also, with respect to 111 * 111, {S(t)) is a strongly continuous 
contraction semigroup on L. 

Most of the results in the subsequent sections of this chapter are stated in 
terms of strongly continuous contraction semigroups. Using these reductions, 
however, many of them can be reformulated in terms of noncontraction semi- 
groups. 0 

A (possibly unbounded) linear operator A on L is a linear mapping whose 
domain 9 ( A )  is a subspace of L and whose range a ( A )  lies in L. The graph of 
A is given by 

Note that L x L is itself a Banach space with componentwise addition and 
scalar multiplication and norm [ l ( J  @)[I = llfll + IIg 11. A is said to be closed if 
9 ( A )  is a closed subspace of L x L. 

The (injinitesimal) generator of a semigroup { T(c)) on L is the linear oper- 
ator A defined by 

(1.10) 
1 

A , =  lim ; { T ( t ) f - J } .  
1-0 

The domain 9 ( A )  of A is the subspace of allJE L for which this limit exists. 
Before indicating some of the properties of generators, we briefly discuss the 

calculus of Banach space-valued functions. 
Let A be a closed interval in ( -  00, a), and denote by CJA) the space of 

continuous functions u :  A+ L. Let Cl(A) be the space of continuously differ- 
entiable functions u :  A + L. 

If A is the finite interval [a, b] ,  u :  A +  L is said to be (Rietnann) integrable 
over A if limd,, u(sk) ( fk  - t,,- I )  exists, where a = to S s, 5 I l  I . . 5; 

t,- , s s, s f n  = b and S = max ( r r  - f k -  l); the limit is denoted by jb,  u(t)dt or 
u(t)dt. If A = [a, a), u :  A +  L is said to be integrable over A if u I , ~ , ~ ,  is 

integrable over [a, b] for each b 2 a and limg,, Jt u(t) dt exists; again, the 
limit is denoted by {A ~ ( t )  dt or {; u(r) dt. 

We leave the proof of the following lemma to the reader (Problem 3). 
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1.4 Lemma (a) If u E C,jA) and J A l l  u(t )  I1 dt < 00, then u is integrable over 
A and 

(1 .1  I )  

In  particular, if A is the finite interval [a, 61, then every function in C,(A) is 
integrable over A. 

Let B be a closed linear operator on L. Suppose that u E CJA), 
u(t)  E 9 ( E )  for all t E A, Bu E CJA), and both u and Bu are integrable over 
A. Then JA U ( t )  dt E 9 ( B )  and 

(1.12) 

(c) If u E Ci,[a, b] ,  then 

(b) 

B u(t) dt Bu(t) dr. I =I 
(1.13) I' $ u(t) dt = u(b) - u(a). 

1.5 Proposition Let (T( t ) }  be a strongly continuous semigroup on L with 
generator A. 

(a) I f f €  L and t 2 0, then So T ( s ) f d s  E 9 ( A )  and 

(1.14) 

(b) 

(1.15) 

(c) I f f€  9 ( A )  and r 2 0, then 

I f f €  9 ( A )  and t 2 0. then T ( t ) / E  B(A) and 

d -- r(t)j= A T ( t ) / =  T(r)AJ 
dt 

(1.16) T(t)J - j = A T(.s)j  ds = T(s)Af  ds. 

Proof. (a) Observe that 

for all h > 0, and as h -, 0 the right side of(I.17)converges to T ( t ) / - f :  
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(b) Since 

(1.18) 

for all h > 0, where A, = h-'[T(h) - I ] ,  it follows that T ( t ) f e  9 ( A )  
and (d /d t )+  T(t)f = A T(r)/ = T(t)A$ Thus, it sufices to check that 
(d /d f ) -  T(r) f -- T(r)Af (assuming t > 0). But this follows from the identity 

(1.19) 1 - 
- h  - h ) f -  W)SI - T(t)A/ 

= T(t - h)[A,  - A]f+ [T(I - h) - T(t)]Af,  

valid for 0 < h 5 t .  

(c) This is a consequence of (b) and Lemma 1.4(c). 0 

1.6 Corollary If A is the generator of a strongly continuous semigroup 
{ T(t)} on L, then 9 ( A )  is dense in L and A is closed. 

Proof. Since Iim,,o + t - ' fo T(s)f ds = f for every f c L, Proposition 1 .qa) 
implies that 9 ( A )  is dense in L. To show that A is closed, let {f ,}  c 9 ( A )  
satisfy $, 4 f and AS,- g. Then T(r)f, -Jn = ro T(s)AJn ds for each t > 0, so, 
letting n-+ a, we find that T(r) f - f = 6 T(s)g ds. Dividing by t and letting 

0 I-+ 0, we conclude that je  9 ( A )  and Af= g. 

2. THE HILL€-YOSIDA THEORfM 

Let A be a closed linear operator on L. If, for some real 2, A - A ( K A1 - A )  is 
one-to-one, W ( l  - A )  = L, and (1 - A)- '  is a bounded linear operator on L, 
then 1 is said to belong to the resoluent set p(A)  of A, and RA = (A - A)- '  is 
called the resoluenr (at A) of A. 

2.1 Proposition Let { T ( I ) )  be a strongly continuous contraction semigroup 
on L with generator A. Then (0, 00) c p(A) and 

(2.1) (A - A) - 'g  = e-A'T(tb dr 

for all g E L and d > 0. 

Proof. Let 1 > 0 be arbitrary. Define U, on L by U A g  = J$ e-"T(t)g df. 
Since 

(2.2) 

0) 

It U ~ g l l  Lrn e-"'l/ T(r)sll df 9 ~- ' l l g l l  



2. THE HILLL-YOSIDA THEOREM 11 

for each g E L, U A  is a bounded linear operator on L. Now given g E L, 

for every h > 0, so, letting h-,  0,. we find that UAg E g ( A )  and AUAg = 
AU,g - g, that is, 

(2.4) (1 - A)UAg 9, 9 E L. 

In addition, if g E $@(A), then (using Lemma 1.4(b)) 

(2.5) UAAg = e- "T( t )Ag dt = [ A(e-"T(t )g)  dt 

= A lm e-"'(t)g dt = AuAg, 

so 

(2.6) uA(A - A)g = 99 g E %A). 

By (2.6), A - A is one-to-one, and by (2.4), 9 ( A  - A)  = L. Also, (A - A) - '  = 
U A  by (2.4) and (2.6), so A E p(A). Since rl > 0 was arbitrary, the proof is 
complete. 0 

Let A be a closed linear operator on L. Since (A - A)(p - A )  = 
(p - AHA - A )  for all A, p E p(A), we have (p - A)- ' (A  - A) . . '  = ( A  - A)- - '  
(p - A )  I ,  and a simple calculation gives the resolvent identity 

(2.7) RA R ,  = R, RA = (A - p ) - ' ( R ,  - RA), A, p E p(A). 

IfI.Ep(A)andJA-pI < I)R,II-',then 

(2.8) 

defines a bounded linear operator that is in fact (p - A ) - ' .  In particular, this 
implies that p(A) is open in R. 

A linear operator A on L is said to be dissipative if II J j -  AjII 2 A l l f l l  for 
every/€ B ( A )  and I > 0. 

2.2 lemma Let A be a dissipative linear operator on L and let 1 > 0. Then 
A is closed if and only if #(A - A )  is closed. 

Proof. Suppose A is closed. If (1;) c 9 ( A )  and (A - A)jw-+ h, then the dissi- 
pativity of A implies that {J.} is Cauchy. Thus, there exists/€ L such that 
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L.+J and hence Al,,--+ Af - h. Since A is closed,fe 9 ( A )  and h = (A - A)J It 
follows that @(I - A )  is closed. 

Suppose *(A - A) is closed. If {L} c 9 ( A ) ,  S,-J and A h 3  g, then (A - A)fn 
-+ ?/- g, which equals (A - A)J, for somefo E 9 ( A ) .  By the dissipativity of A, 

0 f n d f o ,  and hence/=fO E 9 ( A )  and As= g. Thus, A is closed. 

2.3 lemma Let A be a dissipative closed linear operator on L, and put 
p+(A) = p(A) n (0, 00). If p + ( A )  is nonempty, then p+(A) = (0, a). 

froof. I t  suffices to show that p+(A) is both open and closed in (0, a). Since 
&A) is necessarily open in R, p + ( A )  is open in (0, 00). Suppose that {i"} c 
p+(A)  and A,-+ A > 0. Given g E L, let g,, = (A - AKA, - A ) - ' g  for each ti, and 
note that, because A is dissipative, 

(2.9) lim IIg,, - g 11 = lim 11 (I - Am)& - A ) - ' g  11 5 lim 1.1-1.1 11 g 11 = 0. 

Hence @(A - A )  is dense in L, but because A is closed and dissipative, 
9 ( A  - A) is closed by Lemma 2.2, and therefore @(A - A) = L. Using the 
dissipativity of A once again, we conclude that I - A is one-to-one and 
II(A - A)-'(I s I - ' .  I t  follows that 1 B p+(A), so p + ( A )  is closed in (0, a), as 

I -al  *-.OD n-al 4 

required. 0 

2.4 lemma Let A be a dissipative closed linear operator on L, and suppose 
that 9 ( A )  is dense in L and (0, 03) c p(A). Then the Yosida approximation A, 
of A, defined for each A > 0 by A, = RA(A - A ) - ' ,  has the following proper- 
ties: 

la) For each A > 0, Al is a bounded linear operator on L and {PJ} is a 

(b) A, A, = A, A, for all A, p > 0. 

(c) lim,-m A, f = Affor everyfe 9 ( A ) .  

strongly continuous contraction semigroup on L. 

Proof. 
( I  - A)R, = I on L and R,(A - A )  = I on $+I), it follows that 

(2.10) A , = A ' R , - A l  on L, A > O ,  

and 

For each R > 0. let R,  = (A - A)- ' and note that 11 R ,  11 5 A -  I .  Since 
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for all t 2: 0, proving (a). Conclusion (b) is a consequence of (2.10) and (2.7). As 
for (c), we claim first that 

(2.1 3) lim I R , f = f ,  SE L. 
d-+m 

Noting that l l L R a f - l l l  = II RAAfll s A-'I(A/II  4 0  as A+ a, for each 
f e  9 ( A ) ,  (2.13) follows from the facts that 9 ( A )  is dense in L and 
lll.Ra - I l l  S 2 for all 1 > 0. Finally, (c) is a consequence of (2.1 I )  and 
(2. I 3). 0 

2.5 lemma If B and C are bounded linear operators on L such that 
BC = CB and 11 elB (I I; I and 11 efc 11 5 I for all t 1 0, then 

(2.14) II e"!f - elC/ It I t I t  Bf - C/ I1 

for everyfe L and t 2 0. 

Proof. The result follows from the identity 

= [ e'"e''- B - C)f ds. 

(Note that the last equality uses the commutivity of B and C.) 0 

We are now ready to prove the Hille-Yosida theorem. 

2.6 Theorem A linear operator A on L is the generator of a strongly contin- 
uous contraction semigroup on L if and only if: 

(a) 9 ( A )  is dense in L. 
(b) A is dissipative. 
(c) a(1 - A )  = L for some R > 0. 

Proof. The necessity of the conditions (a)+) follows from Corollary 1.6 and 
Proposition 2.1. We therefore turn to the proof of sulliciency. 

By (b), (c), and Lemma 2.2, A is closed and p(A) n (0, m) i s  nonempty, so 
by Lemma 2.3, (0, m) c p(A). Using the notation of Lemma 2.4, we define for 
each L > 0 the strongly continuous contraction semigroup {T'(c)} on L by 
K(t )  = erAA. By Lemmas 2.4b) and 2.5, 

(2.16) II nw- q(t)/ll 111 AJ- AJll 
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for all f~ L, t 2 0, and A, p > 0. Thus, by Lemma 2.4(c), limA*m T,(t)/exists 
for - all t 2 0, uniformly on bounded intervals, for allfe 9 ( A ) ,  hence for every 
f~ B(A) = L. Denoting the limit by T(t)fand using the identity 

(2.17) T(s + t ) j -  T(s)T(t)f= [T(s + r )  - T, (s  + t)Jf 

+ T,(s)CT,(t) - 7'(01S+ CT,(s) - WJWJ; 
we conclude that { T(t)} is a strongly continuous contraction semigroup on L. 

I .5(c), 
It remains only to show that A is the generator of {T(t)} .  By Proposition 

(2.18) 

for altfE L, t 2 0, and R > 0. For eachfE 9 ( A )  and r 2 0, the identity 

(2.19) 

together with Lemma 2 4 4 ,  implies that G(s)AJ-r T(s)Af as A+ bc), uni- 
formly in 0 5 s s t.  Consequently, (2.18) yields 

T,(s)A s - T(s)Af = T*(sXAJ - Af) + c TAW - 7wl A/; 

(2.20) 

for all/€ 9 ( A )  and t 2 0. From this we find that the generator B of { T(r)} is 
an extension of A. But, for each 1 > 0,A - B is one-to-one by the necessity of 
(b), and #(A - A )  = L since rl E p(A). We conclude that B = A, completing the 
proof. 0 

The above proof and Proposition 2.9 below yield the following result as a 
by-product. 

2.7 Proposition Let { T(t)}  be a strongly continuous contraction semigroup 
on L with generator A, and let Ad be the Yosida approximation of A (defined 
in Lemma 2.4). Then 

(2.21) 

so, for each f E L, liniA-,m e'"1/= T(r)f for all I 2 0, uniformly on bounded 
intervals. 

1Ie'"Y- T(t)fII 5 tit As- AfII, fs %4), t & 0, rt > 0, 

2 8  Corollary Let {T(r)} be a strongly continuous contraction semigroup on 
L with generator A. For M c L, let 

(2.22) Ay i= { A  > 0:  A(A - A)-  ' : M 4 M}. 
If either (a) M is a closed convex subset of L and AM is unbounded, or (b) M is 
a closed subspace of L and AM is nonempty, then 

(2.23) T(t): M-+ M, t 2 0. 
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Proof. If  A, j~ > 0 and I 1  - p/ l I  < I, then (cf. (2.8)) 

(2.24) p ( p - A ) - ' =  n = O  f ;(* - $ [ A ( I - A ) - 1 ] " ' ?  

Consequently, if M is a closed convex subset of L, then I E AM implies 
(0, A] c AM, and if M is a closed subspace of L, then A. E AM implies (0, 2 4  t 
A,,, . Therefore, under either (a) or (b), we have AM = (0, 00). Finally, by (2.10). 

(2.25) exp { IA , }  = exp { - t I )  exp { t A [ l ( l t  - A ) - ' ] )  

for all I 2 0 and I > 0, so the conclusion follows from Proposition 2.7. 0 

2.9 Proposition Let { T(t)}  and {S(t)} be strongly continuous contraction 
semigroups on L with generators A and B, respectively. If A = B, then 
T(t) = S(t)  for all r 2 0. 

Proof. This result is a consequence of the next proposition. 0 

2.10 Proposition Let A be a dissipative linear operator on L. Suppose that 
u :  [0, a)-+ L is continuous, ~ ( t )  E Q(A) for all r > 0, Au: (0, a)-+ L is contin- 
uous, and 

(2.26) u(t) = U(E)  + Au(s) ds, 

for all t > E > 0. Then II u(r) II 5 II 40) It for all t 2 0. 
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where the first inequality is due to the dissipativity of A. The result follows 
from the continuity of Au and u by first letting max (t, - t i -  ,)+ 0 and then 
letting c+ 0. 0 

In many applications, an alternative form of the Hille-Yosida theorem is 
more useful. To state it, we need two definitions and a lemma. 

A linear operator A on L is said to be closable if it has a closed linear 
extension. If A is closable, then the closure A of A is the minimal closed linear 
extension of A ;  more specifically, it is the closed linear operator 6 whose 
graph is the closure (in L x L) of the graph of A. 

2.11 lemma Let A be a dissipative linear operator on L with 9 ( A  
L. Then A is ciosable and L@(A - A )  = 9?(A - A )̂for every I > 0. 

dense in 

Proof. For the first assertion, it suffices to show that if {A} c 9 ( A ) ,  0, 
and Af, -+g  E L, &hen g = 0. Choose {g,} c $(A) such that g,,,--tg. By the 
dissipativity of A, 

(2.28) IIV - - 4 It = lim I I (A-  A h ,  + &)I1 
a - m  

2 lim A I l g m  + KII AI IgmI I  
n- m 

for every 1 > 0 and each m. Dividing by I and letting A+ 00, we find that 
IIg, - g II 2 II g, II for each m. Letting m--, 00, we conclude that g = 0. 

Let 1 > 0. The inclusion @(A - A) =)@(A - A) is obvious, so ro prove 
equality, we need only show that 5?(I - A) is closed. But this is an immediate 
consequence of Lemma 2.2. 0 

2.12 Theorem A linear operator A on L is closable and its closure A is the 
generator of a strongly continuous contraction semigroup on L if and only i f  

(a) 9 ( A )  is dense in L. 
(b) A is dissipative. 
(c) B(1- A) is dense in L for some A > 0. 

Proof. By Lemma 2.1 1, A satisfies (a)-+) above if and only if A is closable and 
A’ satisfies (a)+) of Theorem 2.6. a 

3. CORES 

In this section we introduce a concept that is of considerable importance in 
Sections 6 and 7. 



Let A be a closed linear operator on L. A subspace D of 9 ( A )  is said to be a 
core for A if the closure of the restriction of A to D is equal to A (i.e., if 
A J ,  = A). 
- 

3.1 Proposition Let A be the generator of a strongly continuous contraction 
semigroup on L. Then a subspace D of 9 ( A )  is a core for A if and only if D is 
dense in L and w(1. - AID) is dense in L for some 1 > 0. 

3.2 Remark A subspace of L is dense in L if and only if it  is weakly dense 
(Rudin (l973), Theorem 3.12). 0 

Proof. The sufficiency follows from Theorem 2.12 and from the observation 
that, if A and B generate strongly continuous contraction semigroups on L 
and if A is an extension of 8, then A = B. The necessity depends on Lemma 
2.1 1. 0 

3.3 Proposition Let A be the generator of a strongly continuous contraction 
semigroup IT([)} on L. Let Do and D be dense subspaces of L with Do c D c 
9 ( A ) .  (Usually, Do = D.)  If T(r): Do-+ D for all t 2 0, then D is a core for A. 

Proof. Given f E Do and L > 0, 

(3.1) 

for n = I ,  2,. . .. By the strong continuity of { T(t ) }  and Proposition 2.1, 

(3.2) 
I 

lim (i. - A)S, = lim - e' ak/n7(:)(,l - A)/ 
n - m  n-(u  k = O  

= lm e -"T(t)(d - A)$& 

= (1 - A ) - ' ( L  - A)!=/ :  

so a(>. - A I D )  3 Do. This sufices by Proposition 3. I since Do is dense in L. 0 

Given a dissipative linear operator A with 9 ( A )  dense in L, one often wants 
to show that A generates a strongly continuous contraction semigroup on L. 
By Theorem 2.12, a necessary and sufficient condition is that .%(A - A )  be 
dense in L for some A > 0. We can view this problem as one of characterizing 
a core (namely, g ( A ) )  for the generator of a strongly continuous contraction 
semigroup, except that, unlike the situation in Propositions 3.1 and 3.3, the 
generator is not provided in advance. Thus, the remainder of this section is 
primarily concerned with verifying the range condition (condition (c)) of 
Theorem 2.12. 

Observe that the following result generalizes Proposition 3.3. 
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3.4 Propositlon Let A be a dissipative linear operator on L, and Do a sub- 
space of B(A) that is dense in L. Suppose that, for eachJE Do,  there exists a 
continuous function u,: [O, 00)" L such that u,(O) =1; u,(t) E .@(A) for all 
r > 0, Au,: (0, a)-+ L is continuous, and 

(3.3) 

for all t > E > 0. Then A is closable, the closure of A generates a strongly 
continuous contraction semigroup { T ( f ) }  on L, and T(t)J = u,(t) for all f E Do 
and r 2 0. 

Proof. By Lemma 2.11, A is closable. Fix f~ Do and denote uf by u. Let 
to > E > 0, and note that I:" e-'u(t) dt E 9(A) and 

(3.4) 2 lo e-'u(t) dt = e-'Au(t)  At. 

Consequently, 

(3 .5)  

I0  

I'" e-'u(r) dt = (e-a - e-'O)u(c) + lo e-' [ Au(s) ds dt 

= (e-'- e-'O)u(c) + 

= A I'" e 3 ( t )  dt + e-'u(c) - e-'Ou(t,). 

(e-# - e-'O)Au(s) ds I'" 
Since IIu(t)(l 5 l l f l l  for all t 2 0 by Proposition 2.10, we can let 6-0 and 
to -+ Q) in (3.5) to obtain $; e-'u(t) dr E B(2) and 

(3.6) ( I  - 2) im e-'u(t) dr =J: 

We conclude that @(l - 2) 3 Do,  which by Theorem 2.6 proves that 2 gener- 
ates a strongly continuous contraction semigroup { T(r)} on L. Now for each 
f E D o .  

(3.7) W f  - W f  = I' m4m 

for all t > E > 0. Subtracting (3.3) from this and applying Proposition 2.10 
0 once again, we obtain the second conclusion of the proposition. 

The next result shows that a suficient condition for A' to generate is that A 
be triangulizable. Of course, this is a very restrictive assumption, but it is 
occasionally satisfied. 


