THE PYRIMIDINES

D. J. BROWN

Research School of Chemistry Australian National University Canberra

With a Chapter by

R. F. EVANS

University of Queensland Brisbane

And Sections by

W. B. COWDEN

Australian National University Canberra

and

M. D. FENN

Northern Territory University Darwin

AN INTERSCIENCE® PUBLICATION JOHN WILEY & SONS

NEW YORK • CHICHESTER • BRISBANE • TORNOTO • SINGAPORE

THE PYRIMIDINES

This is the fifty-second volume in the series
THE CHEMISTRY OF HETEROCYCLIC COMPOUNDS

THE CHEMISTRY OF HETEROCYCLIC COMPOUNDS

A SERIES OF MONOGRAPHS

EDWARD C. TAYLOR, Editor

ARNOLD WEISSBERGER, Founding Editor

THE PYRIMIDINES

D. J. BROWN

Research School of Chemistry Australian National University Canberra

With a Chapter by

R. F. EVANS

University of Queensland Brisbane

And Sections by

W. B. COWDEN

Australian National University Canberra

and

M. D. FENN

Northern Territory University Darwin

AN INTERSCIENCE® PUBLICATION JOHN WILEY & SONS

NEW YORK • CHICHESTER • BRISBANE • TORNOTO • SINGAPORE

This text is printed on acid-free paper.

Copyright © 1994 by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work beyond that permitted by Section 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.

Library of Congress Cataloging in Publication Data:

Brown, D. J.

The pyrimidines/D. J. Brown; with a chapter by R. F. Evans and sections by W. B. Cowden and M. D. Fenn.—Rev. ed.

p. cm.—(The Chemistry of heterocyclic compounds; v. 52) Includes index.

ISBN 0-471-50656-7

1. Pyrimidines. I. Title. II. Series.

QD401.B866 1993

547'.593-- dc20

92-35909

Dedicated to Four of the Great Pyrimidine Chemists of Our Day

Vladimir Petrovich Mamaev (Novosibirsk: † 1987)

Kjell Undheim (Oslo)

Hendrickus C. van der Plas (Wageningen)

Hiroshi Yamanaka (Sendai)

The Chemistry of Heterocyclic Compounds Introduction to the Series

The chemistry of heterocyclic compounds constitutes one of the broadest and most complex branches of chemistry. The diversity of synthetic methods utilized in this field, coupled with the immense physiological and industrial significance of heterocycles, combine to make the general heterocyclic arena of central importance to organic chemistry.

The Chemistry of Heterocyclic Compounds, published since 1950 under the initial editorship of Arnold Weissberger, and later, until Dr. Weissberger's death in 1984, under our joint editorship, has attempted to make the extraordinarily complex and diverse field of heterocyclic chemistry as organized and readily accessible as possible. Each volume has dealt with syntheses, reactions, properties, structure, physical chemistry, and utility of compounds belonging to a specific ring system or class (e.g. pyridines, thiophenes, pyrimidines, three-membered ring systems). This series has become the basic reference collection for information on heterocyclic compounds.

Many broader aspects of heterocyclic chemistry are recognized as disciplines of general significance that impinge on almost all aspects of modern organic and medicinal chemistry, and for this reason we initiated several years ago a parallel series entitled *General Heterocyclic Chemistry*, which treated such topics as nuclear magnetic resonance, mass spectra, and photochemistry of heterocyclic compounds, the utility of heterocyclic compounds in organic synthesis, and the synthesis of heterocyclic compounds by means of 1,3-dipolar cycloaddition reactions. These volumes were intended to be of interest to all organic and medicinal chemists, as well as to those whose particular concern is heterocyclic chemistry.

It has become increasingly clear that this arbitrary distinction created as many problems as it solved, and we have therefore elected to discontinue the more recently initiated series *General Heterocyclic Chemistry*, and to publish all forthcoming volumes in the general area of heterocyclic chemistry in *The Chemistry of Heterocyclic Compounds* series.

EDWARD C. TAYLOR

Department of Chemistry Princeton University Princeton, New Jersey

Preface

The first edition of this work (Volume 16 of the Chemistry of Heterocyclic Compounds) comprised three volumes, of which The Pyrimidines covered the literature from 1818 to 1957, The Pyrimidines: Supplement I covered the decade to 1967, and The Pyrimidines: Supplement II continued the reviewing process to 1983. Shortly afterward, the first two volumes were declared out of print so that a full digest of pyrimidine literature was no longer available to newly established libraries in academic or industrial laboratories. Accordingly, it was decided to prepare a second edition of The Pyrimidines based on still-useful information from all volumes of the first edition plus original material that had appeared subsequently. For pragmatic reasons, the second edition had to fit within a single volume, so the task of selection and compression has been considerable. For example, much relevant historical and anecdotal material has been omitted or drastically shortened; the criteria for inclusion of "simple pyrimidines" in the Appendix Table has been tightened to exclude higher homologs and other marginal categories of not-so-simple pyrimidines; only the better-described examples of each synthesis or reaction have been chosen for outlining; and background analyses of ionization and spectral data (except for nmr) have been deleted, simply because such techniques are now seldom used in the pyrimidine field. In addition, nomenclature has been modernized completely, as outlined in Section 1.2, and the use of trivial names (e.g., uracil) has been minimized throughout. Many recent patents have been ignored in the belief that useful factual material therein has appeared subsequently in the regular literature.

On the basis of references cited in this book, the geographic and ethnic origins of papers on pyrimidine chemistry may surprise some:

United States of America	24.7%
Germany, Switzerland, and Austria	18.6%
British Commonwealth (past & present)	16.7%
Japan	14.0%
Former USSR Republics	8.3%
France, Italy, Spain, and South America	5.7%
Eastern European Countries	5.7%
Netherlands and Belgium	2.1%
Scandinavian Countries	1.3%
Israel, Arabic Countries, China, etc.	2.9%

I am greatly indebted to Dr W. B. Cowden, Dr R. F. Evans (kindly encouraged and assisted by his wife, Carmel), and Dr. M. D. Fenn for writing sections on pyrimidine N-oxides, hydropyrimidines, and pyrimidine nmr spec-

x Preface

tra, respectively. I also warmly thank my former colleagues, Dr. W. L. F. Armarego and Dr. G. B. Barlin, for helpful discussions; the successive Deans of the Research School of Chemistry, Professor A. L. G. Beckwith and Professor L. N. Mander, for the provision of excellent postretirement accommodation and facilities within the School; the branch librarian, Mrs. J. Smith, for her invaluable cooperation; Mrs. B. Cronin and Miss A. Hassan for skilled assistance in early stages of the data-collection process; Mr. D. Bogsanyi and Mr. A. Wallner for assistance with Hungarian and Czech language papers, respectively; and my wife, Jan, for her patience, forbearance, and practical help in proof reading.

D. J. Brown

Research School of Chemistry Australian National University Canberra

Contents

LIST OF TAB	BLES				xxix		
CHAPTER 1.		INTRODUCTION TO PYRIMIDINE CHEMISTRY					
	1.1	Histor	ry and Re	eviews	1		
	1.2	Nome	enclature		3		
	1.3	Facto	rs in the	Uniquity of Pyrimidine Chemistry	4		
		1.3.1	The Act	tivated 2- and 4/6-Positions	4		
		1.3.2	The Sen	niaromatic 5-Position	7		
		1.3.3	The Effe	ect of Electron-Donating Groups	7		
		1.3.4	The Effe	ect of Electron-Withdrawing			
			Groups		7		
		1.3.5	The Eff	ect of Tautomeric Groups	8		
	1.4	The P	Primary S	ynthesis of Pyrimidines	8		
	1.5	React	ions at th	ne Pyrimidine Ring	9		
		1.5.1		ohilic Attack	9		
				Nitration	9		
			1.5.1.2	Nitrosation	10		
				Diazo Coupling	10		
				Halogenation	11		
				Sulfonation	12		
				C-Formylation	12		
				Hydroxy- or Aminomethylation	13		
			1.5.1.8	1,0			
				Sulfides	13		
		1.5.2		philic Attack	14		
				Amination	14		
				Hydroxylation	14		
				C-Alkylation or Arylation	14		
		1.5.3		idical Attack	15		
		1.5.4		nemical Reactions	15		
				ve Reactions	16		
				Reduction	17		
				nization at Ring Nitrogen	17		
	1.6			ibstituents on the Pyrimidine Ring	18		
		1.6.1		ns at Alkyl Groups	18		
		1.6.2		ns at Aryl Groups	20		
		1.6.3	Reactio	ns at Halogeno Substituents	20		
		1.6.4	Reactio	ns at Tautomeric Oxo Substituents	23		

xii Contents

		1.6.5	Reactio	ns at Nontautomeric Oxo	
			Substitu		25
		1.6.6	Reactio	ns at Alkoxy Groups	25
				ns at 5-Hydroxy Groups	27
				ns at N-Oxides	28
		1.6.9	Reactio	ns at Tautomeric Thioxo	
			Substitu	ients	28
		1.6.10	Reactio	ns at Nontautomeric Thioxo	
			Substit	uents	30
		1.6.11	Reactio	ns at Alkylthio Groups	31
				ns at 5-Mercapto Groups	33
				ns at Sulfo and Related Groups	33
				ns at Alkylsulfonyl and	
				lfinyl Groups	34
		1.6.15		ns at Amino Groups	35
				ns at Nitro, Nitroso, and	
				Groups	37
		1.6.17		ns at Ĉarboxy Groups	38
		1.6.18	Reactio	ns at Alkoxycarbonyl Groups	39
		1.6.19	Reactio	ns at Carbamoyl Groups	40
				ns at Cyano Groups	41
		1.6.21	Reactio	ns at C-Formyl Groups	43
				ns at Other C-Acyl Groups	45
				ns at Cyanato and	
			Thiocya	inato Groups	45
		1.6.24	Reactio	ns at Isocyanato and	
			Isothioc	yanato Groups	46
		1.6.25	Reaction	ns at Nitrile Oxide Groups	47
CHAPTER 2.	PRI	MARY	SYNTH	IESES	49
	2.1	From	a Single	Six-Atom Synthone	49
				pletion of the N1—C2 Bond	49
				ipletion of the N3—C4 Bond	53
		2.1.3		ipletion of the C4—C5 Bond	54
		2.1.4	By Rear	rrangement of One Pyrimidine	
			into An	other	54
	2.2	From	Two Syr	ithones	57
		2.2.1	By Usir	ng a One- and a Five-Atom	
			Synthor	ne	57
			2.2.1.1	Where the One-Atom Synthone	
				Provides N1	57
			2.2.1.2	Where the One-Atom Synthone	
				Provides C2	65

Contents	X111
Contents	AIII

		2.2.1.3	Where the One-Atom Synthone Provides C4	72
		2.2.1.4	Where the One-Atom Synthone	, 2
		2.2.1.7	Provides C5	73
	2.2.2	Rv Usir	ng a Two- and a Four-Atom	, 5
	2.2.2	Synthol		73
		2.2.2.1	Where the Two-Atom Synthone	
			Provides N1 + C2	73
		2.2.2.2	Where the Two-Atom Synthone	
			Provides N3 + C4	82
		2.2.2.3	Where the Two-Atom Synthone	
			Provides C4 + C5	83
	2.2.3	By Usin	ng Two Three-Atom Synthones	88
		2.2.3.1	Where the Synthones Provide	
			N1 + C2 + N3 and $C4 + C5 + C6$	88
		2.2.3.2	Where the Synthones Provide	
			C2 + N3 + C4 and $C5 + C6 + N1$	89
2.3	From	Three S	ynthones	93
	2.3.1	Where	the Synthones Provide $C2 + N3$,	
		C4 + C	25, and $C6 + N1$	94
	2.3.2	Where	the Synthones Provide N1 + C2	
		+N3,	C4 + C5, and $C6$	100
	2.3.3	Where	the Synthones Provide N1,	
			13, C4 + C5 + C6	101
		2.3.3.1	Using a β -Dicarbonyl or	
			Equivalent Compound as the	
			C + C + C Fragment	101
		2.3.3.2	Using a β -Carbonyl Nitrile as	
			the $C + C + C$ Fragment	104
	2.3.4		the Synthones Provide C2,	
			C4, and $C5 + C6 + N1$	104
	2.3.5		the Synthones Provide $N1 + C2$,	
			C4 + C5, and C6	105
2.4		Four Sy		106
	2.4.1		the Synthones Provide N1, C2,	
	_		d C4 + C5 + C6	106
2.5		Five Sy:		108
	2.5.1		the Synthones Provide N1, C2,	400
2.6	-		, and $C5 + C6$	108
2.6			Heterocyclic Compounds	109
	2.6.1		dines from Four- or	
			embered Heteromonocyclic	100
	262	System		109
	2.6.2		dines from Six-Membered	442
		Hetero	monocyclic Systems	116

xiv Contents

		2.6.32.6.42.6.52.6.6	Pyrimidines from Heterobicyclic Systems with a Five- and a Six-Membered Ring Pyrimidines from Heterobicyclic Systems with Two Six-Membered Rings Pyrimidines from Other Heterobicyclic Systems Pyrimidines from a Heterotricyclic and Bridged Heterobicyclic Systems	126 140 146
CHAPTER 3.	TU	F DDIN	ICIPAL SYNTHESIS	149
CHAI TER 3.				
	3.1		ß-Dialdehydes	150
			With Countilines	150
			With Guanidines With Ureas	152 154
			With Thioureas	156
	3.2		Will Thouseas β-Aldehydo Ketones	157
	3.2		With Amidines	158
			With Guanidines	159
			With Ureas	162
			With Thioureas	163
	3.3		F \(\beta\)-Diketones	165
	5.5		With Amidines	165
			With Guanidines	168
			With Ureas	172
			With Thioureas	175
	3.4		β-Aldehydo Esters	177
	٥	3.4.1	•	177
		3.4.2		179
			With Ureas	182
			With Thioureas	185
	3.5		β-Keto Esters	188
			With Amidines	189
		3.5.2	With Guanidines	193
		3.5.3	With Ureas	196
		3.5.4	With Thioureas	199
	3.6	Use of	β-Diesters (Malonic Esters)	202
			With Amidines	202
		3.6.2	With Guanidines	205
		3.6.3	With Ureas	206
		3.6.4	With Thioureas	210
	3.7	Use of	β-Aldehydo Nitriles	212
		3.7.1	With Amidines	212
		3.7.2	With Guanidines	214
		3.7.3	With Ureas	216
		3.7.4	With Thioureas	217

Contents xv

	3.8	Use of	β-Keto	Nitriles	221		
			With A		221		
		3.8.2	With G	tuanidines	223		
		3.8.3	With U	reas	225		
		3.8.4	With T	hioureas	225		
	3.9	Use of	β -Ester	Nitriles	227		
		3.9.1	With A	midines	227		
		3.9.2	With G	uanidines	229		
		3.9.3	With U	reas	231		
		3.9.4	With T	hioureas	234		
	3.10	Use of	β -Dinit	riles (Malononitriles)	236		
		3.10.1	With A	midines	236		
		3.10.2	2 With Guanidines				
		3.10.3	With U	reas	238		
		3.10.4	With T	hioureas	238		
CHAPTER 4	PVR	RIMIDI	INE AT	KYLPYRIMIDINES,			
CHAIL ILA 4,				MIDINES	241		
	4.1	Pyrimi	idine		241		
	7.1	-		ation of Pyrimidine	241		
				Il Properties of Pyrimidine	242		
			-	ons of Pyrimidine	244		
	4.2			C-Arylpyrimidines	246		
	1,2	4.2.1		ation of C-Alkylpyrimidines	246		
		1.20.1	4.2.1.1	Alkylpyrimidines by Primary	240		
			7,2,1,1	Syntheses	246		
			4.2.1.2	•	270		
			7.2.1.2	Dehalogenation	246		
			4.2.1.3	Alkylpyrimidines by Removal	270		
			7.2.1.3	of Other Groups	248		
			4.2.1.4	Alkylpyrimidines by Eliminative	2-10		
			7.2.1.7	Reactions	249		
			4.2.1.5	Alkylpyrimidines by Direct or	2,17		
			7.4.1.5	Indirect Alkylation	250		
			4.2.1.6	Alkylpyrimidines from	230		
			7.2.1.0	Halogenopyrimidines	255		
			4217	Alkylpyrimidines by	233		
			7.2.1.7	Interconversion of Alkyl			
				Groups	260		
			4.2.1.8	Alkylpyrimidines by Other	200		
			T.4.1.0	Procedures	262		
		4.2.2	Physica	Properties of C-Alkylpyrimidines	264		
		4.2.3		ons of C-Alkylpyrimidines	264		
		7.4.3	4.2.3.1	Deuteration of Alkyl Groups	264		
			4.2.3.1	Alkylidenation of Methyl Groups	265		
			7.4.3.4	Aikyndenation of Memyr Groups	203		

xvi Contents

			4.2.3.3	Oxidation of Alkylpyrimidines	266
			4.2.3.4	Reduction of Alkenyl- and	
				Alkynylpyrimidines	272
			4.2.3.5	Halogenation of Alkylpyrimidines	272
			4.2.3.6	Claisen Reactions of	
				Alkylpyrimidines	275
			4.2.3.7	Mannich Reactions of	
				Methylpyrimidines	276
			4.2.3.8	Vilsmeier Reactions of	
				Methylpyrimidines	278
			4.2.3.9	Other Reactions of	
				Alkyl Groups	278
CHAPTER 5.	NIT	RO-, I	NITROS	O-, AND	
	ARY	YLAZO	PYRIM	IIDINES	283
	5.1	Nitro	pyrimidi	nes	283
		5.1.1		ation of Nitropyrimidines	283
				By Primary Syntheses	283
				By Nitration	284
				By Indirect Syntheses	290
		5.1.2		ons of Nitropyrimidines	294
			5.1.2.1		294
			5.1.2.2	Other Reactions	300
	5.2	Nitros	sopyrimi	dines	303
		5.2.1		ation of Nitrosopyrimidines	304
			_	By Primary Syntheses	305
				By Nitrosation	305
			5.2.1.3	By Indirect Syntheses	310
		5.2.2	Propert	ties of Nitrosopyrimidines	311
		5.2.3	Reactio	ns of Nitrosopyrimidines	311
			5.2.3.1	Reduction to Pyrimidinamines	312
			5.2.3.2	Oxidation to Nitropyrimidines	315
			5.2.3.3		315
			5.2.3.4	Conversion into Fused	
				Pyrimidine Systems	316
			5.2.3.5	Other Reactions	317
	5.3	Arylaz	zopyrimi	dines	319
		5.3.1	Prepara	tion of Arylazopyrimidines	319
			5.3.1.1	By Primary Syntheses	319
			5.3.1.2	By Diazo-Coupling	320
			5.3.1.3	By Other Means	323
		5.3.2	Reaction	ns of Arylazopyrimidines	325
			5.3.2.1	Reduction to Pyrimidinamines	325
			5.3.2.2	Cyclization to Fused Pyrimidines	327

Contents	V 1/11
Contents	X V11

CHAPTER 6.	HALOGENOPYRIMIDINES				
	6.1	Prepa	ration of	2- or 4/6-Chloropyrimidines	329
		6.1.1		Phosphoryl Chloride	329
		6.1.2	_	Phosphorus Pentachloride	337
		6.1.3	Using T	Thionyl Chloride or a Vilsmeier	
			Reagent		339
		6.1.4	_	Diazotization of Pyrimidinamines	340
		6.1.5		Primary Syntheses	341
		6.1.6	Using (Other Routes	341
	6.2			2- or 4/6-Bromopyrimidines	342
	6.3	Prepa	ration of	2- or 4/6-Iodopyrimidines	344
	6.4	Prepa	ration of	2- or 4/6-Fluoropyrimidines	345
	6.5	Prepa	ration of	5-Halogenopyrimidines	347
		6.5.1	Using I	Direct Halogenation	347
		6.5.2	Using F	Primary Syntheses	354
		6.5.3	Using (Other Routes	355
	6.6	Prepa	ration of	Extranuclear	
		Halog	genopyrin	nidines	356
		6.6.1	Using I	Direct Halogenation	356
		6.6.2	Using F	Hydroxyalkylpyrimidine	
			Interme	ediates	358
		6.6.3	Using A	Alkoxyalkylpyrimidine	
			Interme	ediates	360
		6.6.4	Using (Other Indirect Syntheses	361
		6.6.5	Using I	Primary Syntheses	363
		6.6.6		Derivatization Procedures	364
	6.7	React	ions of 2	- and 4/6-Halogenopyrimidines	366
		6.7.1		genation of 2- or	
			4/6-Hal	ogenopyrimidines	366
		6.7.2	Simple	Aminolysis of 2- or	
			4/6-Hal	ogenopyrimidines	371
			6.7.2.1	Aminolysis of Simple	
				Halogenopyrimidines and	
				Alkyl Derivatives	372
			6.7.2.2	Aminolysis of Halogeno-5-	
				nitropyrimidines and Related	
				Substrates	377
			6.7.2.3	Aminolysis of	
				Halogeno-5-pyrimidinamines	381
			6.7.2.4	Aminolysis of	
				Halogenopyrimidinones	382
			6.7.2.5	Aminolysis of	
				Halogenopyrimidine	
				Ethers or Thioethers	383

xviii Contents

			6.7.2.6	Aminolysis of Halogenopyrimi- dinecarboxylic Acids and Related		
				Substrates	386	
			6.7.2.7	Aminolysis of		
				Halogenopyrimidines Bearing		
				Miscellaneous Substituents	389	
		6.7.3		ysis of 2- or		
				ogenopyrimidines with		
				ines, Hydroxylamine, or		
			-	oic Acid	391	
		6.7.4		lysis of 2- or		
			4/6-Hal	ogenopyrimidines	397	
		6.7.5		ysis of 2- or		
			4/6-Ha	logenopyrimidines	402	
		6.7.6	Alkane	thiolysis of 2- or		
				logenopyrimidines	404	
		6.7.7	Thiolys	is of 2- or 4/6-Halogenopyrimidines	406	
		6.7.8	Other I	Replacement Reactions of 2- or		
				ogenopyrimidines	410	
	6.8	React	ions of 5	-Halogenopyrimidines	417	
		6.8.1	Dehalo	genation of 5-Halogeno-		
			pyrimid	linones	417	
		6.8.2	Aminol	ysis of		
			5-Halog	genopyrimidines	418	
		6.8.3	Other F	Reactions of		
			5-Halog	genopyrimidines	422	
	6.9	React	ions of E	xtranuclear Halogenopyrimidines	427	
CHAPTER 7.	OX	OXYPYRIMIDINES				
	7.1	Tauto	meric Pv	rimidinones	439	
	,	7.1.1	-	ation of Tautomeric Pyrimidinones	439	
			7.1.1.1	By Primary Syntheses	440	
				From Halogenopyrimidines	440	
			7.1.1.3	From Pyrimidinamines	440	
			7.1.1.4	From Alkoxypyrimidines	443	
			7.1.1.5	From Pyrimidinethiones or		
			,,,,,,,,,,	Derived Substrates	446	
			7.1.1.6	By Other Means	451	
		7.1.2		ructure of Tautomeric		
			Pyrimid		452	
		7.1.3		ns of Tautomeric Pyrimidinones	455	
		,.1.5	7.1.3.1	Conversion into		
				Halogenopyrimidines	455	

Contents xix

	7.1.3.2	Conversion into	
		Pyrimidinethiones	455
	7.1.3.3	O- or N-Acylation Reactions	458
	7.1.3.4	O-Silylation and O-Stannylation	
		Reactions	459
	7.1.3.5	O- and/or N-Alkylation	
		Reactions	460
	7.1.3.6	Conversion into Pyrimidinamines	472
	7.1.3.7	Removal of Oxo Substituents	473
	7.1.3.8	Photochemical Reactions	474
	7.1.3.9	Other Reactions	479
7.1.4		faturally Occurring	1,,,
7.1.1	Pyrimid		480
	7.1.4.1	2,4(1 <i>H</i> ,3 <i>H</i>)-Pyrimidinedione	700
	7.1.7.1	(Uracil)	480
	7.1.4.2	5-Methyl-2,4(1 <i>H</i> ,3 <i>H</i>)-	400
	7.1.4.2	pyrimidinedione (Thymine)	481
	7.1.4.3		401
	7.1.4.3	4-Amino-2(1 <i>H</i>)-pyrimidinone	482
	7.1.4.4	(Cytosine)	402
	7.1.4.4	2,6-Diamino-5-hydroxy-4(3 <i>H</i>)-	484
	7115	pyrimidinone (Divicine)	404
	7.1.4.5	6-Amino-5-hydroxy-2,4(1 <i>H</i> ,3 <i>H</i>)-	105
	7116	pyrimidinedione (Isouramil)	485
	7.1.4.6	4-Amino-5-methyl-2(1 <i>H</i>)-	40.5
	5445	pyrimidinone (5-Methylcytosine)	485
	7.1.4.7	4-Amino-5-hydroxymethyl-2(1 <i>H</i>)-	
		pyrimidinone (5-Hydroxymethyl-	
		cytosine)	486
	7.1.4.8	4-Methylamino-2(1 <i>H</i>)-	
		pyrimidinone (N4-Methyl-	
		cytosine)	486
	7.1.4.9	1- $(\beta$ -Amino- β -carboxyethyl)-	
		2,4(1H,3H)-pyrimidinedione	
		(Willardiine)	487
		Some Pyrimidinone Antibiotics	487
	7.1.4.11	2,6-Dioxo-1,2,3,6-tetrahydro-4-	
		pyrimidinecarboxylic Acid	
		(Orotic Acid)	489
7.1.5	Pyrimid	linones Used as Drugs or	
	Agroche		491
	7.1.5.1	Substituted 2,4,6(1 <i>H</i> ,3 <i>H</i> ,5 <i>H</i>)-	
		pyrimidinetriones (Barbiturates)	491
	7.1.5.2	2-Thioxo-1,2-dihydro-4(3 <i>H</i>)-	
		pyrimidinones (Thiouracils)	492
		· · · · · · · · · · · · · · · · · · ·	

xx Contents

		7.1.5.3	5-Ethyl-5-phenyl-2,3-dihydro-	
			4,6(1H,5H)-pyrimidinedione	
			(Primidone)	493
		7.1.5.4	4-Amino-1-β-D-arabinofuranosyl-	
			2(1 <i>H</i>)-pyrimidinone (Cytarabine)	494
		7.1.5.5	5-Fluoro-2,4(1 <i>H</i> ,3 <i>H</i>)-	
			pyrimidinedione (Fluorouracil)	494
		7.1.5.6	5-Di(β-chloroethyl)amino-	
			2,4(1H,3H)-pyrimidinedione	
			(Uracil Mustard)	495
		7.1.5.7	5-Bromo-3-s-butyl-6-methyl-	
			2,4(1H,3H)-pyrimidinedione	
			(Bromacil)	495
	7.1.6	The All	loxan Group of Pyrimidinones	496
		7.1.6.1	5-Oxo-2,4,6(1 <i>H</i> ,3 <i>H</i> ,5 <i>H</i>)-	
			pyrimidinetrione (Alloxan)	496
		7.1.6.2	5,5'-Dihydroxy-5,5'-bipyrimidine-	
			2,2',4,4',6,6'(1 <i>H</i> ,1' <i>H</i> ,3 <i>H</i> ,	
			3'H,5H,5'H)-hexone	
			(Alloxantin)	499
		7.1.6.3	5-Hydroxy-2,4,6(1 <i>H</i> ,3 <i>H</i> ,5 <i>H</i>)-	
			pyrimidinetrione (Dialuric Acid)	
			and Isodialuric Acid	499
		7.1.6.4	Bis(2,4,6-trioxo-1,2,3,4,5,6-	
			hexahydropyrimidin-5-yl)amine	
			(Purpuric Acid) and Its	
			Ammonium Salt (Murexide)	500
7.2	5-Pyr	imidinols	3	500
	7.2.1	Prepara	ation of 5-Pyrimidinols	501
		7.2.1.1	Via 5-Alkoxypyrimidines	501
		7.2.1.2	Via 5-Sulfooxypyrimidines or	
			5-Acyloxypyrimidines	502
		7.2.1.3	From 5-Pyrimidinamines	503
		7.2.1.4	From 5-Halogenopyrimidines	504
		7.2.1.5	By Other Means	504
	7.2.2		ns of 5-Pyrimidinols	505
		7.2.2.1	O-Acylation	505
		7.2.2.2	O-Alkylation	506
		7.2.2.3	Other Reactions	506
7.3	Extrai		Hydroxypyrimidines	508
	7.3.1	-	tion of Extranuclear	
		-	ypyrimidines	508
		7.3.1.1	By Primary Syntheses	508
		7.3.1.2	From Aminoalkylpyrimidines	509
		7.3.1.3	From Halogenoalkylpyrimidines	509

Contents xxi

		1.3.1.4	From Pyrimidinecarboxylic	
			Esters or the Like	509
		7.3.1.5	By C-Hydroxyalkylation,	
			Mainly with Formaldehyde	510
		7.3.1.6	From C-Metallopyrimidines with	
			Aldehydes or Ketones	511
		7.3.1.7	From Pyrimidinecarbaldehydes	
			or Pyrimidinyl Ketones	512
		7.3.1.8	From Alkoxyalkyl- or	
			Acyloxyalkylpyrimidines	514
		7.3.1.9	By Derivatization or Other	
			Minor Routes	515
	7.3.2	Reaction	ons of Extranuclear	
			aypyrimidines	516
		7.3.2.1		516
		7.3.2.2		517
			Reductive Dehydroxylation	518
			Oxidation	518
			Reaction with Aromatic	510
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Compounds	520
		7.3.2.6	Other Reactions	521
7.4	Alkox		Aryloxypyrimidines	522
	7.4.1		ation of Alkoxypyrimidines	522
	,,,,,		By Primary Syntheses	522
			By Alcoholysis of	
			Halogenopyrimidines	523
		7.4.1.3	By Alcoholysis of Other	
		,,,,,,,	Substrates	523
		7414	By O-Alkylation	526
		7.4.1.5	- · · · · · · · · · · · · · · · · · · ·	526
	7.4.2		ons of Alkoxypyrimidines	526
	7.1.2	7.4.2.1	Aminolysis	527
		7.4.2.2	Conversion into <i>N</i> - or	· -
		7.1.2.2	C-Alkylpyrimidinones	529
		7.4.2.3	Conversion into	. <u> </u>
		1.1.2	Halogenopyrimidines	535
		7.4.2.4		535
		7.4.2.5	Transalkoxylation	535
			Other Reactions	536
7.5	Nonta		c Pyrimidinones	536
,	7.5.1		ation of Nontautomeric	
	,		dinones	536
	7.5.2		ons of Nontautomeric	
	7.5.2		dinones	539
7.6	The F		ne N-Oxides	541

xxii Contents

		7.6.1	Preparation of Pyrimidine N-Oxides	542
			7.6.1.1 By Direct Oxidation	542
			7.6.1.2 By Primary Synthesis	545
		7.6.2	Properties of Pyrimidine N-Oxides	546
		7.6.3	Reactions of Pyrimidine N-Oxides	548
		7.6.4	Biological Properties of Pyrimidine	
			N-Oxides	550
	7.7	The C	Quinonoid Pyrimidines	551
CHAPTER 8.	TH	IOPYR	RIMIDINES	553
	8.1	Tauto	omeric Pyrimidinethiones	553
		8.1.1	Preparation of Tautomeric	
		0	Pyrimidinethiones	553
		8.1.2	Fine Structure of Tautomeric	,
			Pyrimidinethiones	557
		8.1.3	Reactions of Tautomeric	
			Pyrimidinethiones	557
			8.1.3.1 Desulfurization	558
			8.1.3.2 S-Alkylation and Acylation	561
			8.1.3.3 Aminolysis	569
			8.1.3.4 Hydrolysis	571
			8.1.3.5 Oxidation	571
			8.1.3.6 Other Reactions	573
	8.2	5-Pyr	imidinethiols	574
			Preparation of 5-Pyrimidinethiols	574
		8.2.2		575
	8.3	Extra	nuclear Mercaptopyrimidines	576
		8.3.1	·	
			Mercaptopyrimidines	576
		8.3.2	Reactions of Extranuclear	
			Mercaptopyrimidines	577
	8.4	Alkylt	thio- and Arylthiopyrimidines	578
		8.4.1	Preparation of Alkylthiopyrimidines	578
			8.4.1.1 By Primary Syntheses	578
			8.4.1.2 By S-Alkylation	578
			8.4.1.3 By Alkanethiolysis of	
			Halogenopyrimidines	578
			8.4.1.4 By Other Displacement Reactions	579
			8.4.1.5 By a Grignard Reaction	580
			8.4.1.6 By Reduction of a Sulfone or	
			Sulfoxide	580
			8.4.1.7 By Attack with Alkanesulfenyl	
			Chlorides	580

Contents	xxiii

		8.4.2	Reactions of Alkylthiopyrimidines	582
			8.4.2.1 Desulfurization	582
			8.4.2.2 Aminolysis	583
			8.4.2.3 Other Displacement Reactions	586
			8.4.2.4 Oxidation to Alkylsulfinyl-	
			and Alkylsulfonylpyrimidines	586
			8.4.2.5 Miscellaneous Reactions	588
	8.5	Nonta	automeric (Fixed) Pyrimidinethiones	590
		8.5.1	Preparation of Fixed Pyrimidinethiones	590
		8.5.2	Reactions of Fixed Pyrimidinethiones	591
	8.6	Dipyr	imidinyl Disulfides and Sulfides	593
		8.6.1	Preparation of Dipyrimidinyl Disulfides	593
		8.6.2	Preparation of Dipyrimidinyl Sulfides	595
		8.6.3	Reactions of Dipyrimidinyl Disulfides	
			and Sulfides	597
	8.7	Pyrin	nidinesulfonic and Related Acids	598
		8.7.1	Preparation of Pyrimidinesulfonic Acids	
			and Some Derivatives	598
		8.7.2	Reactions of Pyrimidinesulfonic Acids	
			and Some Derivatives	601
		8.7.3	Pyrimidinesulfinic Acids	603
		8.7.4	Pyrimidinesulfenic Acids	604
	8.8	Pyrin	nidine Sulfones and Sulfoxides	604
		8.8.1	Preparation of Alkylsulfonyl- and	
			Alkylsulfinylpyrimidines	604
		8.8.2	Reactions of Alkylsulfonyl- and	
			Alkylsulfinylpyrimidines	605
CHAPTER 9.	AM	INOPY	RIMIDINES	611
	9.1	The D	egular Aminopyrimidines	611
	7.1	9.1.1	Preparation of 2- or 4/6-Aminopyrimidines	611
		7.1.1	9.1.1.1 By Primary Syntheses	611
			9.1.1.2 By Direct or Indirect Amination	612
			9.1.1.3 By Aminolysis	613
			9.1.1.4 By Modification of Existing	013
			Aminopyrimidines	615
			9.1.1.5 By Other Means	618
		9.1.2	Preparation of 5-Aminopyrimidines	619
		J. I. Z	9.1.2.1 By Primary Syntheses	619
			9.1.2.2 By Reduction	620
			9.1.2.3 By Aminolyses	620
			9.1.2.4 By Alkylation of Existing	020
			5-Aminopyrimidines	621
			5 / minopyrimanies	021

xxiv Contents

		9.1.2.5	By Hofmann or Curtius	
			Reactions	623
		9.1.2.6	By Other Means	624
	9.1.3	Prepara	ation of N1- or	
		N3-Am	inopyrimidines	625
	9.1.4		ation of Extranuclear	
		Aminor	pyrimidines	626
		9.1.4.1	By Primary Syntheses	626
		9.1.4.2	By Aminolyses	626
		9.1.4.3	By Reductive Processes	627
		9.1.4.4	By Aminoalkylation Reactions	629
		9.1.4.5	By the Hofmann or Curtius	
			Reaction	632
		9.1.4.6	By Other Means	632
	9.1.5	Fine St	ructure of Aminopyrimidines	633
	9.1.6	Reactio	ons of Aminopyrimidines	634
		9.1.6.1	Hydrolysis	634
		9.1.6.2	Diazotization and Subsequent	
			Reactions	634
		9.1.6.3	Acylation	636
		9.1.6.4	Alkylation	642
		9.1.6.5	Alkylidenation (Schiff Base	
			Formation)	642
		9.1.6.6	Conversion into Heterobicyclic	
			Products	646
		9.1.6.7	Removal of Amino or Hydrazino	
			Groups	646
		9.1.6.8	Other Reactions	647
9.2	N-(Fu	ınctionall	ly Substituted) Aminopyrimidines	650
	9.2.1	Alkoxy	carbonylaminopyrimidines	
		(Uretha		650
		9.2.1.1		650
		9.2.1.2	Reactions of Urethanes	653
	9.2.2		pyrimidines	654
		9.2.2.1	Preparation of Ureido-	
			and Thioureidopyrimidines	655
		9.2.2.2	Reactions of Ureido- and	
			Thioureidopyrimidines	658
	9.2.3		ninopyrimidines	659
	9.2.4	Nitroso	aminopyrimidines	660
	9.2.5		ninopyrimidines	660
	9.2.6		noaminopyrimidines	660
	9.2.7	Cyanoa	minopyrmidines	661
	9.2.8	Guanidi	inopyrimidines	661

Contents	XXV
----------	-----

			Hydroxyaminopyrimidines	662
		9.2.10	Trialkylammonio- and	
			Pyridiniopyrimidine Halides	663
		9.2.11	Acylaminopyrimidines	665
	9.3	Nonta	utomeric Iminopyrimidines	666
		9.3.1	Preparation of Nontautomeric	
			Iminopyrimidines	667
			9.3.1.1 By Alkylation of	
			Aminopyrimidines	667
			9.3.1.2 By Other Means	671
		9.3.2	Reactions of Nontautomeric	
			Iminopyrimidines	673
	9.4	Natur	ally Occurring or Medicinal	
			opyrimidines	679
		9.4.1	$4-\beta$ -Amino- β -carboxyethyl-2-	
			pyrimidinamine (Lathyrine,	
			Tingitanin)	679
		9.4.2	$5-(5'-\beta-Hydroxyethyl-4'-$	
			methylthiazolio)methyl-2-methyl-4-	
			pyrimidinamine Chloride Hydrochloride	
			(Thiamine, Vitamin B_1)	679
		9.4.3	The Antimicrobial 2,4-Pyrimidinediamines	680
		9.4.4	Sulfanilamidopyrimidines	681
		9.4.5	Bleomycin and Phleomycin	682
		×11.0	Zicomyon und z moonlyon	
CHAPTER 10.	PYF	RIMID	INECARBOXYLIC ACIDS AND	
	REL	ATED	DERIVATIVES	683
	10.1	Pyrii	midinecarboxylic Acids	683
		10.1.		
			Acids	683
		10.1.		689
	10.2		midinecarboxylic Esters	694
		10.2.	· · · · · · · · · · · · · · · · · · ·	
		10.2.	Esters	694
		10.2.		697
	10.3		midinecarboxamides	700
	10.5	10.3.		700
		10.3.	•	705
	10.4		midinecarbohydrazides and	103
	10.7		midinearbonyl Azides	707
	10.5	•	midinecarbonitriles	708
	10.5	10.5.		708
		10.5.	· · · · · · · · · · · · · · · · · · ·	711
		10.5.	2 Reactions of Lymmunical bollittles	/ 1 1

xxvi Contents

	10.6	Pyrımı	dinecarbaldehydes	714
		10.6.1	Preparation of Pyrimidinecarbaldehydes	715
		10.6.2	Reactions of Pyrimidinecarbaldehydes	720
	10.7	Pyrimi	dine Ketones	723
		10.7.1	Preparation of Pyrimidine Ketones	723
		10.7.2	Reactions of Pyrimidine Ketones	728
	10.8	Pyrimi	dine Isocyanates, Thiocyanates,	
		Isothic	ocyanates, and Nitrile Oxides	730
		10.8.1	Preparation of Pyrimidine Isocyanates	730
		10.8.2	Reactions of Pyrimidine Isocyanates	731
		10.8.3	Preparation of Pyrimidine Thiocyanates	732
		10.8.4	Reactions of Pyrimidine Thiocyanates	733
		10.8.5	Preparation and Reactions of	
			Pyrimidine Isothiocyanates	734
		10.8.6	Preparation and Reactions of	
			Pyrimidine Nitrile Oxides	734
CHAPTER 11.	THE		CED PYRIMIDINES	737
	11.1	Prepar	ation of Dihydropyrimidines	738
		11.1.1	By a Modified Principal Synthesis	
			(Method A)	738
		11.1.2	From an Aminopropane Derivative	
			and an Isocyanate (Method B)	743
		11.1.3	From an Isocyanatopropane Derivative	
			and an Amine (Method C)	744
		11.1.4	From an Aminopropane Derivative	
			and O-Methylurea (Method D)	745
		11.1.5	Syntheses Involving Amide	
			Intermediates (Method E)	745
		11.1.6	The Biginelli Reaction	746
		11.1.7	Other Primary Syntheses	749
		11.1.8	By Reduction of Pyrimidines	753
		11.1.9	By Addition of Reagents Other than	
			Hydrogen to a Double Bond	764
	11.2	Prepar	ation of Tetrahydropyrimidines	784
		11.2.1	From 1,3-Propanediamine or a Related	
			Substrate	784
		11.2.2	From Carbonyl Compounds with	
			Ammonia, Amines, or Ureas	789
		11.2.3	From 1,3-Dihalogenopropane	
			Derivatives	790
		11.2.4	By Reduction of Pyrimidines or	
			Dihydropyrimidines	790

Contents	xxvii
Contents	AAVII

SUBJECT INDEX					
REFERENCES	3			1183	
APPENDIX.	TABL	E OF S	MPLE PYRIMIDINES	871	
		12.5.3	Some Recent Topics	870	
			Protonation Studies	866	
			Tautomerism	865	
	12.5		r Magnetic Resonance Spectra	858	
	12.4	Mass S	Spectra	858	
	12.3	Infrare	d and Raman Spectra	853	
	12.2	Ultrav	iolet Spectra	853	
	12.1		tion Constants	823	
CHAPTER 12.		IONIZ IMIDIN	ATION AND SPECTRA OF IES	823	
		11.5.6	Applications of Hydropyrimidines	821	
			Mass Spectra	821	
			Conformations	819	
			Nuclear Magnetic Resonance	818	
		11.5.2		816	
	11.5		Ionization	816	
	11.5		ties of Reduced Pyrimidines	816	
			Other Reactions	810	
		11.4.7		809	
			and Pyrimidinethiones	808	
		11.4.6		000	
			Halogenations	808	
			Acylations	806	
			Nitrosations and Nitrations	805	
			Oxidations	803	
	11.4		Reductions	802	
	11.4	-	ons of Reduced Pyrimidines	801	
	11.3		ation of Hexahydropyrimidines	797	
		11.2.7		796	
		1126	Hydrogen to Nuclear Double Bonds From Other Heterocyclic Susbtances	793 795	
		11.2.5	,	793	
		1125	Dy Addition of December Other than		

