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PREFACE

The original aim of this book was a discussion of weak approximation results
for Markov processes. The scope has widened with the recognition that each
technique for verifying weak convergence is closely tied to a method of charac-
terizing the limiting process. The result is a book with perhaps more pages
devoted to characterization than to convergence.

The Introduction illustrates the three main techniques for proving con-
vergence theorems applied to a single problem. The first technique is based on
operator semigroup convergence theorems. Convergence of generators (in an
appropriate sense) implies convergence of the corresponding semigroups,
which in turn implies convergence of the Markov processes. Trotter’s original
work in this area was motivated in part by diffusion approximations. The
second technique, which is more probabilistic in nature, is based on the mar-
tingale characterization of Markov processes as developed by Stroock and
Varadhan. Here again one must verify convergence of generators, but weak
compactness arguments and the martingale characterization of the limit are
used to complete the proof. The third technique depends on the representation
of the processes as solutions of stochastic equations, and is more in the spirit
of classical analysis. If the equations “converge,” then (one hopes) the solu-
tions converge.

Although the book is intended primarily as a reference, problems are
included in the hope that it will also be useful as a text in a graduate course on
stochastic processes. Such a course might include basic material on stochastic
processes and martingales (Chapter 2, Sections 1-6), an introduction to weak
convergence (Chapter 3, Sections 1-9, omitting some of the more technical
results and proofs), a development of Markov processes and martingale prob-
lems (Chapter 4, Sections 1-4 and 8), and the martingale central limit theorem
{Chapter 7, Section 1). A selection of applications to particular processes could
complete the course.
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As an aid to the instructor of such a course, we include a flowchart for all
proofs in the book. Thus, if one’s goal is to cover a particular section, the chart
indicates which of the earlier results can be skipped with impunity. (It also
reveals that the course outline suggested above is not entirely self-contained.)

Results contained in standard probability texts such as Billingsley (1979) or
Breiman (1968) are assumed and used without reference, as are results from
measure theory and elementary functional analysis. Our standard reference
here is Rudin (1974). Beyond this, our intent has been to make the book
self-contained (an exception being Chapter 8). At points where this has not
seemed feasible, we have included complete references, frequently discussing
the needed material in appendixes.

Many people contributed toward the completion of this project. Cristina
Costantini, Eimear Goggin, S. J. Sheu, and Richard Stockbridge read large
portions of the manuscript and helped to eliminate a number of errors.
Carolyn Birr, Dee Frana, Diane Reppert, and Marci Kurtz typed the manu-
script. The National Science Foundation and the University of Wisconsin,
through a Romnes Fellowship, provided support for much of the research in

the book.
We are particularly grateful to our editor, Beatrice Shube, for her patience

and constant encouragement. Finally, we must acknowledge our teachers,
colleagues, and friends at Wisconsin and Michigan State, who have provided
the stimulating environment in which ideas germinate and flourish. They con-
tributed to this work in many uncredited ways. We hope they approve of the

result.

STEWART N. ETHIER
THoMAs G. KurTz

Salt Lake City, Utah
Madison, Wisconsin
August 1985
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INTRODUCTION

The development of any stochastic model involves the identification of proper-
ties and parameters that, one hopes, uniquely characterize a stochastic process.
Questions concerning continuous dependence on parameters and robustness
under perturbation arise naturally out of any such characterization. In fact the
model may well be derived by some sort of limiting or approximation argu-
ment. The interplay between characterization and approximation or con-
vergence problems for Markov processes is the central theme of this book.
Operator semigroups, martingale problems, and stochastic equations provide
approaches to the characterization of Markov processes, and to each of these
approaches correspond methods for proving convergence results.

The processes of interest to us here always have values in a complete,
separable metric space E, and almost always have sample paths in D.[0, o),
the space of right continuous E-valued functions on [0, o) having left limits.
We give Dg[0, oo) the Skorohod topology (Chapter 3), under which it also
becomes a complete, separable metric space. The type of convergence we
are usually concerned with is convergence in distribution; that is, for a
sequence of processes {X,} we are interested in conditions under which
lim, ., E[f(X,)] = E[f(X)] for every f &€ C(D.[0, o0)). (For a metric space S,
C(S) denotes the space of bounded continuous functions on S. Convergence in
distribution is denoted by X, = X.) As an introduction to the methods pre-
sented in this book we consider a simple but (we hope) illuminating example.

For each n > 1, define

(1) Adx) =1+ 3x(x - l), H(x) = 3x + x(x - 1)(x ~ Z),
n n n
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and let Y, be a birth-and-death process in Z, with transition probabilities
satisfying

@ P(Yit+h=j+1[Y@)=j}= ni.(ﬁ)h + ofh)
and
(3) PYt+h=j—-1]Y0)=jl = "ﬂ.(ﬁ)h + o(h)

as h— 0+. In this process, known as the Schlégl model, Y,(¢) represents the
number of molecules at time t of a substance R in a volume n undergoing the

chemical reactions

1 k)
(4) Ry = R, R;+2R = 3R,
3 1

with the indicated rates. (See Chapter 11, Section 1.)
We rescale and renormalize letting

(5) X0 =n"n" Y2 —1, 20

The problem is to show that X, converges in distribution to a Markov process

X to be characterized below.
The first method we consider is based on a semigroup characterization of

X.LetE, = {n'"(n"'y —1):y e Z,},and note that

(6) T f(x) = E[f(X (1)) | X,(0) = x]
defines a semigroup {7,(t)} on B(E,) with generator of the form
M G, f(x) =021 + n™4x){f(x + n~¥4) — f(x)}

+ 11 + 07 B f(x — 1™ ¥ - f(x)}.
(See Chapter 1.) Letting A(x) = 1 + 3x2, u(x) = 3x + x3, and
@® Gf (x) = 4f"(x) — x*f"(x),
a Taylor expansion shows that
(9) G, f(x) = Gf (x) + n*3{A(1 + n " 4x) = X1 + n "4} { f(x + n™ ¥~ f(x)}
+ 3l + 0" V4%) — p(1 + n” A f(x — n” 3 ~ f(x)}

+ A1 + n"V4x) fl (1 —w{f"(x + un~¥%) — f(x)} du
0

+ u(l + n~'x) J.l (1 — w{f*(x — un™%*) — f*(x)} du
(1]

+ {2 + p)1 + n~4%) — (A + (DS "(%),
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for all f € C*(R) with f* € C.(R) and all x € E,. Consequently, for such f,
(10) lim sup | G, f(x) ~ Gf(x) | = 0.

n~+wm xek,

Now by Theorem 1.1 of Chapter 8,
a1 A={(f,Gf):fe C[—m, w] N CYR), Gf e C[—-x, w0]}

is the generator of a Feller semigroup {T(t)} on C[ — o, o]. By Theorem 2.7
of Chapter 4 and Theorem 1.1 of Chapter 8, there exists a diffusion process X
corresponding to {T(t)}, that is, a strong Markov process X with continuous

sample paths such that
(12) ELA(X@) | FI) = Tt — 9/ (X(s)

forallfe C[—w,®}andt 252 0. (FF = o(X(u):u < 35))

To prove that X,= X (assuming convergence of initial distributions), it
suffices by Corollary 8.7 of Chapter 4 to show that (10) holds for all fin a core
D for the generator A, that is, for all fin a subspace D of 2(4) such that 4 is
the closure of the restriction of 4 to D. We claim that

(13) D={f+g:f geCYR)f e CR) (x’g) e CR)}

is a core, and that (10) holds for all f € D. To see that D is a core, first check
that

(19) 2A) = {fe C[— o, 0] N CYR): f” € C(R), x*f" € C[ -0, ]}.

Then let h € CH(R) satisfy -, ;) < h < x5 and put h(x) = h(x/m). Given
f € D(A), choose g € D with (x3g) € C.(R) and x*(f — g) € C(R) and define

(15) Sulx) = f(0) — g(0) + f (f = 9Y(P)h(y) dy.

Thenf,, + g € Dfor each m, f,, + g — f, and G(f,, + g)— Gf.
The second method is based on the characterization of X as the solution of

a martingale problem. Observe that
(16) J(X ) ~ J; G, f(X () ds

is an {FX}-martingale for each fe B(E,) with compact support. Conse-
quently, if some subsequence {X,.} converges in distribution to X, then, by the
continuous mapping theorem (Corollary 1.9 of Chapter 3) and Problem 7 of
Chapter 7,

t

(amn J(X(0) - f Gf(X(s)) ds

0
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is an {#}-martingale for each f' € C3(R), or in other words, X is a solution of
the martingale problem for {(f;, Gf): fe CXR)}. But by Theorem 23 of
Chapter 8, this property characterizes the distribution on Dg[0, o) of X.
Therefore, Corollary 8.16 of Chapter 4 gives X, = X (assuming convergence of
initial distributions), provided we can show that

(18) lim Iim P{ sup ]X,,(z)]za}-—-o, T>0.
@@ A ® ogisT

Let ¢(x) = e* + e7*, and check that there exist constants C, , > 0 such that
GosC,,oon[—a a]foreachnz 1l and a > 0, and hm,..m hm,,_.m Cpa<
oo, Letting 1, , = inf {t 2 0: | X(t) | = a}, we have

(19) e ST inf (p(y)P{ sup [X,(t)lZa}

iylza 05T
< E[CXP { - Cn. a(tn. a A T)} ¢(X n(tu. a A T».]
< Efo(X,(0)]

by Lemma 3.2 of Chapter 4 and the optional sampling theorem. An additional
(mild) assumption on the initial distributions therefore guarantees (18).

Actually we can avoid having to verify (18) by observing that the uniform
convergence of G, f to Gf for f e CX(R) and the uniqueness for the limiting
martingale problem imply (again by Corollary 8.16 of Chapter 4) that X, = X
in Dg,[0, o0) where R® denotes the one-point compactification of R. Con-
vergence in Dg[0, c0) then follows from the fact that X, and X have sample
paths in Dg[0, c0).

Both of the approaches considered so far have involved characterizations in
terms of generators. We now consider methods based on stochastic equations.
First, by Theorems 3.7 and 3.10 of Chapter 5, we can characterize X as the

unique solution of the stochastic integral equation
(20) X@) = X(0) + 2./2W(1) - f X(s)? ds,
0

where W is a standard, one-dimensional, Brownian motion. (In the present
example, the term 2,/2W(t) corresponds to the stochastic integral term.) A
convergence theory can be developed using this characterization of X, but we
do not do so here. The interested reader is referred to Kushner (1974).

The final approach we discuss is based on a characterization of X involving
random time changes. We observe first that Y, satisfies

@1) Y1) = ¥(0) + N+(n f “ A Ys) ds) - N-(n f sa(n VYA ds),
0 0
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where N, and N _ are independent, standard (parameter 1), Poisson processes.
Consequently, X, satisfies

(22) X, ()= X,0) + n""lv,t(n”2 j' Al +n~ VX (s) ds)

(1]

_ "—3/4N’<n3/2 f' w1 + n~ X () dS)
0

+n¥ J (2n ~ sl + 0™ 14X (5)) ds,
0

where N, () = N,(u) — u and N_(u) = N_(u) — u are independent, centered,
standard, Poisson processes. Now it is easy to see that

(23) {n~ 3/‘N+("3/2 “hn” JI‘N—("JIZ N=(W,, W),

where W, and W_ are independent, standard, one-dimensional Brownian
motions. Consequently, if some subsequence {X,.} converges in distribution to
X, one might expect that

(24) X(t) = X(0) + W,(41) + W_(4t) - J' X(s)® ds.
0

(In this simple example, (20) and (24) are equivalent, but they will not be so in
general.) Clearly, (24) characterizes X, and using the estimate (18) we conclude
X, = X (assuming convergence of initial distributions) from Theorem 5.4 of
Chapter 6.

For a further discussion of the Schlogl model and related models see
Schlogl (1972) and Malek-Mansour et al. (1981). The martingale proof of
convergence is from Costantini and Nappo (1982), and the time change proof
is from Kurtz (1981c¢).

Chapters 4-7 contain the main characterization and convergence results
{with the emphasis in Chapters 5 and 7 on diffusion processes). Chapters 1-3
contain preliminary material on operator semigroups, martingales, and weak
convergence, and Chapters 8-12 are concerned with applications.



1 OPERATOR SEMIGROUPS

Operator semigroups provide a primary tool in the study of Markov pro-
cesses. In this chapter we develop the basic background for their study and the
existence and approximation results that are used later as the basis for exis-
tence and approximation theorems for Markov processes. Section 1 gives the
basic definitions, and Section 2 the Hille-Yosida theorem, which characterizes
the operators that are generators of semigroups. Section 3 concerns the
problem of verifying the hypotheses of this theorem, and Sections 4 and 5 are
devoted to generalizations of the concept of the generator. Sections 6 and 7
present the approximation and perturbation results.
Throughout the chapter, L denotes a real Banach space with norm | - |.

1. DEFINITIONS AND BASIC PROPERTIES

A one-parameter family {T(t): t > 0} of bounded linear operators on a
Banach space L is called a semigroup if T(0) = I and T(s + t) = T(s)T(t) for all
s,t 2z 0. A semigroup { T(t)} on L is said to be strongly continuous if lim, o T(t)f
= ffor every f € L; it is said to be a contraction semigroup if || T(t)]| < 1 for all
t20.

Given a bounded linear operator B on L, define

(L1) "= 3 0B, 20

k=0
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A simple calculation gives e**"® = ¢*%'® for all s,t > 0, and hence {e'®} is a
semigroup, which can easily be seen to be strongly continuous. Furthermore

we have
(1.2) el < Z t"ll B*| < Z - t"llBN" =l t20.

An inequality of this type holds in general for strongly continuous semi-
groups.

1.1 Proposition Let {T(t)} be a strongly continuous semigroup on L. Then
there exist constants M > | and @ 2 0 such that

(1.3) IT@M)) < Me™, 20

Proof. Note first that there exist constants M > 1 and ¢y, > 0 such that
| ()| < Mfor0 <t <t,. For if not, we could find a sequence {t,} of positive
numbers tending to zero such that | T(t,)|| — oo, but then the uniform
boundedness principle would imply that sup, | T(¢,)f || = oo for some f€ L,
contradicting the assumption of strong continuity. Now let @ = t5 ' log M.
Given t = 0, write t = kt, + s, where k is a nonnegative integer and 0 < s <

ty; then
(1.4) I TN = I T()T(to)* ) < MM* < MM"'® = Me®'. 0

1.2 Corollary Let {T(r)} be a strongly continuous semigroup on L. Then, lor
each fe L, t— T(t)fis a continuous function from [0, oo) into L.

Proof. Letfe L. By Proposition 1.1,if t 2 0 and h 2 0, then
(1.5) KT + b f— TSI = TOLTES -1
< Me| TS -/,
and if 0 < h < ¢, then
(1.6) 1T —hf—-TOSN =T - hR[TH S-S
< Me| TS -1 a

13 Remark Let {T(!)} be a strongly continuous semigroup on L such that
(1.3) holds, and put S(t) = e “'T(¢) for each t > 0. Then {S(¢)} is a strongly
continuous semigroup on L such that

(.n IS <M, 20
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In particular, if M = 1, then {S(t)} is a strongly continuous contraction semi-

group on L.
Let {S(t)} be a strongly continuous semigroup on L such that (1.7) holds,

and define the norm || - || on L by

(1.8) WS = sup | Sl

120

Then || £l S lif Il < M| S|l for each f e L, so the new norm is equivalent to
the original norm; also, with respect to {| - I, {S(¢)} is a strongly continuous

contraction semigroup on L.
Most of the results in the subsequent sections of this chapter are stated in

terms of strongly continuous contraction semigroups. Using these reductions,
however, many of them can be reformulated in terms of noncontraction semi-

groups. O

A (possibly unbounded) linear operator A on L is a linear mapping whose
domain 2(A) is a subspace of L and whose range #(A) lies in L. The graph of

A is given by
(1.9 YA ={(f, A): fe D(A)} c L x L.

Note that L x L is itself a Banach space with componentwise addition and
scalar multiplication and norm {|(f; g)lf = | f1l + figli. 4 is said to be closed if
%(A) is a closed subspace of L x L.

The (infinitesimal) generator of a semigroup {T(t)} on L is the linear oper-

ator A defined by

(1.10) Af = lim % {(TOf-f}.

t—0

The domain 9(A) of A is the subspace of all /'€ L for which this limit exists.

Before indicating some of the properties of generators, we briefly discuss the
calculus of Banach space-valued functions.

Let A be a closed interval in (~ o0, o), and denote by C,(A) the space of
continuous functions u: A— L. Let C}(A) be the space of continuously differ-
entiable functions u: A — L.

If A is the finite interval [a, b], u: A— L is said to be (Riemann) integrable
over A if limy_o Y a-, #(s)ty — t,—,) exists, where a =1, <5, S, <" <
ty_y S S, S t, = b and & = max (t, — ,-,); the limit is denoted by f, u(t)dt or
fou(®ydi. If A =[a, ), u: A— L is said to be integrable over A if uly, 4 is
integrable over [a, b] for each b > a and lim;_ , f2u(t)dt exists; again, the
limit is denoted by |, u(z) dt or [ u(t) dt.

We leave the proof of the following lemma to the reader (Problem 3).



1. DEFINITIONS AND BASIC PROPERTIES 9

14 lemma @ Ifue C(A) and f,flu(t)|l dt < oo, then u is integrable over

A and
J. u(t) dt
A

In particular, if A is the finite interval [a, b], then every function in C,(A) is
integrable over A.

(b) Let B be a closed linear operator on L. Suppose that u € C,(A),
u(t) e 2(B) for all t € A, Bu € C,(A), and both u and Bu are integrable over
A. Then f, u(t) dt € 2(B) and

(1.12) BJ u(t) dt =f Bu(t) dt.
a a

(1.11) Sf ()| dt.
A

(¢} Ifue Cj[a, b], then

b g
(1.13) f @ u(r) dt = u(b) — u(a).

1.5 Proposition Let {T(1)} be a strongly continuous semigroup on L with
generator A.
@ IfifeLandt >0, then [, T(s)f ds € (A)and

(1.14) TWOf—f=A L' T(s)/ ds.
b) Iffe P(A4)andt > 0, then T(t)f € D(A) and

(1.15) ;—t T f = AT()f = T()AS.
© Iffe P(A)andt >0, then

(1.16) TS —f= J.l AT(s)f ds = J.' T(s)Af ds.
o 0

Proof. (a) Observe that

(1.17) %[T(h)——l]J‘ T(s)fds=;'-J‘ [T(s + h)f — T(s)f] ds
o (1

= ! {j”h T(s)f ds — f' T(s)fds}
h h 0

l t+h l h
=;I T(s)fds—-’—l-[’ T(s)f ds

for all A > 0, and as h-— O the right side of (1.17) converges to T(t)f — .
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(b) Since
(113) L LT+ Rf = TOS) = 4TS = TOA S

for all h> 0, where A, =h"'[T(h)— 1], it follows that T(t)f e D(A)
and (d/d0)* T(t)f = AT(t)f = T()Af. Thus, it suffices to check that
{d/dt)” T(t)f = T(t)Af (assuming ¢ > 0). But this follows from the identity

(119) — [T~ W = TOS] - TO)4f
= T(t ~ W[ A\ — AYf + [T( ~ b — TOAL,

validforO<h gt
() This is a consequence of (b) and Lemma 1.4(c). (]

16 Corollary If A4 is the generator of a strongly continuous semigroup
{T(1)} on L, then 2(A) is dense in L and A is closed.

Proof. Since lim,.o, t™' [y T(s)f ds =f for every fe L, Proposition 1.5a)
implies that 2(A) is dense in L. To show that A is closed, let {f,} = 2(A)
satisfy f, — f and Af,— g. Then T(1)f, — f, = [, T(s)4f, ds for each t > 0, so,
letting n— oo, we find that T(¢)f ~ f = [ T(s)g ds. Dividing by ¢ and letting
t— 0, we conclude that f € 2(A) and Af = g. (|

2. THE HILLE-YOSIDA THEOREM

Let A be a closed linear operator on L. If, for some real 2, 1 — A (= Al — A) is
one-to-one, #(4 — A) = L, and (A ~ A)~! is a bounded linear operator on L,
then 4 is said to belong to the resolvent set p(A) of A, and R, = (A — A)~! is
called the resolvent (at 1) of A.

2.1 Proposition Let {T(f)} be a strongly continuous contraction semigroup
on L with generator A. Then (0, oc) < p(A) and

2.1) A—A)lg= fme“'T(t)g dt

0

forallg e Land 4 > 0.

Proof. Let 4 >0 be arbitrary. Define U, on L by U,g = [& e “T()g dt.
Since

o

(22) HU.gl SJ; e M Tgldt <A Mgl
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for each g € L, U, is a bounded linear operator on L. Now giveng ¢ L,

L

(2.3) % (T(h) - 11U, g = -:; J. e M[T(t + hyg — T(t)g] dt

0

e -1

w elh L]
= j e MT(t)gdt —— | e *T()yg dt
hJo h Jo

for every h > 0, so, letting h— 0, we find that U ,g € #(4) and AU,g =
AU, g — g, that is,

(24) (A—-AU,g=9g, gel.

In addition, if g € 2(A), then (using Lemma 1.4(b))

(2.5) U,Ag = j e “T()Ag dt = j- Ale™ MT(t)g) dt
0 (1]

=A f e Y"T(t)g dt = AU, g,
o

SO
(2.6) Ufd—A)g=g, g€ DA

By (2.6), A — A is one-to-one, and by (2.4), #(A — A) = L. Also, (A — 4)™' =
U, by (24) and (2.6), so 1€ p(A). Since 4> 0 was arbitrary, the proof is

complete.

a

Let A be a closed linear operator on L. Since (1 — Afu — A) =
(u — AXA — A) for all A, ue p(A), we have (u— A)" (A —A) ' = - A4}
(u — A) ', and a simple calculation gives the resolvent identity

@7 RiR, = R,R, =X —p) "R, ~ R, A peplA).
If 2 € p(A)and |4 — u| < | R,| ", then

(2.8) 2 - Ryt
n=0

defines a bounded linear operator that is in fact (u — A) ™ '. In particular, this

implies that p(A) is open in R.
A linear operator 4 on L is said to be dissipative if | Af — Af|| = A) f| for

every fe 2(A)and A > 0.

22 lemma Let A be a dissipative linear operator on L and let 1 > 0. Then
A is closed if and only if #(41 — A} is closed.

Proof. Suppose A4 is closed. If {f,} = 9(A) and (4 — A)f, — h, then the dissi-
pativity of A implies that {f,} is Cauchy. Thus, there exists f € L such that
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f,—/, and hence Af,— Af — h. Since A4 is closed, f€ D(A) and h = (A — A)f It

follows that #(4 — A) is closed.

Suppose R(4 — A}is closed. If {f,} = D(A), f,—f, and A4f,— g, then (A — A)f,
— Af — g, which equals (1 — A)f, for some f, € P(A). By the dissipativity of A4,
fo—Jo, and hence f = f, € D(A) and Af = g. Thus, A is closed. O

23 Lemma Let A be a dissipative closed linear operator on L, and put
p*(A) = p(A) n (0, o). If p*(A) is nonempty, then p*(4) = (0, o).

Proof. It suffices to show that p*(4) is both open and closed in (0, o). Since
p(A) is necessarily open in R, p*(A) is open in (0, c0). Suppose that {4,}
p*(A)and A,— 4> 0.Giveng € L, let g, = (A — Af4, — A)"'g for each n, and
note that, because A is dissipative,
. . - s l'{ — ‘ln'
(29) lim fig, — gl = lim (A — A4, — A)"'g}l < lim ——= |ig| = 0.
AW [ hnd- <] Lind: <] ll

Hence (1 — A) is dense in L, but because A4 is closed and dissipative,
A(A — A) is closed by Lemma 2.2, and therefore #(A — A) = L. Using the
dissipativity of A once again, we conclude that A — 4 is one-to-one and
(A —A) ') <A™ % It follows that 1 € p*(A4), so p*(A) is closed in (0, ), as
required. (]

24 Lemma Let A be a dissipative closed linear operator on L, and suppose
that 2(A) is dense in L and (0, o) = p(A). Then the Yosida approximation A,
of A, defined for each i > 0 by 4, = 14(A — A)~ ", has the following proper-

ties:

a) Foreach 1 > 0, A, is a bounded linear operator on L and {e¢'*'} is a
strongly continuous contraction semigroup on L.

b A, A,=A,Aforall i, u>0.
() lim,. A, f= Affor every f € D(A).

Proof. For each A > 0, let R, = (1 — A)™~! and note that | R} < A~ ". Since
(A— AR, =1on L and R (A — A) = I on D(A), it follows that

(2.10) A, =AR;— Al on L, i>0,
and
(2.11) A, =AR;A on Z(A), A>0.

By (2.10), we find that, for each 4 > 0, 4, is bounded and

(2.12) e = e 3[R < e det?MRall <
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for all ¢ = 0, proving (a). Conclusion (b) is a consequence of (2.10) and (2.7). As
for (c), we claim first that
(2.13) lim AR, f=f, [felL.

Ao

Noting that AR, f—flI =R, Af| < A"'|Afll 20 as A— o for each
f€ D(A), (2.13) follows from the facts that PD(4) is dense in L and
fAR, — I|| <2 for all 2> 0. Finally, (c) is a consequence of (2.11) and

2.13). 0

25 Llemma If B and C are bounded linear operators on L such that
BC = CBand ffe®| < 1 and [ || < 1 forall ¢t > 0, then

(2.14) le'f — e/ <t} Bf — Cf )

foreveryfe Landt 2 0.

Proof. The result follows from the identity

(215) elﬂf__ ech= J' 5_1; [esl!e(t—a)C]f ds = J. esB(B _ C)e(r's)(:f ds
0

0

= I ' e~ (B — C)f ds.

0

(Note that the last equality uses the commutivity of B and C.) (]
We are now ready to prove the Hille-Yosida theorem.

26 Theorem A linear operator 4 on L is the generator of a strongly contin-
uous contraction semigroup on L if and only if:

(@ 2(A)is densein L.
(b) A is dissipative.
() (A — A)= L forsome >0

Proof. The necessity of the conditions (a){(c) follows from Corollary 1.6 and
Proposition 2.1. We therefore turn to the proof of sufficiency.

By (b), (c), and Lemma 2.2, 4 is closed and p(A4) ~ (0, ) is nonempty, so
by Lemma 2.3, (0, o0) = p(A4). Using the notation of Lemma 2.4, we define for
each 4 > 0 the strongly continuous contraction semigroup {T(t)} on L by
Ti(t) = ¢'**. By Lemmas 2.4(b) and 2.5,

(2.16) W T~ TS <th A, — ASN
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forall fe L, t 20, and 4, £ > 0. Thus, by Lemma 2.4(c), lim,, ., Ty(t)f exists
for all ¢ = 0, uniformly on bounded intervals, for all f € 2(4), hence for every
J € @(A) = L. Denoting the limit by T(t)f and using the identity
217 T+ t)f—-TETOS=[T(s +1)— Tis + )If

+ TOLT() — TO1 + [Ty(s) — T(HITE@ L,

we conclude that {T(¢)} is a strongly continuous contraction semigroup on L.
It remains only to show that A is the generator of {T(s)}. By Proposition

1.5(c),
(2.18) Tf-f= J; Ts)ALSf ds

forallfe L,t 2 0,and 4 > 0. For each f € 2(A4) and t 2 0, the identity
(2.19) Ti(s)A S — TAS = T(sXAS — Af) + [Tis) — T(s)] 4,

together with Lemma 2.4(c), implies that Ty(s)4,/— T(s)Af as A— oo, uni-
formly in 0 < s < t. Consequently, (2.18) yields

(2.20) T)f ~f = f " T(s)Af ds
0

for all f€ 9(A) and ¢ 2 0. From this we find that the generator B of {T(1)} is
an extension of A. But, for each A > 0, 4 — B is one-to-one by the necessity of
(b), and (A —~ A) = L since A € p(A). We conclude that B = A, completing the

proof. O

The above proof and Proposition 2.9 below yield the following result as a
by-product.

2.7 Proposition Let {T(f)} be a strongly continuous contraction semigroup
on L with generator A, and let A, be the Yosida approximation of 4 (defined

in Lemma 2.4). Then

22y e — TSN <th A — Afll, feD(A),t20,1>0,

so, for each fe L, lim,_, e = T(t)f for all ¢ 2 0, uniformly on bounded
intervals.

28 Corollary Let {7T(1)} be a strongly continuous contraction semigroup on
L with generator 4, For M < L, let
(2.22) A ={1>0: MA— A)': M— M),

If either (a) M is a closed convex subset of L and A, is unbounded, or (b) M is
a closed subspace of L and A, is nonempty, then

(2.23) T(t): M — M, tz0.
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Proof. If A, u>0and|l — w/dj < 1, then (cf. (2.8)

2.29) pp— A=Y %(l - g) (A4 — 417

n=0
Consequently, if M is a closed convex subset of L, then i€ A, implies
(0, 1] = Ay, and if M is a closed subspace of L, then 4 € A,, implies (0, 24)
A, . Therefore, under either (2) or (b), we have Ay, = (0, o). Finally, by (2.10),

(2.25) exp {tA,} = exp {—ta} exp {tA[AA - 4)~ ']}
=e "y gl—') (AL -4 "7
oo !
for all t > 0 and 4 > 0, so the conclusion follows from Proposition 2.7. a

29 Proposition Let {T(1)} and {S(z)} be strongly continuous contraction
semigroups on L with generators 4 and B, respectively. If 4 = B, then

T(t) = S(t) for allt > 0.
Proof. This result is a consequence of the next proposition. 0O

210 Proposition Let A be a dissipative linear operator on L. Suppose that
u: [0, c0)— L is continuous, u(t) € 2(A) for all t > 0, Au: (0, ) — L is contin-

uous, and
(2.26) u(t) = ufe) + f Au(s) ds,
forallt > &> 0. Then |u(t) | < ||wO)] forallt >0,

Proof. Let0<e=1(,<t, <+ <t,=1t Then

(2.27)

hu@l = hue)l + 3 [hue)l — Nutt;-)N]
(=1
= |ue) |l + Z": [Hu(e)ll — Nu(ed — (6 = ;- )Au(t) 1]
=1

+ Y [lu(e) — (6 — - DAu(e) ) — fu(e) — (u(t) — ut,~ DI
i=]

Au(s) ds

]

]
i=1 4

< llu(e)ll + Z [" u(t) — (6 — ;- y)Aul(t) ] — Ill‘(‘l) - ‘[

/]

S lu@h + 3 i Au(t) — Au(s))| ds,

i=1 Ju-1
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where the first inequality is due to the dissipativity of 4. The result follows
from the continuity of Au and u by first letting max (¢; — ¢, ,)}— 0 and then

letting ¢ — 0. 0

In many applications, an alternative form of the Hille~-Yosida theorem is
more useful. To state it, we need two definitions and a lemma.

A linear operator A on L is said to be closable if it has a closed linear
extension. If 4 is closable, then the closure 4 of 4 is the minimal closed linear
extension of A; more specifically, it is the closed linear operator B whose

graph is the closure (in L x L) of the graph of A.

211 lemma Let A be a dissipative linear operator on L with 9(4) dense in
L. Then A is closable and #(A ~ A) = A — A)for every A > 0.

Proof. For the first assertion, it suffices to show that if {/,} = 2(4), f,— 0,
and Af,— g € L, then g = 0. Choose {g,.} = 2(A) such that g, —g. By the

dissipativity of A,
(228) (A — A)gy — Agll = lim |I(A — AXg.. + )|

fna

2 lim Alig, + 4,1l = (gl

A ®

for every 4 > 0 and each m. Dividing by 4 and letting 4 o0, we find that
lgm — gl 2 Il gmll for each m. Letting m— co, we conclude that g = 0.

Let 4> 0. The inclusion (1 — A) > (4 — A) is obvious, so to prove
equality, we need only show that @(1 — A) is closed. But this is an immediate

consequence of Lemma 2.2. a

212 Theorem A linear operator A on L is closable and its closure A4 is the
generator of a strongly continuous contraction semigroup on L if and only if:

(@) 9D(A)isdensein L.

(b) A is dissipative.
() R(A— A)is dense in L for some 4 > 0.

Proof. By Lemma 2.11, A satisfies (a)-(c) above if and only if 4 is closable and
A satisfies (a){(c) of Theorem 2.6. 0

3. COREs

In this section we introduce a concept that is of considerable importance in
Sections 6 and 7.
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Let A be a closed linear operator on L. A subspace D of 2(4) is said to be a
core for A il the closure of the restriction of A to D is equal to A4 (ie., if

Alp = A).

3.1 Proposition Let 4 be the generator of a strongly continuous contraction
semigroup on L. Then a subspace D of 2(A) is a core for 4 if and only if D is
dense in L and #(2 ~ A|p) is dense in L for some 4 > 0.

32 Remark A subspace of L is dense in L if and only if it is weakly dense
(Rudin (1973), Theorem 3.12). 0O

Proof. The sufficiency follows from Theorem 2.12 and from the observation
that, if A and B generate strongly continuous contraction semigroups on L
and il A is an extension of B, then 4 = B. The necessity depends on Lemma
211 O

33 Proposition Let 4 be the generator of a strongly continuous contraction
semigroup {T()} on L. Let Dy and D be dense subspaces of L with D, = D <
P(A). (Usually, Dy = DI T(t): Dy— D for all ¢t > 0, then D is a core for A.

Proof. Givenfe Dyand 4 >0,

1 2
(3.1) ==Y e""""T(E)fe D
n k=0 n
for n = 1, 2,.. .. By the strong continuity of { 7(t)} and Proposition 2.1,
L LR ek
3.2) lim (A — A)f, =lim = Y e *T(=-Y1-A)f
n—ew n~a nzo n

= r e MT(tYA — A)f dt
0

=(A-A)'A-Af=f
so (A — Alp) > D,. This suffices by Proposition 3.1 since D is dense in L. {J

Given a dissipative linear operator A with %(A4) dense in L, one often wants
to show that 4 generates a strongly continuous contraction semigroup on L.
By Theorem 2.12, a necessary and sufficient condition is that #(1 — A) be
dense in L for some 4 > (0. We can view this problem as one of characterizing
a core (namely, 9(A)) for the generator of a strongly continuous contraction
semigroup, except that, unlike the situation in Propositions 3.1 and 3.3, the
generator is not provided in advance. Thus, the remainder of this section is
primarily concerned with verifying the range condition (condition (c)) of

Theorem 2.12.
Observe that the following result generalizes Proposition 3.3.
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34 Proposition Let A be a dissipative linear operator on L, and D, a sub-
space of P(A) that is dense in L. Suppose that, for cach f € Dy, there exists a
continuous function u,: [0, 0)— L such that u,(0) =/, u,(t) € 2(A) for all
t >0, Au;: (0, c0)— L is continuous, and

{3.3) up(t) — usle) = f' Au(s) ds

for all ¢t > e > 0. Then A is closable, the closure of A generates a strongly
continuous contraction semigroup {T(¢)} on L, and T(t)f = u,(t) for all f € D,

andt =2 0.

Proof. By Lemma 2.11, A4 is closable. Fix fe Dy and denote u, by u. Let
to > € > 0, and note that [©° e ‘u(t) dt € 2(A) and

3.4 A f ’ e~ 'u(t) dt = Jo e "Au(r) dt.

Consequently,

3.5) fm e 'u(t)dt =(e™* — e "ule) + fm e’ f' Au(s) ds dt
=(e " — e "u(e) + JW (e™* — e 'Au(s) ds

to
= JJ. e u(t) dt + e “u(e) — e "u(ty).

Since |u(t)]l < || f| for all t 2 0 by Proposition 2.10, we can let ¢— 0 and
to— o0 in (3.5) to obtain ¥ e 'u(t) dt € D(A)and

(3.6) (1 - A) F e~'u(t) dt = f.
4]

We conclude that (1 — A) > D,, which by Theorem 2.6 proves that A gener-
ates a strongly continuous contraction semigroup {7(f)} on L. Now for each

fe€ Dy,
3.7 T f - TE)f = f’ ZT(s)fds

for all 1 > ¢ > 0. Subtracting (3.3) from this and applying Proposition 2.10
once again, we obtain the second conclusion of the proposition. O

The next result shows that a sufficient condition for 4 to generate is that 4
be triangulizable. Of course, this is a very restrictive assumption, but it is
occasionally satisfied.



