DRUG METABOLISM IN DRUG DESIGN AND DEVELOPMENT

Basic Concepts and Practice

EDITED BY

DONGLU ZHANG

MINGSHE ZHU

W. GRIFFITH HUMPHREYS

WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION

DRUG METABOLISM IN DRUG DESIGN AND DEVELOPMENT

THE WILEY BICENTENNIAL-KNOWLEDGE FOR GENERATIONS

ach generation has its unique needs and aspirations. When Charles Wiley first opened his small printing shop in lower Manhattan in 1807, it was a generation of boundless potential searching for an identity. And we were there, helping to define a new American literary tradition. Over half a century later, in the midst of the Second Industrial Revolution, it was a generation focused on building the future. Once again, we were there, supplying the critical scientific, technical, and engineering knowledge that helped frame the world. Throughout the 20th Century, and into the new millennium, nations began to reach out beyond their own borders and a new international community was born. Wiley was there, expanding its operations around the world to enable a global exchange of ideas, opinions, and know-how.

For 200 years, Wiley has been an integral part of each generation's journey, enabling the flow of information and understanding necessary to meet their needs and fulfill their aspirations. Today, bold new technologies are changing the way we live and learn. Wiley will be there, providing you the must-have knowledge you need to imagine new worlds, new possibilities, and new opportunities.

Generations come and go, but you can always count on Wiley to provide you the knowledge you need, when and where you need it!

WILLIAM J. PESCE

PRESIDENT AND CHIEF EXECUTIVE OFFICER

PETER BOOTH WILEY
CHAIRMAN OF THE BOARD

DRUG METABOLISM IN DRUG DESIGN AND DEVELOPMENT

Basic Concepts and Practice

EDITED BY

DONGLU ZHANG

MINGSHE ZHU

W. GRIFFITH HUMPHREYS

WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION Copyright © 2008 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Dancers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damage, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Wiley Bicentennial Logo: Richard J. Pacifico

Library of Congress-in-Publication Data:

Drug metabolism in drug design and development: basic concepts and practice / edited by Donglu Zhang, Mingshe Zhu, and W. Griffith Humphreys.

p.; cm.

Includes bibliographical references.

ISBN 978-0-471-73313-3 (cloth)

- 1. Drugs-Metabolism. 2. Drugs-Design. 3. Drug development.
- I. Zhang, Donglu. II. Zhu, Mingshe. III. Humphreys, W. Griffith.

[DNLM: 1. Pharmaceutical Preparations-metabolism. 2. Drug Design. 3. Drug Evaluation-methods.

4. Pharmacokinetics. QV 38 D79367 2007]

RM301.55.D79 2007

615'.7-dc22

2007017661

Printed in the United States of America 10 9 8 7 6 5 4 3 2 1

CONTENTS

Pr	eface	2	xvii
Co	ntril	butors	xix
PA	RT	I BASIC CONCEPTS OF DRUG METABOLISM	1
1	Ind	erview: Drug Metabolism in the Modern Pharmaceutical ustry	3
	Scot	t J. Grossman	
	1.1	Introduction	3
	1.2	Technology	4
	1.3	Breadth of Science	5
		1.3.1 Chemistry	5
		1.3.2 Enzymology and Molecular Biology	6
	1.4	Impact of Drug Metabolism on Efficacy and Safety	7
		1.4.1 Efficacy	7
	1.5	1.4.2 Safety	8
	1.5	Regulatory Impact and IP Position	9
	1.6	Summary	12
		References	12
2		dative, Reductive, and Hydrolytic Metabolism of Drugs	15
	F. Pe	eter Guengerich	
	2.1	Introduction	15
	2.2	Nomenclature and Terminology	15
	2.3	General Features of the Enzymes	16
	2.4	Fractional Contributions of Different Enzymes	17
	2.5	Oxidation Enzymes	18
		2.5.1 Cytochrome P450 (P450, CYP)	18
		2.5.2 Flavin-Containing Monooxygenase (FMO)	20

vi CONTENTS

		2.5.3	Monoamine Oxidase (MAO)	22
		2.5.4	Aldehyde Oxidase and Xanthine Dehydrogenase	23
		2.5.5	Peroxidases	24
		2.5.6	Alcohol Dehydrogenases (ADH)	25
		2.5.7	Aldehyde Dehydrogenases (ALDH)	25
	2.6	Reduc	ction	26
		2.6.1	P450, ADH	26
		2.6.2	NADPH-P450 Reductase	27
		2.6.3	Aldo-Keto Reductases (AKR)	28
		2.6.4	Quinone Reductase (NQO)	28
		2.6.5	Glutathione Peroxidase (GPX)	29
	2.7	Hydro		29
		2.7.1	Epoxide Hydrolase	29
		2.7.2	Esterases and Amidases	30
	2.8	Summ	nary	31
		Refere	ences	31
3	Con	jugativ	ve Metabolism of Drugs	37
			el, Swati Nagar and Upendra Argikar	
	3.1		Glucuronosyltransferases	37
			Location Within the Cell	38
		3.1.2	Endogenous Substrates	39
		3.1.3	Enzyme Multiplicity	40
			Inducibility	42
		3.1.5	Pharmacogenetics	56
		3.1.6	1	56
		3.1.7	•	59
		3.1.8	6 6	60
		3.1.9	Summary	62
	3.2	Cytos	olic Sulfotransferases	62
		3.2.1	Cellular Location and Tissue Expression	64
		3.2.2		64
		3.2.3	•	65
		3.2.4	E	65
		3.2.5	•	67
		3.2.6	(, , ,	68
		3.2.7	Drug-Drug Interactions and Sulfonation	68
		3.2.8	Summary	72
	3.3		thione-S-Transferases	72
		3.3.1	General Overview	72
		3.3.2	Classification of the GST Enzymes	72
		3.3.3	Localization and Expression	73
		3.3.4	Reactions Catalyzed by GSTs	73
		3.3.5	Regulation of GSTs	73

		3.3.6	GST Alpha Class	75
		3.3.7	GST Mu Class	77
		3.3.8	GST Pi Class	79
			GST Theta Class	81
			GST Zeta Class	81
			Incubation Conditions and Analytical Methods	81
			Glutathione Conjugate Metabolism (Mercapturic Acid	
			Pathway)	83
		Refere	• *	84
4	Enz	yme Ki	netics	89
	Timo	othy S. Tr	racy	
	4.1	Introdu	uction	89
	4.2	Enzym	ne Catalysis	90
	4.3	Michae	elis-Menten Kinetics	90
		4.3.1	8 mi max	91
	4.4	Graphi	ical Kinetic Plots	92
	4.5		eal Kinetics–Allosteric Effects	94
		4.5.1	Overview of Atypical Kinetic Phenomena	94
			Homotropic Cooperativity	95
			Heterotropic Cooperativity	99
	4.6		ical Analysis of Atypical Kinetic Data	101
	4.7	Enzym	ne Inhibition Kinetics	101
			Overview	101
			Competitive Inhibition	102
			Mixed Inhibition	103
			Noncompetitive Inhibition	104
			Uncompetitive Inhibition	105
		4.7.6	Summary of Effects of Various Inhibition Types of	
			Kinetic Parameters	106
			Meanings of IC_{50} and K_i Parameters	106
	4.8		ion Kinetics Graphical Plots	106
	4.9		nism-Based Enzyme Inactivation Kinetics	108
			wledgment	110
		Refere	nces	111
5	Met	abolism	n-Mediated Drug-Drug Interactions	113
	Hon	gjian Zha	ang, Michael W. Sinz, and A. David Rodrigues	
	5.1	Introdu		113
	5.2	•	ne Inhibition	114
		5.2.1	Types of Inhibition	114
		5.2.2	In vitro Evaluation of Inhibition	116
		5.2.3	Prediction of CYP Inhibition Using In vitro Data	116
		5.2.4	Clinical Evaluation of Inhibition	119

viii CONTENTS

	5.3	Enzyme	e Induction	120
			Enzyme and Pharmacokinetic Changes	120
			Mechanisms of Enzyme Induction	122
		5.3.3	Induction Models	125
	5.4	Reaction	on Phenotyping	126
			Experimental Considerations	127
			Data Interpretation and Integration	128
		5.4.3	Clinical Evaluation	129
		Referer	nces	130
6	Dru	g Trans	porters in Drug Disposition, Drug Interactions,	
		_	desistance	137
	Cina	y Q. Xia,	Johnny J. Yang, and Suresh K. Balani	
	6.1	Introdu	ection	137
	6.2	Roles o	of Transporters in Drug Disposition	
		and To		139
		6.2.1	Transporters in Drug Absorption	139
		6.2.2	Transporters in Drug Distribution	148
		6.2.3	Transporters in Drug Metabolism	150
			Transporters in Drug Excretion	150
			Transporters in Toxicity	153
	6.3		orters in Drug Resistance	154
	6.4		orphism of Transporters and Interindividual Variation	157
	6.5		orters in Drug-Drug or Drug-Food Interactions	158
			Oral Absorption	171
			Brain Penetration	172
			Renal Excretion and Hepatic Clearance	172
			Food Effect	173
			Formulation Effect	174
			In vitro–In vivo Correlation	175
	6.6		ds to Evaluate Transporter Substrate, Inhibitor,	177
		or Indu		176
			In vitro Models	176
			In situ/Ex vivo Models	182
	67		In vivo Models	182
	6.7	Referer	sions and Perspectives	184 185
_	-			103
7	_	-	Considerations of Drug Metabolism and action Studies	203
		_	i and Mingshe Zhu	203
	7.1	Introdu		203
	7.1		tory Guidances Relevant to Drug Metabolism	203
	,	7.2.1	Toxicokinetic Studies	206
			Use of Radiolabeled Materials	207

CONTENTS ix

		7.2.3	Metabolite Safety Assessment	207		
		7.2.4	Drug-Drug Interaction Studies	208		
		7.2.5	Analytical Method Validation and Compliance	209		
		7.2.6	Regulatory Submission Format and Content	210		
	7.3	Metab	olism Studies Relevant to Metabolite Safety Assessment	211		
		7.3.1	Goals and General Strategies	211		
		7.3.2	In vitro Metabolite Profiling Studies	212		
		7.3.3	ADME Studies	213		
		7.3.4	Analytical Methods for Metabolite Profiling	213		
		7.3.5	Special Considerations	214		
	7.4	Drug-	Drug Interaction Studies	218		
		7.4.1	General Strategies	218		
		7.4.2	In vivo Studies	226		
		7.4.3	Case Study	230		
	7.5	Concl	usions	231		
		Ackno	owledgment	232		
		Refere	ences	232		
PΔ	RT	II RO	LE OF DRUG METABOLISM IN THE			
1 1.						
			MANIFEDE ITEME INDUSTRI	237		
8	Dru	g Meta	bolism Research as an Integral Part of the			
			overy Process	239		
		_	Sumphreys			
	8.1	Introd		239		
	8.2		olic Clearance	240		
			General	240		
			Prediction of Human Clearance	241		
			In vivo Methods to Study Metabolism	242		
		8.2.4	6 6	243		
		8.2.5	•	244		
	8.3		olite Profiling	245		
	8.4		on Phenotyping	246		
	8.5		sment of Potential Toxicology of Metabolites	246		
		8.5.1		246		
		8.5.2		248		
		8.5.3	Toxicology Mediated Through Metabolite Interaction			
			with Off-Target Receptors	249		
	8.6		sment of Potential for Active Metabolites	249		
		8.6.1	Detection of Active Metabolites During Drug Discovery	251		
		8.6.2	Methods for Assessing and Evaluating the Biological			
			Activity of Metabolites	252		
		8.6.3	Methods for Generation of Metabolites	253		

x CONTENTS

	8.7	Summ	ary	253
		Refere	· ·	254
9	Role	of Dru	ug Metabolism in Drug Development	261
	Rame	aswamy	Iyer and Donglu Zhang	
	9.1	Introd	uction to the Role of Drug Metabolism in Drug Development	261
		9.1.1		261
		9.1.2	Drug Metabolism and Issue Resolution	262
		9.1.3	Drug Metabolism and Regulatory Requirements	263
	9.2	Stagin	g and Types of Drug Metabolism Studies in Drug	
		Develo	ppment	265
	9.3		ADME Studies	266
			Use of Radiolabeled Compound in ADME Studies	267
		9.3.2	Tissue Distribution Study to Support the Human	
			ADME Study	268
			Nonclinical and Clinical ADME Studies	268
	9.4		olites in Safety Testing (MIST)	273
	9.5		o Drug Metabolism Studies in Drug Development	274
		9.5.1		275
		9.5.2		275
			Evaluation of CYP Inhibition	277
	0.6		Evaluation of CYP Induction	278
	9.6	9.6.1	ples of Role of Drug Metabolism to Address Safety Issues	278
		9.0.1	Rat-Specific Toxicity of Efavirenz Caused by Species-Specific Bioactivation	279
		9.6.2		219
		9.0.2	HIV Protease Inhibitors	279
		9.6.3		21)
		7.0.5	Gemfibrozil Glucuronide	280
	9.7	Impac	t of Metabolism Information on NDA	200
	<i>>.,</i>	-	and Labeling	281
		Refere		281
PA	ART 1		NALYTICAL TECHNIQUES IN DRUG	•0=
		M	ETABOLISM	287
10	Ann	lication	ns of Liquid Radiochromatography Techniques in	
			bolism Studies	289
	Ming	she Zhu	, Weiping Zhao, and W. Griffith Humphreys	
	10.1	Intro	duction	289
	10.2		tional Radiochromatography Techniques	290
			HPLC-RFD	290
		10 2 2	HPLC-LSC	291

CONTENTS xi

	10.3	New Radiochromatography Techniques	293
		10.3.1 HPLC-MSC	293
		10.3.2 Stop-Flow HPLC-RFD	298
		10.3.3 Dynamic Flow HPLC-RFD	300
		10.3.4 UPLC-Radiodetection	301
		10.3.5 HPLC-AMS	301
	10.4	Radiochromatography in Conjunction with Mass Spectron	netry 302
		10.4.1 LC-RFD-MS	302
		10.4.2 Stop-Flow and Dynamic Flow LC-RFD-MS	303
		10.4.3 LC-MSC-MS	303
		10.4.4 An Integrated Radiochromatography–Mass Spectro	ometry
		Approach	305
	10.5	Application of New Radiochromatography Techniques in	
		Drug Metabolism Studies	306
		10.5.1 Profiling of Radiolabeled Metabolites in Plasma	306
		10.5.2 Analysis of Metabolites of Nonradiolabeled Drugs	
		Using Radiolabeled Cofactors or Trapping Agents	
		10.5.3 Determination of Structures and Formation Pathwa	
		of Sequential Metabolites	308
		10.5.4 Enzyme Kinetic Studies	310
	10.6	Summary	313
		References	313
11	App	olication of Liquid Chromatography/Mass Spectrometry	
		Metabolite Identification	319
	Shugi	guang Ma and Swapan K. Chowdhury	
	11.1	Introduction	319
		LC/MS Instrumentation	320
		11.2.1 High Performance Liquid Chromatography (HPLC	
		11.2.2 Atmospheric Pressure Ionization Methods	321
		11.2.3 Mass Analyzers	325
		11.2.4 Tandem Mass Spectrometry	329
	11.3	Metabolite Identification—Role of LC/MS	329
		11.3.1 Metabolite Characterization in Drug Discovery	329
		11.3.2 Metabolite Identification in Preclinical and	
		Clinical Development	337
	11.4	Techniques for Improving Metabolite Detection and	
		Identification	339
		11.4.1 Chemical Derivatization	339
		11.4.2 Stable Isotope Labeling	340
		11.4.3 Hydrogen/deuterium (H/D) Exchange MS	341
			342
		11.4.4 Accurate Mass Measurement 11.4.5 Nanospray Ionization (NSI) MS for	

xii CONTENTS

	11.5	Software-Assisted Metabolite Identification	345
		11.5.1 Data-Dependent Acquisition (DDA)	345
		11.5.2 Mass Defect Filter (MDF)	346
	11.6	Additional MS-Related Techniques for Metabolite	
		Identification	348
		11.6.1 LC/NMR/MS	348
		11.6.2 LC/ICPMS	349
	11.7	Characterization of Unstable Metabolites	349
		11.7.1 Glucuronides	349
		11.7.2 <i>N</i> -Oxides	350
		11.7.3 Differentiation of Molecular Ions from In-Source Fragment	
		Ions by the Presence of Alkali Adducts	352
	11.8	Detection and Characterization of Reactive Metabolites and	
		Intermediates	353
		11.8.1 Trapping Reactive Metabolites	353
		11.8.2 Screening for Glutathione Conjugates	354
	11.9	Conclusions and Future Directions	357
		Acknowledgments	359
		References	359
12		oduction to NMR and Its Application in Metabolite cture Determination	369
12	Stru Xiaoi		369
12	Stru Xiaol and	cture Determination hua Huang, Robert Powers, Adrienne Tymiak, Robert Espina,	369
12	Xiaoi and V	cture Determination hua Huang, Robert Powers, Adrienne Tymiak, Robert Espina, Vikram Roongta	
12	Xiaoi and 12.1 12.2	cture Determination hua Huang, Robert Powers, Adrienne Tymiak, Robert Espina, Vikram Roongta Introduction	369
12	Xiaoi and V 12.1 12.2 12.3	cture Determination hua Huang, Robert Powers, Adrienne Tymiak, Robert Espina, Vikram Roongta Introduction Theory	369 370
12	Xiaoi and V 12.1 12.2 12.3	cture Determination hua Huang, Robert Powers, Adrienne Tymiak, Robert Espina, Vikram Roongta Introduction Theory NMR Hardware	369 370 372
12	Xiaoi and V 12.1 12.2 12.3	Introduction Theory NMR Hardware NMR Observables 12.4.1 Chemical Shifts 12.4.2 Coupling Constants	369 370 372 373
12	Xiaon and 12.1 12.2 12.3 12.4	cture Determination hua Huang, Robert Powers, Adrienne Tymiak, Robert Espina, Vikram Roongta Introduction Theory NMR Hardware NMR Observables 12.4.1 Chemical Shifts 12.4.2 Coupling Constants 12.4.3 Integration	369 370 372 373 377
12	Xiaon and V 12.1 12.2 12.3 12.4	Introduction Theory NMR Hardware NMR Observables 12.4.1 Chemical Shifts 12.4.2 Coupling Constants 12.4.3 Integration Sample Requirements for NMR	369 370 372 373 377 377 379 380
12	Xiaon and V 12.1 12.2 12.3 12.4	Introduction Theory NMR Hardware NMR Observables 12.4.1 Chemical Shifts 12.4.2 Coupling Constants 12.4.3 Integration Sample Requirements for NMR Most Commonly Used NMR Experiments and Techniques	369 370 372 373 377 377 380 381
12	Xiaon and V 12.1 12.2 12.3 12.4	Introduction Theory NMR Hardware NMR Observables 12.4.1 Chemical Shifts 12.4.2 Coupling Constants 12.4.3 Integration Sample Requirements for NMR Most Commonly Used NMR Experiments and Techniques 12.6.1 1D NMR Experiments	369 370 372 373 377 379 380 381 381
12	Xiaon and V 12.1 12.2 12.3 12.4	Introduction Theory NMR Hardware NMR Observables 12.4.1 Chemical Shifts 12.4.2 Coupling Constants 12.4.3 Integration Sample Requirements for NMR Most Commonly Used NMR Experiments and Techniques 12.6.1 1D NMR Experiments 12.6.2 2D NMR Experiments	369 370 372 373 377 379 380 381 381 382
12	Xiaon and V 12.1 12.2 12.3 12.4	Introduction Theory NMR Hardware NMR Observables 12.4.1 Chemical Shifts 12.4.2 Coupling Constants 12.4.3 Integration Sample Requirements for NMR Most Commonly Used NMR Experiments 12.6.1 1D NMR Experiments 12.6.2 2D NMR Experiments 12.6.3 Solvent Suppression Techniques	369 370 372 373 377 379 380 381 381 382 385
12	Xiaoi and 12.1 12.2 12.3 12.4 12.5 12.6	Introduction Theory NMR Hardware NMR Observables 12.4.1 Chemical Shifts 12.4.2 Coupling Constants 12.4.3 Integration Sample Requirements for NMR Most Commonly Used NMR Experiments and Techniques 12.6.1 1D NMR Experiments 12.6.2 2D NMR Experiments 12.6.3 Solvent Suppression Techniques 12.6.4 Hyphenated NMR Methods	369 370 372 373 377 379 380 381 381 382
12	Xiaoi and 12.1 12.2 12.3 12.4 12.5 12.6	Introduction Theory NMR Hardware NMR Observables 12.4.1 Chemical Shifts 12.4.2 Coupling Constants 12.4.3 Integration Sample Requirements for NMR Most Commonly Used NMR Experiments and Techniques 12.6.1 1D NMR Experiments 12.6.2 2D NMR Experiments 12.6.3 Solvent Suppression Techniques 12.6.4 Hyphenated NMR Methods General protocol for NMR Analysis of Unknown Compounds	369 370 372 373 377 379 380 381 381 382 385 387
12	Stru Xiaoi and 12.1 12.2 12.3 12.4 12.5 12.6	Introduction Theory NMR Hardware NMR Observables 12.4.1 Chemical Shifts 12.4.2 Coupling Constants 12.4.3 Integration Sample Requirements for NMR Most Commonly Used NMR Experiments and Techniques 12.6.1 1D NMR Experiments 12.6.2 2D NMR Experiments 12.6.3 Solvent Suppression Techniques 12.6.4 Hyphenated NMR Methods General protocol for NMR Analysis of Unknown Compounds or Metabolites	369 370 372 373 377 379 380 381 381 382 385
12	Stru Xiaoi and 12.1 12.2 12.3 12.4 12.5 12.6	Introduction Theory NMR Hardware NMR Observables 12.4.1 Chemical Shifts 12.4.2 Coupling Constants 12.4.3 Integration Sample Requirements for NMR Most Commonly Used NMR Experiments and Techniques 12.6.1 1D NMR Experiments 12.6.2 2D NMR Experiments 12.6.3 Solvent Suppression Techniques 12.6.4 Hyphenated NMR Methods General protocol for NMR Analysis of Unknown Compounds or Metabolites Examples of Metabolite Structure Determination from	369 370 372 373 377 379 380 381 381 382 385 387
12	Stru Xiaoi and 12.1 12.2 12.3 12.4 12.5 12.6	Introduction Theory NMR Hardware NMR Observables 12.4.1 Chemical Shifts 12.4.2 Coupling Constants 12.4.3 Integration Sample Requirements for NMR Most Commonly Used NMR Experiments and Techniques 12.6.1 1D NMR Experiments 12.6.2 2D NMR Experiments 12.6.3 Solvent Suppression Techniques 12.6.4 Hyphenated NMR Methods General protocol for NMR Analysis of Unknown Compounds or Metabolites	369 370 372 373 377 379 380 381 381 382 385 387

CONTENTS xiii

PA	RT I		OMMON EXPERIMENTAL APPROACHES ND PROTOCOLS	411
13	Dete	rminat	ion of Metabolic Rates and Enzyme Kinetics	413
	Zhi-Y	i Zhang	and Laurence S. Kaminsky	
	13.1	Introdu	action	413
			nination of Metabolic Stability	414
			Aims	414
		13.2.2	Experimental Procedures	415
	13.3	Charac	eterization of Enzyme Kinetics	425
		13.3.1	Basic Theory	425
			Experimental Design	426
			Determination of Kinetic Parameters	427
	13.4	_	tative Analytical Methods	432
			HPLC/UV/FL	432
			LC/MS/MS	432
	13.5		tion of Human Hepatic Clearance	434
			Aims	434
			Procedure of <i>In vitro–In vivo</i> Correlation	435
			Examples	438
		Refere	viations	439 441
14	Pote	ntial of	or Assessment of <i>In vitro</i> and <i>In vivo</i> Bioactivation f Drug Candidates	447
		_	ang and Jinping Gan	
	14.1		hione, N-Acetylcysteine, and Potassium Cyanide as	
			ng Agents	450
			Introduction	450
		14.1.2	Detection of Glutathione/N-Acetylcysteine or Cyano Adduct	
		1412	Using Ion-Trap Mass Spectrometer	452
		14.1.3	Protocol for Detection of Glutathione or Cyano Adducts Using Constant Neutral Loss Scanning of	
			Triple Quadrupole Mass Spectrometer	455
		14 1 4	Protocol for Qualitative and Quantitative Analysis	433
			of Thiol Adducts Using Dansyl Glutathione (dGSH)	457
			Notes	460
	14 2		ols for <i>In vitro</i> and <i>In vivo</i> Covalent Protein Binding Studies	461
	11.2		Introduction	461
			Protocol for <i>In vitro</i> Covalent Protein Binding in Human	.01
			or Rat Liver Microsomes—A Test-Tube Method	462
		14.2.3	Protocol for <i>In vitro</i> Covalent Protein Binding in Human	
			or Rat Hepatocytes	464

xiv CONTENTS

		14.2.4	Protocol for <i>In vitro</i> Covalent Protein Binding in Human or Rat Liver Microsomes—A Semiautomated Method	464
		14.2.5	Protocol For <i>In vivo</i> Covalent Protein Binding in Rats	465
			Notes	466
	14.3		ol for Measurement of Intracellular GSH and GSSG	
			ntrations in Hepatocytes	467
			Introduction	467
			Measurement of Intracellular GSH/GSSG in	
			Hepatocytes	469
	14.4	Perspe	* •	470
		-	wledgments	472
		Refere	•	472
15	Read	ction Pl	henotyping	477
	Susar	ı Hurst,	J. Andrew Williams, and Steven Hansel	
	15.1	Introdu	action	477
	15.2	Cytoch	nrome P450 Reaction Phenotyping	479
	15.3	Noncy	tochrome P450 Reaction Phenotyping	481
		15.3.1	Flavin-Containing Monooxygenases	481
		15.3.2	Monoamine Oxidases A and B (MAO-A and	
			MAO-B)	482
		15.3.3	Esterases	483
	15.4	Conjug	gation Phenotyping	484
		15.4.1	UGT Reaction Phenotyping	484
			N-Acetylation Reaction Phenotyping	487
		15.4.3	Sulfation Reaction Phenotyping	488
		-	orter Phenotyping	488
	15.6	Nonrac	diolabeled Reaction Phenotyping	489
			Objective	489
			Selection of Appropriate Experimental Systems	489
			Experimental Approach Considerations	491
			Selection of Appropriate Experimental Designs	493
		15.6.5	Quantitative Reaction Phenotyping: Expressed or Purified	
			Enzyme Systems	497
	15.7		abeled Reaction Phenotyping	499
		15.7.1	Quantitative In vitro Radiolabeled Reaction	
			Phenotyping Studies	500
			In vivo Quantitative ADME Studies	501
			Drug-Drug Interaction Potential	502
			Specialized Clinical Studies	504
	15.8		ary and Future Directions	504
			wledgments	504
		Refere	nces	505

CONTENTS xv

	ppendix A: Reaction Phenotyping—Expressed cDNA	
	nzyme Incubation Method Sheet	511
	ppendix B: Reaction Phenotyping—Microsomal	
	hemical Inhibition	512
16	analysis of In vitro Cytochrome P450 Inhibition in Drug	
	Discovery and Development	513
	Magang Shou and Renke Dai	
	6.1 Introduction	513
	6.2 Reversible Inhibition	515
	16.2.1 Materials and Reagents	516
	16.2.2 Instrument	516
	16.2.3 Optimization of Kinetic Reaction	517
	16.2.4 LC/MS/MS Analysis	520
	16.2.5 Automated Sample Preparation and Incubation	521
	16.2.6 Data Analysis	523
	6.3 Irreversible Inhibition	526
	16.3.1 Kinetic Model for Mechanism-Based Inhibition	528
	16.3.2 Measurements of Kinetic Parameters	529
	16.3.3 General Incubation Procedure and Sample Preparation	531
	16.3.4 Data Analysis	532
	6.4 Fluorescent Assay	532
	6.5 Prediction of Human Drug–Drug Interactions from <i>In vitro</i>	
	CYP Inhibition Data	534
	16.5.1 Reversible CYP Inhibition	534
	16.5.2 Prediction of Human Drug–Drug Interactions	
	from Mechanism-Based CYP Inhibition	535
	16.5.3 Factors Affecting the Prediction of Drug–Drug Interactions	537
	6.6 Conclusion	538
	Acknowledgment	538
	References	538
	References	336
17	esting Drug Candidates for CYP3A4 Induction	545
1,	ang Luo, Liang-Shang Gan, and Thomas M. Guenthner	343
	ung Luo, Lung-Shang Gan, and Thomas in. Guenimier	
	7.1 Introduction	545
	7.2 Assessments	548
	17.2.1 Assessment of Induction Potential Using Intact	
	Animal Models	548
	17.2.2 Assessment of Induction Potential Using In vitro Models	552
	17.2.3 Direct Assessment of CYP3A4 Induction In vivo	
	in Humans	562
	7.3 Final Comments	565
	References	566

xvi CONTENTS

18		ME Studies in Animals and Humans: Experimental Design, abolite Profiling and Identification, and Data Presentation	573			
	Donglu Zhang and S. Nilgun Comezoglu					
	18.1 Objectives, Rational, and Regulatory Compliance					
	18.2	Study Designs	575			
		18.2.1 Choice of Radiolabel	575			
		18.2.2 Preparation of Animals and Human Subjects	576			
		18.2.3 Dose Selection, Formulation, and Administration	578			
		18.2.4 In-Life Studies in Animals and Humans and				
		Sample Collection/Pooling	579			
	18.3	Sample Analysis	580			
		18.3.1 Sample Preparation: Plasma, Urine, Bile, and Feces	580			
		18.3.2 Radioactivity Determination	581			
		18.3.3 LC/MS/MS Quantification and Pharmacokinetic Analysis	582			
		18.3.4 Metabolite Profiling	583			
		18.3.5 Metabolite Identification	584			
		18.3.6 Metabolite Isolation from <i>In vivo</i> Samples				
		and Generation in Bioreactors	585			
	18.4	Data Presentation Using Metabolism of [14C]Muraglitazar as				
		an Example	586			
		18.4.1 Pharmacokinetic Results and Excretion of				
		Radioactivity	586			
		18.4.2 Metabolite Profiling in Plasma, Urine, Bile, and Feces	591			
		18.4.3 Metabolite Identification by LC/MS/MS	594			
	18.5	Conclusions and Path Forward	597			
		Acknowledgments	597			
		Appendix A: Rat Tissue Distribution and Dosimetry Calculation	597			
		References	602			
Inc	lex		605			

PREFACE

Information on the metabolism and disposition of candidate drugs has become a critical part of all aspects of the drug discovery and development process. This comprehensive involvement of drug metabolism information has been brought about by a desire for quality design at an early stage, sometimes referred to as designing good "developability" characteristics, and then to work proactively with clinical and safety organizations to impact the design of the various development programs. This desire is driven by the need to reduce attrition rates as a means to effectively lower the cost of drug development.

Drug metabolism information in the early stages of discovery can help guide medicinal chemistry efforts toward optimization of preclinical safety and efficacy properties. This approach can be made even more effective with the active involvement of other disciplines such as pharmaceutics and toxicology. Candidates can be optimized by examining a variety of parameters beyond potency and efficacy. During the development stages drug metabolism information can help guide drug—drug interaction and special population clinical studies. Metabolism information is also critical for designing toxicology studies to that ensure the safety of metabolites is adequately tested and can also be a key part of addressing whether toxicology found in animals is likely to translate to humans.

Drug metabolism, as practiced in the pharmaceutical industry, is a multidisciplinary field that requires knowledge of analytical technologies, expertise in mechanistic and kinetic enzymology, organic reaction mechanism, pharmacokinetic analysis, animal physiology, basic chemical toxicology, preclinical pharmacology, and molecular biology. Scientists entering the field from academia often receive coursework in many of the above areas, but have usually focused the bulk of their research efforts on only one of above mentioned fields. It often requires a number of years of practice for a new scientist to gain a comprehensive understanding of all the disciplines necessary to apply drug metabolism knowledge effectively to the drug discovery and development processes.

This book offers background information as well as practical descriptions of what happens during the drug design and development process. Emphasis will be

xviii PREFACE

placed on issues such as what data are needed, what experiments and analytical methods are typically employed, and how to interpret and apply data. The chapters of this book will highlight facts, detailed experimental designs, applications, and limitations of techniques.

The book was not intended to be a collection of individual reviews, rather a coherent integration of all relevant background information as well as detail of the experimental strategies and processes necessary for drug metabolism research during drug design and development. Authors aimed at providing a balanced, comprehensive perspective on their subject matter and were encouraged to include a full range of experimental approaches. The book contains four parts that should serve to integrate the entire process: Part I, Basic Concepts of Drug Metabolism; Part II, Role of Drug Metabolism in Pharmaceutical Industry; Part III, Analytical Techniques in Drug Metabolism; Part IV, Common Experimental Approaches and Protocols. This structure should provide a valuable resource to researchers seeking to broaden their knowledge of drug metabolism science as practiced in the modern pharmaceutical industry.

Donglu Zhang Mingshe Zhu Griff Humphreys

CONTRIBUTORS

- **Upendra Argikar,** Metabolism and Pharmacokinetics Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Inc., 250 Massachusetts Avenue, Cambridge, MA 02139 upendra.argikar@novartis.com
- **Suresh K. Balani,** DMPK/NCDS, Millennium Pharmaceuticals, Inc., 40 Landsdowne St., Cambridge, MA 02139 suresh.balani@mpi.com
- **Swapan K. Chowdhury,** Department of Drug Metabolism and Pharmacokinetics, Schering-Plough Research Institute, 2015 Gal-loping Hill Road, Kenilworth, NJ 07033 swapan.chowdhury@spcorp.com
- **S. Nilgun Comezoglu,** Bristol-Myers Squibb Co., P.O. Box 4000 Mailstop: LVL F13-02, Princeton, NJ 08543 s.nilgun.comezoglu@bms.com
- **Renke Dai,** Preclinical Research Department, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Science Park, China 510663 dai_renke@qibh.ac.cn
- **Robert Espina,** Wyeth Research, 500 Arcola Road, Collegeville, PA 19426 espinaj @wyeth.com
- **Jinping Gan,** Bristol-Myers Squibb Co., P.O. Box 4000 Mailstop: LVL MS 17-2.12, Princeton, NJ 08543 Jinping.gan@bms.com
- **Liang-Shang** (**Lawrence**) **Gan**, Drug Metabolism and Pharmacokinetics Drug Discovery Support, Boehringer-Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Rigdefield, CT 06877 gan@rdg.boehringer-ingelheim.com
- **Scott J. Grossman,** Bristol-Myers Squibb Co., P.O. Box 4000 Mailstop: LVL D2-497, Princeton, NJ 08543 scott.grossman@bms.com
- **F. Peter Guengerich,** Vanderbilt University School of Medicine, Center in Molecular Toxicology, 638 Robinson Research Building, 23rd & Pierce Avenues, Nashville, TN 37232-0146 f.guengerich@vanderbilt.edu

xx CONTRIBUTORS

Thomas M. Guenther, Department of Pharmacology, College of Medicine, University of Illinois at Chicago, 835 South Wolcott Avenue, Chicago, IL 60612 tmg@uic.edu

- **Steven Hansel,** Pfizer, Global Department of Pharmacodynamics, Dynamics, and Metabolism, 2800 Plymouth Road, Ann Arbor, Ml 48105 Steven.hansel@pfizer.com
- **Xiaohua Huang,** Bristol Myers Squibb Co., 5 Research Parkway, Wallingford, CT 06492 xiaohua.huang@bms.com
- **W. Griffith Humphreys,** Bristol-Myers Squibb, P.O. Box 4000 Mailstop: LVL F13-04, Princeton, NJ 08543 william.humphreys@bms.com
- **Susan Hurst,** Pfizer, Global Department of Pharmacodynamics, Dynamics, and Metabolism, 2800 Plymouth Road, Ann Arbor, Ml 48105 susan.hurst@pfizer.com
- **Ramaswamy Iyer,** Britstol-Myers Squibb Co., P.O. Box 4000 Mailstop: LVL F13-07, Princeton, NJ 08543 Ramaswamy.iyer@bms.com
- **Laurence S. Kaminsky,** Laboratory of Human Toxicology and Molecular Epidemiology, Wadsworth Center, P.O. Box 509, Albany, NY 12201 kaminsky@wadsworth.org
- **Gang Luo,** Metabolism and Pharmacokinetics, Bristol-Myers Squibb Co., 311 Pennington Rockyhill Road, Pennington, NJ 08534 gang.luo@bms.com
- **Shuguang Ma,** Amgen, Inc., PKDM, One Amgen Center Dr, Thousand Oaks, CA 91320 sma@amgen.com
- **Swati Nagar,** Assistant Professor, Department of Pharmaceutical Sciences, School of Pharmacy, Temple University, Philadelphia, PA 19140 swati.nagar@temple.edu
- **Robert Powers,** University of Nebraska-Lincoln, Department of Chemistry, 722 Hamilton Hall, Lincoln, NE 68588 rpowers3@unl.edu
- **Rory Remmel,** University of Minnesota, Dept of Medicinal Chemistry, 308 Harvard St SE, Minneapolis, MN 55455 remme001@tc.umn.edu
- **A. David Rodrigues,** Bristol-Myers Squibb Co., P.O. Box 4000 Mailstop: LVL F14-04, Princeton, NJ 08543 david.rodrigues@bms.com
- **Vikram Roongta,** Bristol-Myers Squibb Co., P.O. Box 4000, Princeton, NJ 08543 vikram.roongta@bms.com
- Magang Shou, Amgen, Inc., Department of Pharmacokinetics and Drug Motabolism, One Amgen Center Drive, Thousand Oaks, CA 91320-1799 mshou@amgen.com
- **Michael W. Sinz,** Bristol-Myers Squibb Co., 5 Research Parkway, Mailstop: WFD 3AB-525, Wallingford, CT 06492 michael.sinz@bms.com

CONTRIBUTORS xxi

Adrienne Tymiak, Bristol-Myers Squibb Co., P.O. Box 4000, Princeton, NJ 08543 Adrienne.tymiak@bms.com

- **Timothy S. Tracy,** Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, 7-115B Weaver-Densford Hall, 308 Harvard St. SE, Minneapolis, MN 55455 tracy017@umn.edu
- Xiaoxiong "Jim" Wei, Office of Clinical Pharmacology, Food and Drug Administration, WO Bldg 21, Room 4660, 10903 New Hampshire Ave, Silver Spring, MD 20993 Xiaoxiong.wei@fda.hhs.gov
- **J. Andrew Williams,** Pfizer, Global Department of Pharmacodynamics, Dynamics, and Metabolism, 2800 Plymouth Road, Ann Arbor, Ml 48105 James Williams2@pfizer.com
- Cindy Q. Xia, DMPK/NCDS, Millennium Pharaceuticals, Inc., 40 Landsdowne St., Cambridge, MA 02139 Cindy.Xia@mpi.com
- **Johnny J. Yang,** DMPK/NCDS, Millennium Pharmaceuticals, Inc., 40 Landsdowne St., Cambridge, MA 02139 johnny.yang@mpi.com
- **Donglu Zhang**, Bristol-Myers Squibb Co., P.O. Box 4000 Mailstop: LVL F13-09, Princeton, NJ 08543 donglu.zhang@bms.com
- **Hongjian Zhang,** Bristol-Myers Squibb Co., P.O. Box 4000 Mailstop: LVL F13-07, Princeton, NJ 08543 hongjian.zhang@bms.com
- **Zhi-Yi Zhang,** Drug Disposition Department, Eisal Research Institute, 4 Corporate Drive, Andover, MA 01810 zhi-yi zhang@eri.eisai.com
- Weiping Zhao, Bristol-Myers Squibb Co., P.O. Box 4000 Mailstop: LVL F13-01, Princeton, NJ 08543 Weiping.zhao@bms.com
- **Zhoupeng Zhang,** Merck & Co. Inc., 126 E. Lincoin Avenue, Rahway, NJ 07065 zhoupeng.zhang@merck.com
- **Mingshe Zhu,** Bristol-Myers Squibb Co., P.O. Box 4000 Mailstop: LVL F13-01, Princeton, NJ 08543 mingshe.zhu@bms.com

PART I

BASIC CONCEPTS OF DRUG METABOLISM

OVERVIEW: DRUG METABOLISM IN THE MODERN PHARMACEUTICAL INDUSTRY

SCOTT J. GROSSMAN

1.1 INTRODUCTION

It is interesting to contrast contemporary pharmaceutical biotransformation with that practiced by R.T. Williams. The fundamental objectives are virtually unchanged, to characterize the disposition of a drug in animals. In addition, then and now the routes of excretion and overall molecular transformation are still, arguably, the most important aspects of the discipline. However, in the intervening years the scope of technological advancement, scientific breadth of knowledge, and range of impact has expanded in a manner that could not have been foreseen. This chapter will give an overview of biotransformation as it is practiced in the pharmaceutical industry today.

The role of any pharmaceutical biotransformation scientist is to characterize the disposition of a drug to relate this to overall safety and efficacy. The range of information needed to characterize overall disposition is so broad that it is unlikely any single scientist will accomplish the entire *characterization* alone. However, it is critically important that the entire disposition process is thoroughly understood, and then intelligently integrated with other pertinent aspects of the drug's behavior. The history of contemporary pharmaceutical industry is replete with examples of how the lack of fundamental scientific knowledge (e.g., mechanism and effects of enzyme induction), appreciation

Drug Metabolism in Drug Design and Development, Edited by Donglu Zhang, Mingshe Zhu and W. Griffith Humphreys

Copyright © 2008 John Wiley & Sons, Inc.

of known metabolic effects (e.g., metabolic activation to toxic reactive metabolites), or incomplete integration of existing information (e.g., drugdrug interactions) led to drastically adverse outcomes. It could be argued that proper integration of information is both more difficult and important than the process of collecting the data itself. Thus, the challenge to the scientist today is to be able to comprehend decades of scientific knowledge, master an array of sophisticated technology, and integrate a diverse range of information to form a sound understanding of a drug's ultimate clinical behavior.

1.2 TECHNOLOGY

There is now an awe-inspiring array of technology available to aid the study of drug disposition. Consider that what once may have taken Williams nearly 6 months to accomplish, might only take about 20 min for a contemporary biotransformation scientist. This modern armamentarium has done much to integrate the power of biotransformation into pharmaceutical discovery and development. However, this tremendous evolution in technology presents its own set of dilemmas.

Taking full advantage of any technology requires an understanding of the technology itself. Fortunately, software and hardware engineering have greatly simplified common use of very sophisticated technologies. The LC/MS/MS instrument today is as common as the HPLC diode array UV instrument 15 years ago. This easy accessibility was greatly facilitated through robust instrument design and great software engineering.

Increasingly, the dilemma is not so much instrument access, as it is a thoughtful choice of exactly what experimental approaches and technology should be chosen to answer the question at hand. The biotransformation scientist is obliged to stay aware of technological innovations of all sorts, including instrumentation. However, the ultimate challenge should always be how to answer the most critical questions in the soundest way. True mastery of technology allows the scientific approach to follow naturally. The temptation to throw technological "sleights of hand" at a problem is often hard to resist.

Every technology has its inherent limits. Often, the specificity that enables prodigious sensitivity can also be a powerful filter of other important information. A rigorous biotransformation scientist is able to stand back and thoughtfully interrogate the strength of her own conclusions, including the technological blind spots of the approach. With thoughtful consideration, complementary technology may be applied judiciously to either flesh out a previous area of ambiguity or address the question from an entirely different perspective. In either case, scientific credibility is served well.

1.3 BREADTH OF SCIENCE

1.3.1 Chemistry

Biotransformation is fundamentally a chemical process. Likewise, the most frequently employed and valuable studies make heavy use of analytical and bioorganic chemistry. Over time, the underlying technology has become sufficiently complex that subspecialization in individual analytical techniques is common. For example, nuclear magnetic resonance spectroscopy (NMR) is invaluable for many unambiguous metabolite structural assignments. In most pharmaceutical companies, NMR specialists are employed to completely master the various facets of the technology. In many cases, these scientists will create sophisticated coupling and decoupling sequences to provide highly specific structural information. Often, their training also makes them most qualified to interpret all forms of NMR spectroscopic data. However, the "complete" biotransformation scientist will, at a minimum, know how to employ NMR spectroscopy to advance their structural understanding of a metabolite. Increasingly, the use of heteronuclear decoupling experiments is considered almost routine in the art.

Furthermore, biotransformation scientists are often fully capable of interpreting the spectra to deduce structure and are also able to recognize when such spectra still leave absolute structural assignments tentative. When one then considers the broader range of additional spectroscopic and chromatographic techniques employed in biotransformation studies, one soon recognizes the degree of technical sophistication required to be an effective biotransformation scientist.

Often, the definitive elucidation of a molecule's metabolic pathway is considered the ultimate goal of biotransformation studies. Proper application of analytical techniques, for the most part, will often be sufficient to achieve this goal. However, as often as it is "good enough" to simply define what has happened to a molecule, there are probably twice as many instances where it is also important to understand how these changes happened. The best biotransformation scientists are usually good "electron pushers." That is, their knowledge of bioorganic chemistry allows them to understand the mechanism of the molecular rearrangements taking place in each biotransformation process. They are able to both rationalize most biotransformations in a mechanistic sense and recognize when a proposed metabolite structure seems untenable. It is not uncommon to encounter a set of spectroscopic data that seems quite inconsistent with the parent molecule. In these cases, the fundamental principles of bioorganic chemistry are employed to rationalize putative structures that would be consistent with the data.

Increasingly, the roles of medicinal chemists and biotransformation scientists intersect in the discipline of bioorganic chemistry. Frequently, they share a mutual interest in decreasing metabolic liability through structural modification as well as avoiding creation of reactive metabolites

through informed molecular design. Fortunately, their common understanding of bioorganic chemistry also greatly facilitates the intelligent redesign of structures to mitigate these liabilities. At its best, this requires the best of both disciplines and each scientist can develop a deeper fundamental understanding of the other's craft.

1.3.2 Enzymology and Molecular Biology

Although each of these disciplines could be discussed separately, for the contemporary biotransformation scientist these areas are intimately intertwined. Since biotransformations are enzyme mediated, complete understanding of xenobiotic disposition is only achieved when one also considers the role and impact of the individual enzymes involved.

Enzymological techniques allow the study of individual enzymatic reactions as well as the role of individual enzymes in complex systems. Each of the questions "What happens?" "What enzymes contribute?" "How does it happen?" will require separate techniques. It is not unusual to ask and answer these questions in a very short period of time. This obviously requires a certain degree of breadth, versatility, and flexibility along with a fundamentally strong understanding of the literature.

Cells and subcellular fractions from humans and many preclinical species are readily available. These reagents make it possible to make interspecies extrapolations easily. At one time, a major reason cited for early drug attrition was pharmacokinetic failure, attributable to the difficulty in extrapolating pharmacokinetic behavior from animals to humans. In this author's experience, unexpected pharmacokinetic performance in humans is now a rare event. In addition, it is now commonplace to obtain very mechanistic information revealing the probability of observing quite specific molecular events (e.g., toxicity) in humans (Mutlib et al., 2000).

While the availability of trans-species enzyme systems has had a major impact, advances in molecular biology have also enabled the query of increasingly sophisticated questions. Molecular biological methods have made it possible to clone and express enzymes to study reactions at a molecular level. This has improved our ability to study enzyme reactions at a fine molecular level, to discern the contributions of individual enzymes in complex systems, and even to employ them as "bioreactors" to generate small quantities of metabolite standards.

The basis for many metabolizing enzyme polymorphisms is becoming better understood, allowing one to anticipate potential interindividual disposition differences. Molecular biological techniques have defined the basis for polymorphisms and have described the distribution of the variants in a population. It is now quite easy to discern whether a drug may behave differently in one individual compared to another and to even exclude anticipated poor responders from trials in a controlled fashion (Murphy et al., 2000).