
QUINAZOLINES

Supplement I

D. J. Brown

Research School of Chemistry
Australian National University
Canberra

AN INTERSCIENCE® PUBLICATION

JOHN WILEY & SONS, INC.

NEW YORK • CHICHESTER • BRISBANE • TORONTO • SINGAPORE • WEINHEIM

QUINAZOLINES

Supplement I

This is the fifty-fifth volume in the series

THE CHEMISTRY OF HETEROCYCLIC COMPOUNDS

THE CHEMISTRY OF HETEROCYCLIC COMPOUNDS

A SERIES OF MONOGRAPHS

EDWARD C. TAYLOR, *Editor*

ARNOLD WEISSBERGER, *Founding Editor*

QUINAZOLINES

Supplement I

D. J. Brown

Research School of Chemistry
Australian National University
Canberra

AN INTERSCIENCE® PUBLICATION

JOHN WILEY & SONS, INC.

NEW YORK • CHICHESTER • BRISBANE • TORONTO • SINGAPORE • WEINHEIM

Copyright © 1996 by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work beyond that permitted by Section 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further information should be addressed to the Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012.

Library of Congress Cataloging in Publication Data:

Brown, D. J.

Quinazolines. Supplement I / D. J. Brown.

p. cm. (This is the fifty-fifth volume in the series the

Chemistry of heterocyclic compounds)

"An Interscience publication."

Includes bibliographical references and index.

ISBN 0-471-14565-3 (cloth : alk. paper)

ISBN 13: 978-0-471-14565-3

1. Quinazoline. I. Title. II. Series: Chemistry of heterocyclic compounds; v. 55.

QD401.F96 pt. 1 Suppl.

547'.593—dc20

96-6182

10 9 8 7 6 5 4 3 2 1

*Dedicated to
the Memory of*

Arnold Weissberger
1899–1984

Zichrono livracha

This Page Intentionally Left Blank

The Chemistry of Heterocyclic Compounds

Introduction to the Series

The chemistry of heterocyclic compounds is one of the most complex and intriguing branches of organic chemistry, of equal interest for its theoretical implications, for the diversity of its synthetic procedures, and for the physiological and industrial significance of heterocycles.

The Chemistry of Heterocyclic Compounds, published since 1950 under the initial editorship of Arnold Weissberger, and later, until Dr. Weissberger's death in 1984, under our joint editorship, has attempted to make the extraordinarily complex and diverse field of heterocyclic chemistry as organized and readily accessible as possible. Each volume has traditionally dealt with syntheses, reactions, properties, structure, physical chemistry, and utility of compounds belonging to a specific ring system or class (e.g., pyridines, thiophenes, pyrimidines, three-membered ring systems). This series has become the basic reference collection for information on heterocyclic compounds.

Many broader aspects of heterocyclic chemistry are recognized as disciplines of general significance that impinge on almost all aspects of modern organic chemistry, medicinal chemistry, and biochemistry, and for this reason we initiated several years ago a parallel series entitled *General Heterocyclic Chemistry*, which treated such topics as nuclear magnetic resonance, mass spectra, and photochemistry of heterocyclic compounds, the utility of heterocycles in organic synthesis, and the synthesis of heterocycles by means of 1,3-dipolar cycloaddition reactions. These volumes were intended to be of interest to all organic, medicinal, and biochemically-oriented chemists, as well as to those whose particular concern is heterocyclic chemistry. It has, however, become increasingly clear that the above distinction between the two series was unnecessary and somewhat confusing, and we have therefore elected to discontinue *General Heterocyclic Chemistry* and to publish all forthcoming volumes in this general area in *The Chemistry of Heterocyclic Compounds* series.

This series, together with the international community of chemists concerned with heterocyclic chemistry, is indebted once again to the indefatigable efforts of Dr. D. J. Brown. His record of authoring classics in nitrogen heterocyclic chemistry (*The Pyrimidines*, *The Pyrimidines Supplement I*, *The Pyrimidines Supplement II*, *Pteridines*) is now extended by the publication of an exhaustive supplement to Wilf Armarego's initial volume on *Quinazolines*. We extend once again our congratulations and our thanks to Dr. Brown for a further outstanding contribution to the literature of heterocyclic chemistry.

Department of Chemistry
Princeton University
Princeton, New Jersey

EDWARD C. TAYLOR

This Page Intentionally Left Blank

Preface

Dr. Wilf Armarego's original volume, *Quinazolines*, appeared within this series in 1967. Not only did it represent an excellent summary of quinazoline chemistry to the end of 1965, but it clearly facilitated and stimulated considerable subsequent research in the field. Thus the need for a supplementary volume covering the last 30 years' literature has become pressing. On account of a radical change in his research interests during that period, Dr. Armarego felt disinclined to undertake such an updating task, which consequently fell to the present author, whose interests have remained broadly within this area.

Because of a great expansion in the scope of quinazoline chemistry and for other pragmatic reasons, it has been necessary to inaugurate a massive chapter on primary syntheses and to reorganize completely the content of remaining chapters so that they might better reflect and emphasize current research trends. However, the status of the present volume as a *supplement* has been maintained by sectional cross-references (e.g., H 42) to pages of the original volume (*Hauptwerk*) where earlier relevant information may be found. Moreover, in view of the vast increase in the number and types of individual quinazolines described in recent literature, it has been necessary to abandon the myriad classified tables of known quinazolines in favor of a single alphabetical table of simple quinazolines. To facilitate recovery of any earlier data from tables in the original volume, a cross-reference (e.g., H 151) has been added (when appropriate) to each individual entry in the new table. The opportunity has been taken to bring the chemical nomenclature into line with current IUPAC recommendations [*Nomenclature of Organic Chemistry, Sections A-F, H* (Eds. J. Rigauby and S. P. Klesney, Pergamon Press, Oxford, 1970)] with one important exception: in order to keep "quinazoline" as the principal part of each name, those groups that would normally qualify as principal suffixes, but that are not attached directly to the nucleus, are rendered as prefixes. For example, 2-carboxymethyl-4(3*H*)-quinazolinone is used instead of α -(4-oxo-3,4-dihydro-2-quinazolinyl)acetic acid. Secondary or tertiary amino groups are rendered invariably as prefixes. Trivial names, still occasionally used for some naturally occurring oxyquinazolines, are included as appropriate in the table of simple quinazolines and/or in Section 4.8.4. Finally, to avoid repetition and inevitable confusion, literature references are presented as a single list rather than as smaller lists at the end of each chapter.

In preparing this *supplement*, the massive patent literature has been ignored in the belief that useful factual material therein has appeared subsequently in the regular literature. It must be mentioned also that a small but significant proportion of the research papers quoted as references have proved very disappointing in terms of essential detail, thereby reflecting badly on their authors and on the editorial policies of the journals in which they appeared. The

popularity of quinazoline research in India and Egypt is both noteworthy and rather puzzling.

Although the original papers on quinazoline chemistry during the last 30 years came from no less than 55 countries, they appeared in only 16 languages (ignoring any subsequent translations): from the following percentages, it is evident that the laudable trend toward publication of research results in a widely understood major language has continued.

English	75.9%
German	11.0%
Russian	5.9%
French	2.3%
Japanese	1.4%
Italian	1.1%
Romanian	0.6%
Polish	0.4%
Ukrainian	0.4%
Spanish	0.2%
Bulgarian	0.2%
Chinese	0.2%
Hungarian	0.1%
Czech	0.1%
Korean	0.1%
Portuguese	<0.1%
Slovenian	<0.1%

I am greatly indebted to my former colleagues, Drs W. L. F. Armarego and G. B. Barlin, for invaluable discussions; to successive Deans of the Research School of Chemistry (Professors A. L. G. Beckwith, L. N. Mander, and J. W. White) for the provision of excellent postretirement accommodation and facilities within the School; to Dr. Adam Vincze (Israel Institute for Biological Research) for kind advice; to the branch librarian, Mrs J. Smith, for unfailing cooperation; and to my wife, Jan, for her cheerful forebearance and unstinting assistance during indexing, proofreading, and the like.

*Research School of Chemistry
Australian National University
Canberra*

DES J. BROWN

Contents

CHAPTER 1. PRIMARY SYNTHESES	1
1.1 From a Single Benzene Substrate	1
1.1.1 By Formation of the 1,2-Bond	1
1.1.2 By Formation of the 1,8a-Bond	5
1.1.3 By Formation of the 2,3-Bond	5
1.1.3.1 From <i>o</i> -Acylaminobenzamides	5
1.1.3.2 From <i>o</i> -Acylaminobenzamide Oximes	9
1.1.3.3 From <i>o</i> -(Alkoxy carbonyl amino)-benzamides	10
1.1.3.4 From <i>o</i> -Ureidobenzamides	11
1.1.3.5 From <i>o</i> -(Benzylidene amino)benzamides	13
1.1.3.6 From <i>o</i> -Acylaminobenzonitriles	13
1.1.3.7 From <i>o</i> -(Substituted Methylene amino)benzonitriles	15
1.1.3.8 From <i>o</i> -(Acyl amino)benzaldehyde Hydrazones and Related Substrates	16
1.1.3.9 From Miscellaneous Substrates	17
1.1.4 By Formation of the 3,4-Bond	18
1.1.4.1 From <i>o</i> -Ureidobenzoic Acids	18
1.1.4.2 From <i>o</i> -Ureidobenzoic Esters	20
1.1.4.3 From <i>o</i> -Ureidobenzoyl Chlorides or <i>o</i> -Ureidobenzamides	21
1.1.4.4 From <i>o</i> -Ureidobenzonitriles	21
1.1.4.5 From <i>o</i> -Ureidobenzaldehyde Derivatives and Related Substrates	22
1.1.4.6 From <i>o</i> -(Aminomethylene amino)-benzoic Acids, Esters, or Amides	24
1.1.4.7 From Miscellaneous Substrates	25
1.1.5 By Formation of the 4,4a-Bond	27
1.2 From a Benzene Substrate and Ancillary Synthon(s)	31
1.2.1 Where the Synthon Supplies N1	31
1.2.2 Where the Synthon Supplies C2	31

1.2.2.1	The Use of Carboxylic Acids and Related Synthons	31
1.2.2.2	The Use of Carbonic Acid-Derived Synthons	44
1.2.3	Where the Synthon Supplies N3	49
1.2.3.1	With <i>o</i> -Acylaminobenzoic Acids as Substrates	49
1.2.3.2	With <i>o</i> -Acylaminobenzoic Esters as Substrates	50
1.2.3.3	With <i>o</i> -Acylaminobenzonitriles as Substrates	52
1.2.3.4	With <i>o</i> -Acylaminobenzaldehydes or Related Ketones as Substrates	52
1.2.3.5	With <i>o</i> -(Alkoxy carbonyl amino)-benzoic Esters or Related Ketones as Substrates	53
1.2.3.6	With <i>o</i> -(Substituted Methylene-amino)benzoic Esters or Related Ketones as Substrates	55
1.2.3.7	With <i>o</i> -(Substituted Methylene-amino)benzonitriles as Substrates	56
1.2.3.8	With <i>o</i> -Isocyanatobenzoyl Chlorides as Substrates	58
1.2.3.9	With <i>o</i> -Isocyanatobenzoic Esters and Related Ketones or Nitriles as Substrates	58
1.2.3.10	With <i>o</i> -Cyanoamino- or <i>o</i> -Ureido-benzoic Esters and Related Ketones or Nitriles as Substrates	60
1.2.3.11	With Miscellaneous Substrates	61
1.2.4	Where the Synthon Supplies C4	62
1.2.5	Where the Synthon(s) Supply N1 + C2	64
1.2.6	Where the Synthon(s) Supply C2 + N3	66
1.2.6.1	With <i>o</i> -Aminobenzoic Acids as Substrates	66
1.2.6.2	With <i>o</i> -Aminobenzoic Esters as Substrates	73
1.2.6.3	With <i>o</i> -Aminobenzamides as Substrates	78
1.2.6.4	With <i>o</i> -Aminobenzonitriles as Substrates	80

	Contents	xiii
1.2.6.5	With <i>o</i> -Aminobenzaldehydes or Related Ketones as Substrates	83
1.2.6.6	With Miscellaneous <i>o</i> -Disubstituted Benzenes as Substrates	87
1.2.7	Where the Synthon(s) Supply N3 + C4	88
1.2.7.1	With <i>N</i> -Acylanilines as Substrates	88
1.2.7.2	With <i>N</i> -(α -Chloromethylene)anilines or Related Compounds as Substrates	90
1.2.7.3	With Other Aniline Derivatives as Substrates	91
1.2.8	Where the Synthon(s) Supply N1 + C2 + N3	92
1.2.8.1	With <i>o</i> -Halogeno or <i>o</i> -Alkoxybenzonitriles as Substrates	92
1.2.8.2	With <i>o</i> -Substituted Benzoic Esters or Related Compounds as Substrates	93
1.2.8.3	With <i>o</i> -Substituted Acetophenones or Related Compounds as Substrates	94
1.2.8.4	With 2-Methylenecyclohexanones as Substrates	95
1.2.8.5	With Miscellaneous Substrates	96
1.2.9	Where the Synthon(s) Supply C2 + N3 + C4	97
1.2.10	Where the Synthon(s) Supply N1 + C2 + N3 + C4	100
1.3	From a Single Pyrimidine Substrate	103
1.4	From a Pyrimidine Substrate and Ancillary Synthon(s)	104
1.5	From a Heteromonocyclic Substrate Other than a Pyrimidine	107
1.5.1	Imidazoles as Substrates	108
1.5.2	1,3,5-Oxadiazines as Substrates	108
1.5.3	1,2,4-Oxadiazoles as Substrates	108
1.5.4	1,3,4-Oxadiazoles as Substrates	109
1.5.5	1,2,3,5-Oxathiadiazines as Substrates	109
1.5.6	Oxazoles as Substrates	110
1.5.7	1,2,4,5-Tetrazines as Substrates	110
1.5.8	1,2,3,4-Thiatriazoles as Substrates	111
1.6	From a Heterobicyclic Substrate	111
1.6.1	Benzazetines as Substrates	111

1.6.2	2,1-Benzisothiazoles as Substrates	112
1.6.3	2,1-Benzisoxazoles as Substrates	112
1.6.4	1,4-Benzodiazepines as Substrates	113
1.6.5	1,5-Benzodiazocines as Substrates	116
1.6.6	2,1,4-Benzothiadiazepines as Substrates	117
1.6.7	2,1,3-Benzothiadiazines as Substrates	117
1.6.8	1,3- and 3,1-Benzothiazines as Substrates	117
1.6.9	1,2,4-Benzotriazepines as Substrates	120
1.6.10	1,3,4-Benzotriazepines as Substrates	120
1.6.11	1,2,3-Benzotriazines as Substrates	121
1.6.12	4,1,5-Benzoxadiazocines as Substrates	122
1.6.13	3,2,1-Benzoxathiazines as Substrates	123
1.6.14	1,3-Benzoxazines as Substrates	123
1.6.15	3,1-Benzoxazines as Substrates	124
1.6.16	Cinnolines as Substrates	132
1.6.17	Indazoles as Substrates	133
1.6.18	Indoles as Substrates	134
1.6.19	Isoindoles as Substrates	135
1.6.20	Phthalazines as Substrates	136
1.6.21	Quinolines as Substrates	136
1.7	From a Heterotricyclic Substrate	137
1.7.1	Azirino[2,3- <i>b</i>]indoles as Substrates	137
1.7.2	Benzo[<i>c</i>]cinnolines as Substrates	137
1.7.3	5,8-Epoxyquinazolines as Substrates	138
1.7.4	Imidazo[1,2- <i>c</i>]quinazolines as Substrates	138
1.7.5	[1,2,4]Oxadiazolo[2,3- <i>c</i>]quinazolines as Substrates	139
1.7.6	[1,3]Oxazino- and Oxazolo[2,3- <i>b</i>]quinazolines as Substrates	139
1.7.7	Pyrazolo[1,5- <i>c</i>]quinazolines as Substrates	140
1.7.8	Pyrido[1,2- <i>a</i>]quinazolines as Substrates	140
1.7.9	Pyrido[2,1- <i>b</i>]quinazolines as Substrates	141
1.7.10	Pyrimido[1,6,5- <i>de</i>]-1,2,4-benzothiadiazines as Substrates	141
1.7.11	Pyrrolo[1,2- <i>a</i>]quinazolines as Substrates	142
1.7.12	Pyrrolo[2,1- <i>b</i>]quinazolines as Substrates	142
1.7.13	Tetrazolo[1,5- <i>c</i>]quinazolines as Substrates	142
1.7.14	[1,3,4]Thiadiazino[3,2- <i>c</i>]quinazolin-5-ioms as Substrates	143

	Contents	xv
1.7.15	1,3,4-Thiadiazolo[2,3- <i>b</i>]quinazolines as Substrates	143
1.7.16	1,3,4-Thiadiazolo[3,2- <i>c</i>]quinazolines as Substrates	143
1.7.17	[1,4]Thiazino[3,4- <i>b</i>]quinazolines as Substrates	144
1.7.18	Thiazolo[4,3- <i>b</i>]quinazolines as Substrates	144
1.7.19	Thioxanthenes as Substrates	144
1.7.20	[1,2,3]Triazolo[1,5- <i>a</i>]quinazolines as Substrates	145
1.8	From a Heterotetracyclic Substrate	145
1.8.1	Benzothiazolo[3,2- <i>a</i>]quinazolines as Substrates	146
1.8.2	Benzothiazolo[3,2- <i>c</i>]quinazolin-7-iuns as Substrates	146
1.8.3	[1]Benzothiopyrano[4,3,2- <i>de</i>]quinazolines as Substrates	146
1.8.4	Benzoxazolo[3,2- <i>a</i>]quinazolines as Substrates	147
1.8.5	Quinazolino[3,2- <i>c</i>][1,2,3]benzotriazines as Substrates	147
1.8.6	Quinazolino[3,2- <i>a</i>][3,1]benzoxazines as Substrates	148
1.8.7	Quinazolino[3,2- <i>c</i>][2,3]benzoxazines as Substrates	148
1.8.8	Quinazolino[1,2- <i>a</i>]quinazolines as Substrates	148
1.9	From a Heteropentacyclic Substrate	149
1.9.1	Benz[4,5]isoquino[2,1- <i>a</i>]quinazolines as Substrates	149
1.9.2	Indolo[2',3':3,4]pyrido[2,1- <i>b</i>]quinazolines as Substrates	149
1.10	From a Spiro Heterocyclic Substrate	150
CHAPTER 2.	QUINAZOLINE, ALKYLQUINAZOLINES, AND ARYLQUINAZOLINES	151
2.1	Quinazoline	151
2.1.1	Preparation of Quinazoline	151
2.1.2	Physical Properties of Quinazoline	152
2.1.3	Reactions of Quinazoline	153
2.2	<i>C</i> -Alkyl- and <i>C</i> -Arylquinazolines	158

2.2.1	Preparation of Alkyl- and Arylquinazolines	158
2.2.1.1	By C-Alkylation	158
2.2.1.2	By Displacement Reactions	160
2.2.1.3	By Eliminative Reactions	162
2.2.1.4	By Interconversion of Alkyl Groups	164
2.2.1.5	By Modification of Carbaldehydes or Ketones	167
2.2.1.6	By Rearrangement	167
2.2.1.7	By Oxidation of Hydro Derivatives	168
2.2.2	Properties and Reactions of Alkyl- and Arylquinazolines	169
2.2.2.1	Halogenation at Alkyl Groups	169
2.2.2.2	Oxidation at Alkyl Groups	172
2.2.2.3	Mannich Reactions at Alkyl or Aryl Groups	174
2.2.2.4	Acylations at Alkyl Groups	175
2.2.2.5	Nitrosation at Alkyl Groups	177
2.2.2.6	Other Reactions at Alkyl Groups	177
CHAPTER 3. HALOGENOQUINAZOLINES		181
3.1	Preparation of 2- or 4-Chloroquinazolines	181
3.1.1	From Quinazolinones with Phosphoryl Chloride	181
3.1.2	From Quinazolinones with Phosphorus Pentachloride	183
3.1.3	From Quinazolinones with a Vilsmeier Reagent	184
3.2	Preparation of 2- or 4-(Bromo, Iodo, or Fluoro) quinazolines	185
3.3	Preparation of 5- to 8-Halogenoquinazolines	186
3.4	Preparation of Extranuclear Halogenoquinazolines	188
3.5	Reactions of 2- or 4-Halogenoquinazolines	191
3.5.1	Aminolysis of 2- or 4-Halogenoquinazolines	191
3.5.1.1	With Simple 2-Halogenoquinazolines as Substrates	191
3.5.1.2	With Simple 4-Halogenoquinazolines as Substrates	192
3.5.1.3	With 2,4-Dihalogenoquinazolines as Substrates	194

3.5.1.4	With 2-Halogeno-4- or 4-Halogeno-2-quinazolinamines as Substrates	196
3.5.1.5	With Other 2-Halogeno-4- or 4-Halogeno-2-substituted-quinazolines as Substrates	197
3.5.2	Alcoholysis of 2- or 4-Halogenoquinazolines	200
3.5.3	Hydrolysis of 2- or 4-Halogenoquinazolines	203
3.5.4	Thiolytic or Alkanethiolytic of 2- or 4-Halogenoquinazolines	204
3.5.5	Other Reactions of 2- or 4-Halogenoquinazolines	205
3.6	Reactions of 5- to 8-Halogenoquinazolines	207
3.7	Reactions of Extranuclear Halogenoquinazolines	210
CHAPTER 4.	OXYQUINAZOLINES	219
4.1	Tautomeric Quinazolinones	219
4.1.1	Preparation of Tautomeric Quinazolinones	220
4.1.1.1	From Quinazolinamines	220
4.1.1.2	From Quinazolinethiones or Derivatives	221
4.1.1.3	From Alkoxy- or Aryloxy-quinazolines	223
4.1.1.4	From Other Types of Quinazoline Substrates	224
4.1.1.5	By Nuclear Oxidation of Quinazolines or Hydroquinazolines	225
4.1.2	Reactions of Tautomeric Quinazolinones	227
4.1.2.1	Conversion into Quinazolinethiones	227
4.1.2.2	<i>O</i> - or <i>N</i> -Acylation and <i>O</i> -Silylation Reactions	229
4.1.2.3	<i>O</i> - or <i>N</i> -Alkylation Reactions	231
4.1.2.4	Conversion into Quinazolinamines	238
4.1.2.5	Nuclear Reduction with or without Deoxygenation	239
4.1.2.6	Other Reactions	241
4.2	5- to 8-Quinazolinols	242
4.2.1	Preparation of Quinazolinols	242
4.2.2	Reactions of Quinazolinols	245
4.3	Quinazoline Quinones	247
4.4	Extranuclear Hydroxyquinazolines	250

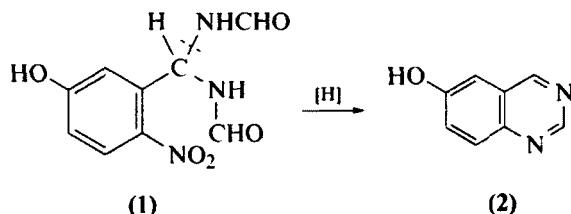
4.4.1	Preparation of Extranuclear Hydroxy- quinazolines	250
4.4.2	Reactions of Extranuclear Hydroxy- quinazolines	253
4.5	Alkoxy- and Aryloxyquinazolines	256
4.5.1	Preparation of Alkoxy- and Aryloxy- quinazolines	256
4.5.2	Reactions of Alkoxy- and Aryloxyquinazolines	258
4.5.2.1	Aminolysis of Alkoxyquinazolines	258
4.5.2.2	Thermal Rearrangement of 2- or 4-Alkoxyquinazolines	260
4.5.2.3	Hilbert–Johnson Reactions on Trialkylsiloxyquinazolines	261
4.6	Nontautomeric (Fixed) Quinazolinones	262
4.6.1	Preparation of Fixed Quinazolinones	262
4.6.2	Reactions of Fixed Quinazolinones	265
4.6.2.1	Conversion into Fixed Quinazo- linethiones	265
4.6.2.2	Reductive Reactions	267
4.6.2.3	Other Reactions	269
4.7	Quinazoline <i>N</i> -Oxides	272
4.7.1	Preparation of Quinazoline <i>N</i> -Oxides	272
4.7.2	Reactions of Quinazoline <i>N</i> -Oxides	274
4.7.2.1	Deoxygenation	274
4.7.2.2	<i>O</i> -Acylation or <i>O</i> -Alkylation	276
4.7.2.3	Reactions Involving Ring Scission	278
4.7.2.4	Minor Reactions	279
4.8	Ancillary Aspects of Oxyquinazolines	280
4.8.1	X-Ray Structural Analyses for Oxyquinazolines	281
4.8.2	Studies of Fine Structure in Oxyquina- zolines	281
4.8.3	General Spectral and Related Studies on Oxyquinazolines	282
4.8.4	Naturally Occurring Oxyquinazolines	285
CHAPTER 5.	THIOQUINAZOLINES	287
5.1	Quinazolinethiones	287
5.1.1	Preparation of Quinazolinethiones	287

Contents	xix
5.1.2 Reactions of Quinazolinethiones	289
5.1.2.1 <i>S</i> -Acylation and <i>S</i> -Alkylation	289
5.1.2.2 Aminolysis	299
5.1.2.3 Oxidative Reactions	302
5.1.2.4 Formation of Metal Complexes	304
5.1.2.5 Other Reactions	305
5.2 5- to 8-Quinazolinethiols and Extranuclear Mercaptoquinazolines	308
5.3 Alkylthio- and Arylthioquinazolines	309
5.3.1 Preparation of Alkylthio- and Arylthioquinazolines	310
5.3.2 Reactions of Alkylthio- and Arylthioquinazolines	311
5.4 Diquinazolinyl Disulfides and Sulfides	316
5.5 Quinazolinesulfonic Acids and Related Derivatives	317
5.6 Quinazoline Sulfoxides and Sulfones	320
CHAPTER 6. NITRO, AMINO, AND RELATED QUINAZOLINES	321
6.1 Nitroquinazolines	321
6.1.1 Preparation of Nitroquinazolines	320
6.1.2 Reactions of Nitroquinazolines	324
6.2 Regular Aminoquinazolines	329
6.2.1 Preparation of Regular Aminoquinazolines	329
6.2.2 Reactions of Regular Aminoquinazolines	339
6.2.2.1 Acylation Reactions	340
6.2.2.2 Conversion into Schiff Bases	344
6.2.2.3 Conversion into Alkoxy carbonyl-aminoquinazolines	346
6.2.2.4 Conversion into Ureidoquinazolines	347
6.2.2.5 Diazotization and Subsequent Reactions	350
6.2.2.6 Deamination and Other Displacement Reactions	354
6.2.2.7 Nuclear <i>N</i> -Alkylation, Oxidation, or Reduction	356
6.2.2.8 Miscellaneous Reactions of Minor Application	358

6.2.2.9	Conversion of 3-Amino- into 3-Aziridin-1'-yl-4(3 <i>H</i>)-quinazolinones and Related Compounds	362
6.2.2.10	Ancillary and Biological Aspects	366
6.3	Hydrazino-, Hydroxyamino-, and Azidoquinazolines	367
6.3.1	Preparation of Hydrazinoquinazolines	367
6.3.2	Reactions of Hydrazinoquinazolines	367
6.3.3	Preparation and Reactions of Hydroxyaminoquinazolines	371
6.3.4	Preparation, Fine Structure, and Reactions of Azidoquinazolines	373
6.4	Preparation and Reactions of Nontautomeric Quinazolinimines	374
6.5	Arylazo- and Nitrosoquinazolines	375
CHAPTER 7.	QUINAZOLINECARBOXYLIC ACIDS AND RELATED DERIVATIVES	377
7.1	Quinazolinecarboxylic Acids	377
7.1.1	Preparation of Quinazolinecarboxylic Acids	377
7.1.2	Reactions of Quinazolinecarboxylic Acids	380
7.2	Quinazolinecarboxylic Esters	384
7.2.1	Preparation of Quinazolinecarboxylic Esters	384
7.2.2	Reactions of Quinazolinecarboxylic Esters	386
7.3	Quinazolinecarbonyl Chlorides	389
7.4	Quinazolinecarboxamides and Quinazoline-carbohydrazides	390
7.5	Quinazolinecarbonitriles	395
7.6	Quinazolinecarbaldehydes	398
7.7	Quinazoline Ketones	400
7.8	Quinazoline Thiocyanates and Isothiocyanates	404
APPENDIX.	TABLE OF SIMPLE QUINAZOLINES	407
REFERENCES		607
INDEX		683

CHAPTER 1

Primary Syntheses


The primary synthesis of quinazolines may be accomplished by cyclization of benzene substrates already bearing appropriate substituents; by treatment of benzene substrates with synthons to provide one or more of the ring atoms required to complete the pyrimidine ring; by analogous processing of preformed pyrimidine substrates; by elaboration from several acyclic synthons; or by rearrangement, ring expansion/contraction, degradation, or modification of appropriate derivatives of other heterocyclic systems. Partially or even fully reduced quinazolines may often be made by rather similar procedures; such cases are usually illustrated toward the end of each subsection. Examples of any pre-1966 syntheses in each category may be found from the cross-references (e.g., *H* 48) to Armarego's parent volume,²⁴¹⁴ some post-1966 material has been reviewed elsewhere in brief.^{409,2382,2383}

1.1. FROM A SINGLE BENZENE SUBSTRATE

A remarkable number of quinazoline syntheses have been carried out by performing appropriate benzene derivatives for cyclization to required quinazolines by the formation of one remaining bond on the pyrimidine side of the molecule.

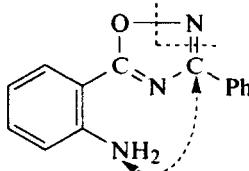
1.1.1. By Formation of the 1,2-Bond (*H* 11,48,394)

Such a process is typified by the facile conversion of 3-hydroxy-6-nitrobenzaldehyde into 3-(diformamido)methyl-4-nitrophenol (**1**) with subsequent reductive cyclization ($Zn/AcOH$) to 6-quinazolinol (**2**) (57%),²³⁵⁹ representing a classic example of Reidel's synthesis (*H* 48). Rather similar reductive procedures gave 5,6,8-trimethoxy-7-methylquinazoline (48%),²³⁶³ 5,8-dimethoxyquinazoline

(41% or 93%),^{585,1604} and 5,8-dibutoxyquinazoline (79%).⁵⁹⁵ Other reductive processes and several completely different ways to achieve cyclization by 1,2-bond formation are illustrated in the following examples.

Reductive cyclizations

N-Acetyl-2-nitrobenzamide (**3**, R = H) gave 2-methyl-4(3*H*)-quinazolinone 1-oxide or 2-methyl-4(3*H*)-quinazolinone (electrolytic: according to conditions).²³⁹⁹

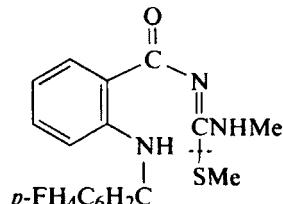


(3)

N-Acetyl-*N*-methyl-2-nitrobenzamide (**3**, R = Me) gave 2,3-dimethyl-4(3*H*)-quinazolinone [CO, Ru₂(CO)₁₂, dioxane, 10 atm, 140°, 16 h: 93%].²⁴⁰⁶

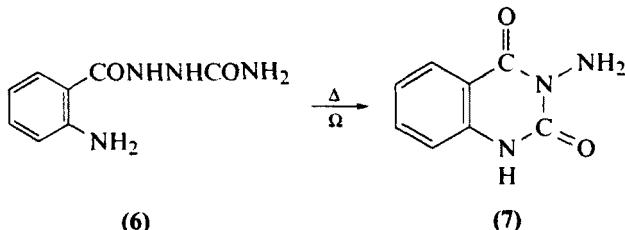
N-Ethoxycarbonyl-*N*-methyl-2-nitrobenzamide gave 1-hydroxy-3-methyl-2,4(1*H*,3*H*)-quinazolinedione (NaBH₄, NaOH, H₂O, 20°, 90 min: 24%).⁴²⁵

5-*o*-Aminophenyl-3-phenyl-1,2,4-oxadiazole (**4**) gave 2-phenyl-4(3*H*)-quinazolinone (H₂, Pd/C, EtOH, 1 atm, 20°: 72%).⁹⁹¹



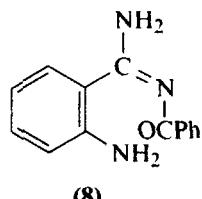
(4)

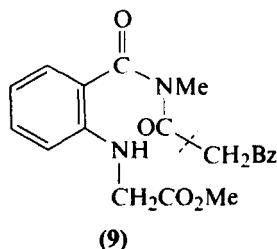
Also other examples.^{1766,2067}


Thermal cyclizations

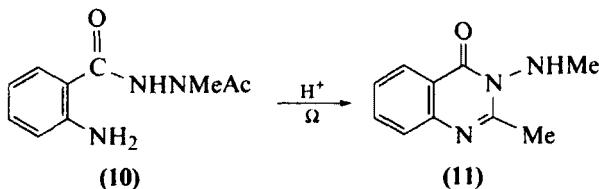
2-*p*-Fluorobenzylamino-*N*-(α -methylamino- α -methylthiomethylene)benzamide (**5**) gave 1-*p*-fluorobenzyl-2-methylamino-4(3*H*)-quinolinone [(MeOCH₂CH₂)₂O, trace NaOH, reflux, 2 h: 74%].⁹⁰⁶

(5)


o-(Semicarbazidocarbonyl)aniline (**6**) gave 3-amino-2,4(1*H*,3*H*)-quinazolinidine (**7**) (decalin, reflux, 2 h; 50%; involving a rearrangement step).⁴⁸⁵

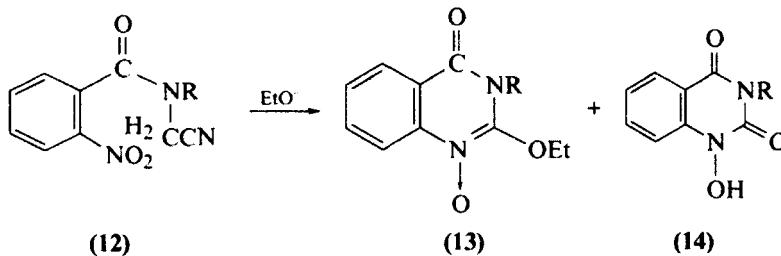

Also other examples.²⁵⁵⁴

Cyclizations in acid


o-Amino-*N*-benzoylbenzamidine (**8**) gave 2-phenyl-4-quinazolinamine ($<0.1\text{M HCl}, 20^\circ\text{C}, 1\text{ min}; 95\%$).^{12,32}

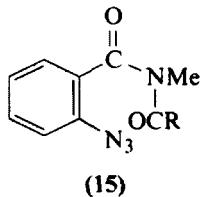
o-(Methoxycarbonylmethyl)amino-*N*-methyl-*N*-(phenacylcarbonyl)benzamide (9) gave 1-methoxycarbonylmethyl-3-methyl-2,4(1*H*,3*H*)-quinazolininedione (10% AcOH/EtOH, reflux, 2 h: 42%).²²⁷⁰

N'-Acetyl-*o*-amino-*N'*-methylbenzohydrazide (10) gave 2-methyl-3-methyl-amino-4(3*H*)-quinazolinone (11) (10% H₂SO₄, 80°, 30 min: 78%; involves rearrangement).⁹²¹

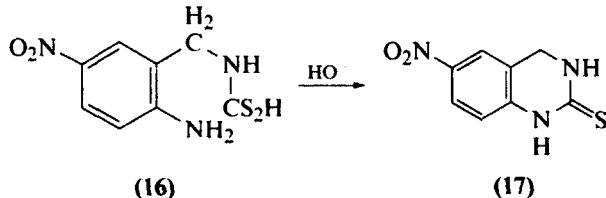


Also other examples.^{773,2400}

Cyclizations in base

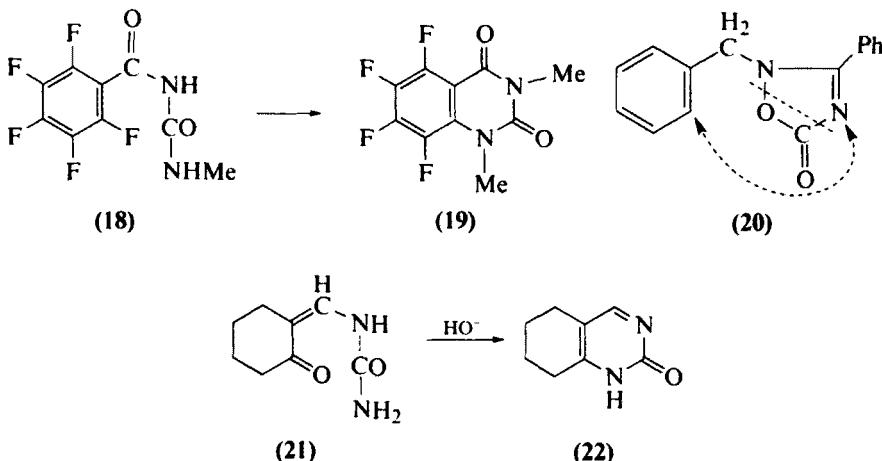

N-Cyanomethyl-*o*-nitrobenzamide (**12**, R = H) gave 2-ethoxy-4(3*H*)-quinazolinone 1-oxide (**13**, R = H) (EtONa, EtOH, reflux, 1 h: ~35%; involves CN replacement) and some 1-hydroxy-2,4(1*H*,3*H*)-quinazolinone (**14**, R = H) (from the aqueous mother liquors).¹⁸²

In contrast, *N*-cyanomethyl-*N*-methyl-*o*-nitrobenzamide (**12**, R = Me) gave only 1-hydroxy-3-methyl-2,4(1*H*,3*H*)-quinazolininedione (**14**, R = Me) (EtONa, EtOH, reflux, 1 h, aqueous workup: 93%; or NaOH/H₂O, reflux, 30 min: ~90%).¹⁸⁷


Wittig-assisted cyclizations

N-Acetyl-2-azido-*N*-methylbenzamide (**15**, R = Me) gave 2,3-dimethyl-4(3*H*)-quinazolinone (Ph₃P, xylene, 20°, 2 h: > 95%); likewise, 2-azido-*N*-cinnamoyl-*N*-methylbenzamide (**15**, R = CH:CHPh) gave 3-methyl-2-styryl-4(3*H*)-quinazolinone (> 95%).^{2079,2131}

Cyclizations to hydroquinazolines

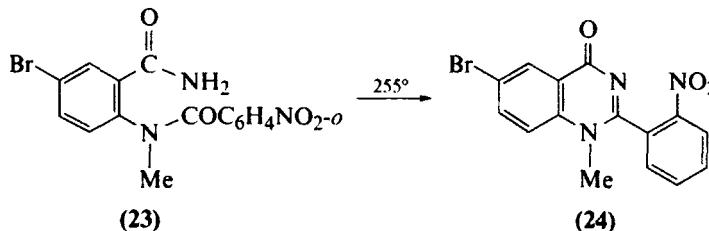

2-(Dithiocarboxy)aminomethyl-4-nitroaniline (**16**) gave 6-nitro-3,4-dihydro-2(1*H*)-quinazolinethione (**17**) (0.1M NaOH, 85°, 3 h: ~ 50%).³⁷⁴

Also other examples. 430.1811.1890

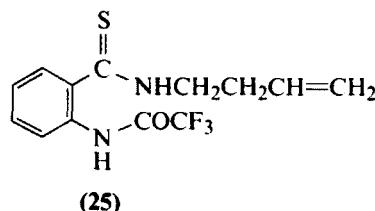
1.1.2. By Formation of the 1,8a-Bond

This unappealing route has been used to make a few aromatic and reduced quinazolines. Thus treatment of *N,N'*-dimethyl-*N*-pentafluorobenzoylurea (**18**) with potassium fluoride in refluxing dimethylformamide for 7 h gave 5,6,7,8-tetrafluoro-1,3-dimethyl-2,4(*1H,3H*)-quinazolininedione (**19**, R = F) (49%) but, when sodium hydride was used in place of potassium fluoride, the only product was the 7-dimethylamino derivative (**19**, R = NMe₂) (66%);^{13,17} prolonged irradiation of 2-benzyl-3-phenyl-1,2,4-oxadiazol-5(*2H*)-one (**20**) gave a little 2-phenylquinazoline;^{22,5} 2-ureidomethylenecyclohexanone (**21**) in boiling dilute alkali gave 5,6,7,8-tetrahydro-2(*1H*)-quinazolinone (**22**) (92%);^{19,0} and other examples have been described.^{4,23,16,92,20,46}

1.1.3. By Formation of the 2,3-Bond

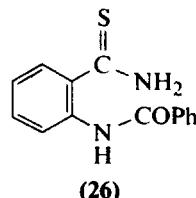

This route has been used widely to prepare quinazolines (and a few hydroquinazolines) from a variety of substrate types, as described in the following subsections.

1.1.3.1. From *o*-Acylaminobenzamides (H 77.101)

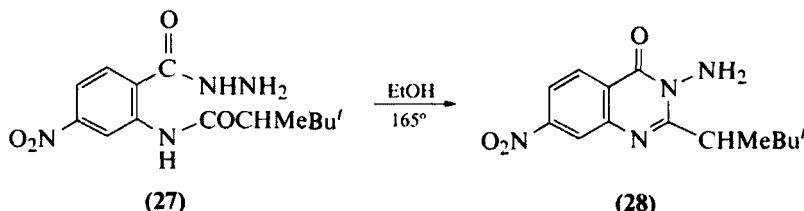

The cyclization of *o*-acylaminobenzamides, usually to 4-quinazolinones, has been done in several ways as indicated in the following examples.

Thermal cyclizations

3-Bromo-6-(*N*-methyl-*o*-nitrobenzamido)benzamide (23) gave 6-bromo-1-methyl-2-*o*-nitrophenyl-4(1*H*)-quinazolinone (24) (neat, 255°, 30 min: 59%).⁴⁵

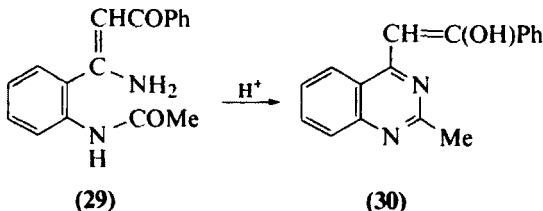


N-(But-3-enyl)-*o*-(trifluoroacetamido)benzamide (**25**) gave 3-but-3'-enyl-2-trifluoromethyl-4(3*H*)-quinazolinone (neat, 200°, 1 h: 85%).¹⁷²⁷

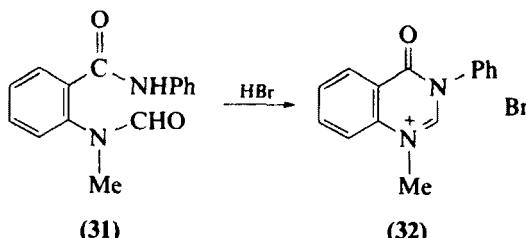

o-(Pentafluoropropionamido)benzamide gave 2-pentafluoroethyl-4(3*H*)-quinazolinone (Me₂NCHO, reflux, 3 h: 76%).⁹¹⁴

o-Benzamido(thiobenzamide) (**26**) gave 4-ethylthio-2-phenylquinazoline (Et₃OB⁺F⁻, CH₂Cl₂, reflux, 1 h: 82%; note the S-ethylation).¹⁰⁶⁰

o-Cinnamamido-*N*-methylbenzamide gave 3-methyl-2-styryl-4(3*H*)-quinazolinone (neat, > 200°, 20 min).⁵³⁷

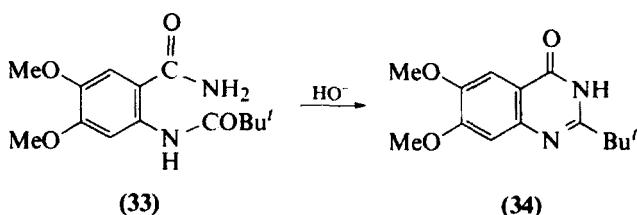

4-Nitro-2-(2,3,3-trimethylbutyramido)benzohydrazide (**27**) gave 3-amino-7-nitro-2- α , β , β -trimethylpropyl-4(3*H*)-quinazolinone (**28**) (EtOH, 165°, sealed, 12 h: 51%).¹⁹⁵⁴

Also other examples.^{519,960,968,983,992,1197,1311,1345,1371,1391,1535,2116,2287}


Cyclizations in acid

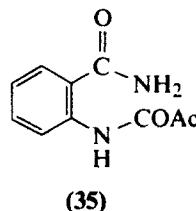
1-Acetamido-2-(α -amino- β -benzoylvinyl)benzene (**29**) gave 4- β -hydroxy-styryl-2-methylquinazoline (**30**) (HCl, EtOH-H₂O, reflux, 30 min: ~75%).¹⁷⁸¹

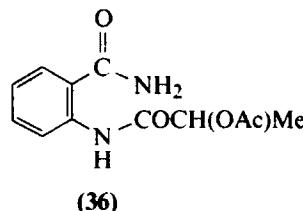
o-Chloroacetamido-*N*-(*o*-tolyl)benzamide gave 2-chloromethyl-3-*o*-tolyl-4(3*H*)-quinazolinone (AcOH, reflux).²³⁰⁴


o-(*N*-Methylformamido)benzanilide (31) gave 3-phenyl-4(3*H*)-quinazolinone-1-methobromide (32) (HBr, EtOH-H₂O, 20°, briefly: 84%).³⁵²

Also other examples. 687.1033.1526

Cyclizations in base

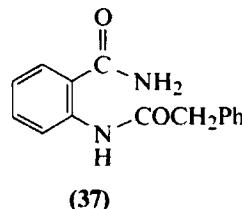

3,4-Dimethoxy-6-pivalamidobenzamide (33) gave 2-*t*-butyl-6,7-dimethoxy-4(3*H*)-quinazolinone (34) (1M NaOH, 70°, 5 min; 85%).¹³⁵⁴


o-(*o*-Azidobenzamido)benzamide gave 2-(*o*-azidophenyl)-4(3*H*)-quinazolinone (1.2M NaOH, 95°, 1 h; 85%).¹²⁷⁷

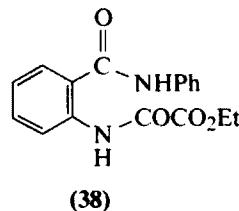
o-Pyruvamidobenzamide (35) gave 2-acetyl-4(3*H*)-quinazolinone (2M NaOH, reflux, 2 h; 60%).¹⁸⁵

2,5-Dimethoxy-6-(phenoxyacetamido)benzamide gave 5,8-dimethoxy-2-phenoxyethyl-4(3*H*)-quinazolinone (NaOH, EtOH-H₂O, reflux, 24 h: 88%).⁹⁹⁹

o-(2-Acetoxypropionamido)benzamide (**36**) gave 2- α -hydroxyethyl-4(3*H*)-quinazolinone (K_2CO_3 , H_2O , 20° , 3 days: 75%; note the deacetylation).²⁰⁶⁹



2-Acetamido-3,5-dibromo-*N*-methylbenzamide gave 6,8-dibromo-2,3-dimethyl-4(3*H*)-quinazolinone ($EtOH$, base, 20° , 2 days; $EtNH_2$ or Et_2NH : > 95%; Et_3N : 30%).²¹⁸⁴


Also other examples, some illustrating the formation of hydroquinazolines or the further use of organic bases.^{17,181,411,482,513,557,584,1346,1639,1981,2081,2098,2430,2505} Mechanistic aspects have been studied.²⁵⁵⁵

Cyclizations with dehydrating reagents

o-(2-Phenylacetamido)benzamide (**37**) gave 2-benzyl-4(3*H*)-quinazolinone (P_2O_5 , xylene, reflux, 4 h: 54%).¹³⁰⁶

o-(Ethoxalylamino)benzanilide (**38**) gave ethyl 4-oxo-3-phenyl-3,4-dihydro-2-quinazolinecarboxylate (PCl_3 , $PhMe$, reflux, 1 h: 75%).⁷⁸¹

