ISOXAZOLES

Part Two

Edited by

Paolo Grünanger Paola Vita-Finzi

Dipartimento di Chimica Organica dell'Università di Pavia Pavia, Italy

> Developmental Editing by

James E. Dowling

Department of Chemistry Princeton University Princeton, New Jersey

AN INTERSCIENCE® PUBLICATION

JOHN WILEY & SONS, INC.

NEW YORK • CHICHESTER • WEINHEIM • BRISBANE • SINGAPORE • TORONTO

ISOXAZOLES

Part Two

This is the forty-ninth volume in the series

THE CHEMISTRY OF HETEROCYCLIC COMPOUNDS

THE CHEMISTRY OF HETEROCYCLIC COMPOUNDS

A SERIES OF MONOGRAPHS

EDWARD C. TAYLOR AND PETER WIPF, Editors

ARNOLD WEISSBERGER, Founding Editor

ISOXAZOLES

Part Two

Edited by

Paolo Grünanger Paola Vita-Finzi

Dipartimento di Chimica Organica dell'Università di Pavia Pavia, Italy

> Developmental Editing by

James E. Dowling

Department of Chemistry Princeton University Princeton, New Jersey

AN INTERSCIENCE® PUBLICATION

JOHN WILEY & SONS, INC.

NEW YORK • CHICHESTER • WEINHEIM • BRISBANE • SINGAPORE • TORONTO

This book is printed on acid-free paper. 🛞

Copyright © 1999 by John Wiley & Sons, Inc.

All rights reserved.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4744.

Library of Congress Cataloging in Publication Data is available.

Grünanger, Paolo

Isoxazoles, Part Two/Paolo Grünanger, Paola Vita-Finzi; developmental editing by James E. Dowling (The Chemistry of Heterocyclic Compounds, V. 49)

ISBN 0-471-50249-9

Contributors

Giovanni Desimoni Dipartimento di Chimica Organica Università di Pavia Pavia, Italy

S. V. Eswaran St. Stephen's College University of Delhi Delhi, India

Giuseppe Faita Dipartimento di Chimica Organica Università di Pavia Pavia, Italy

Remo Gandolfi Dipartimento di Chimica Organica Università di Pavia Pavia, Italy Mario Giannella Dipartimento di Scienze Chimiche Università di Camerino Camerino, Italy

Paolo Grünanger Dipartimento di Chimica Organica Università di Pavia Pavia, Italy

Fulvio Gualtieri Dipartimento di Chimica Farmaceutica Università di Firenze Firenze, Italy

The Chemistry of Heterocyclic Compounds Introduction to the Series

The chemistry of heterocyclic compounds is one of the most complex and intriguing branches of organic chemistry, of equal interest for its theoretical implications, for the diversity of its synthetic procedures, and for the physiological and industrial significance of heterocycles.

The Chemistry of Heterocyclic Compounds, published since 1950 under the initial editorship of Arnold Weissberger, and later, until Dr. Weissberger's death in 1984, under our joint editorship, has attempted to make the extraordinarily complex and diverse field of heterocyclic chemistry as organized and readily accessible as possible. Each volume has traditionally dealt with syntheses, reactions, properties, structure, physical chemistry, and utility of compounds belonging to a specific ring system or class (e.g., pyridines, thiophenes, pyrimidines, three-membered ring systems). This series has become the basic reference collection for information on heterocyclic compounds.

Many broader aspects of heterocyclic chemistry are recognized as disciplines of general significance that impinge on almost all aspects of modern organic chemistry, medicinal chemistry, and biochemistry, and for this reason we initiated several years ago a parallel series entitled General Heterocyclic Chemistry, which treated such topics as nuclear magnetic resonance, mass spectra, and photochemistry of heterocyclic compounds, the utility of heterocycles in organic synthesis, and the synthesis of heterocycles by means of 1,3-dipolar cycloaddition reactions. These volumes were intended to be of interest to all organic, medicinal, and biochemically oriented chemists, as well as to those whose particular concern is heterocyclic chemistry. It has, however, become increasingly clear that the above distinction between the two series was unnecessary and somewhat confusing, and we have therefore elected to discontinue *General Heterocyclic Chemistry* and to publish all forthcoming volumes in this general area in *The Chemistry of Heterocyclic Compounds* series.

It is a major challenge to keep our coverage of this immense field up to date. One strategy is to publish Supplements or new Parts when merited by the amount of new material, as has been done, *inter alia*, with purines, pyrimidines, quinazolines and pyrimidines. This is also the case with *Condensed Isoxazoles*, which were last covered in Volume 17 published in 1962. Professors Grünanger and Vita Finzi have done a heroic job in covering almost 30 years of condensed isoxazole chemistry in the present volume, and efforts are currently underway to update further their coverage of both mononuclear and condensed isoxazoles.

Department of Chemistry Princeton University Princeton, New Jersey EDWARD C. TAYLOR

Preface

Part 1 of the present work on isoxazole chemistry appeared within this series (Vol. 49) in 1991. It was a complete, new reelaboration of the previous monograph published in 1962 by A. Quilico and G. Speroni, *Isoxazoles and Related Compounds* (Vol. 17 of this series). Owing to the huge development in the field of isoxazole derivatives in the last decades, from both synthetic and theoretical points of view, Part 1 was restricted to mononuclear isoxazoles and their hydrogenated counterparts (isoxazolines and isoxazolidines), with the notable exception of isoxazolones.

This second part is devoted to the chemistry of condensed isoxazoles: 1.2- and 2,1-benzisoxazoles and related compounds such as isoxazoles fused with carbocyclic or heterocyclic rings. Contrary to the previous part, each of the above cited groups was entrusted to different eminent specialists in that field. Each chapter illustrates the syntheses and reactions of these classes of compounds; physical properties are also included whenever they differ notably from those of the corresponding mononuclear isoxazoles already reported in Part 1. In order to facilitate the text writing and to avoid possible draft complications, references are collected at the end of each chapter, although this might be somewhat uncomfortable to the reader. Notwithstanding the advantages offered by computerization to text composition, the literature survey was ended, except for some items in Chapter 2, with Volume 115 of Chemical Abstracts (1991). We apologize for the long gap between literature deadline and publication year, and hope to update both Part 1 and Part 2 in the planned Part 3, which will include a chapter on isoxazolones. As a rule, patent literature has been evaluated only in those cases when the factual material therein has not subsequently appeared in the regular literature. An effort has been made to bring the chemical nomenclature in line with more recent IUPAC recommendations; nevertheless, sometimes the Chemical Abstracts names (e.g., 1,2-benzisoxazole) as well as some more commonly used names (e.g., 2-isoxazolines instead of 4,5-dihydro-1,2-oxazoles) have been utilized for the sake of simplicity.

We are greatly indebted to Dr. L. Toma and Dr. E. Magistrali for outstanding help in data collection and references control, to Mr. J. Dowling for critical supervision and language improvement of the whole text, and to the series editor Professor E. C. Taylor for constant advice.

Department of Organic Chemistry University of Pavia, Italy P. Grünanger P. Vita Finzi

Contents

1	1,2 BENZISOXALES F. GUALTIERI and M. GIANNELLA	1
2	2,1-BENZISOXAZOLES S.V. Eswaran	123
3	HETEROCYCLES CONDENSED TO THE ISOXAZOLE RING G. DESIMONI and G. FAITA	237
4	PARTIALLY SATURATED POLYNUCLEAR ISOXAZOLES R. Gandolfi and P. Grünanger	467
IN	DEX	871

ISOXAZOLES

Part Two

This is the forty-ninth volume in the series

THE CHEMISTRY OF HETEROCYCLIC COMPOUNDS

CHAPTER 1

1,2-Benzisoxazoles

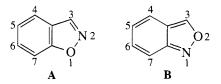
Fulvio Gualtieri

Dipartimento di Chimica Farmaceutica, Università di Firenze, Firenze, Italy

Mario Giannella

Dipartimento di Scienze Chimiche, Università di Camerino, Camerino, Italy

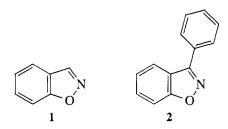
1.1.	Introdu	letion
1.2.	Physic	ochemical Properties
	1.2.1.	Infrared and Raman Spectra
	1.2.2.	Ultraviolet Spectra
	1.2.3.	Nuclear Magnetic Resonance Spectra 14
		1.2.3.1. PMR Spectra
		1.2.3.2. ¹³ C-NMR Spectra
		1.2.3.3. Other NMR Spectra
	1.2.4.	Mass Spectra
	1.2.5.	Other Spectra
	1.2.6.	Crystal and Molecular Structure
	1.2.7.	Dipole Moments
	1.2.8.	Theoretical Calculations
		1.2.8.1. Electron Density, Reactivity, and Ionization Potentials
		1.2.8.2. Other Calculations
	1.2.9.	Basicity
	1.2.10.	Miscellaneous Data
	1.2.11.	Analytical Methods
1.3.		ds of Preparation
		Formation of Bond 7a-1
		1.3.1.1. From 2-Halobenzoyl Derivatives
		1.3.1.2. From 2-Nitrobenzoyl Derivatives
		1.3.1.3. From Other 2-Substituted Benzoyl Derivatives
	1.3.2.	Formation of Bond 1–2 46
	1.3.3.	Formation of Bonds 2–3 or 3–3a
	1.3.4.	Formation of Two Bonds
	1.3.5.	From Other Heterocycles 55
	1.3.6.	2,3-Dihydro-1,2-benzisoxazoles


The Chemistry of Heterocyclic Compounds, Volume 49: Isoxazoles, Part Two, Edited by Paolo Grünanger and Paola Vita-Finzi. Developmental Editing by James E. Dowling. ISBN 0-471-50249-9 © 1999 John Wiley & Sons, Inc.

1,2-Benzisoxazoles

	1.3.7.	1,2-Benzisoxazole- <i>N</i> -oxides
	1.3.8.	1,2-Benzisoxazolin-3-ones
	1.3.9.	Polynuclear Condensed 1,2-Benzisoxazoles
		1.3.9.1. 1,2-Benzisoxazole Condensed with Hydrocarbons
		1.3.9.2. 1,2-Benzisoxazole Condensed with Other Heterocycles 64
1.4.	Chemi	cal Properties
	1.4.1.	Protonation and Acid Stability
	1.4.2.	Quaternization and Metal Complexation
	1.4.3.	Reduction and Oxidation
	1.4.4.	Thermolysis and Photolysis
	1.4.5.	Reactions with Nucleophiles
		1.4.5.1. Reactions without Ring Cleavage
		1.4.5.2. Reactions with Ring Cleavage
		1.4.5.3. Reactions with Ring Transformation
	1.4.6.	Metallation and Base-Promoted Condensations
	1.4.7.	Electrophilic Substitution
		1.4.7.1. Nitration
		1.4.7.2. Halogenation
		1.4.7.3. Acylation
		1.4.7.4. Sulfonation
	1.4.8.	Other Reactions without Ring Cleavage 101
		1.4.8.1. Carboxylic Acids and Their Derivatives
		1.4.8.2. Hydroxy Groups
		1.4.8.3. Amino Groups
		1.4.8.4. Alkyl and Aryl Groups
		1.4.8.5. Sulfonyl Groups
		1.4.8.6. Carbonyl Groups
1.5.	Biolog	ical Properties
	1.5.1.	Pharmacological Activity
	1.5.2.	Toxicology

1.1. INTRODUCTION


The annulation of an isoxazole nucleus with a benzene ring gives rise to two bicyclic ring systems, **A** and **B**; only one of them, **A**, can properly be called a *benzisoxazole*, in that it has a formal benzenoid ring.

Each of these two compounds is known in the literature under several names. Ring system A has been described as indoxazene, 1,2-benzisoxazole, 4,5-benzisoxazole, α,β -benzisoxazole, benzo[d]isoxazole (IUPAC nomenclature), and benzisoxazole. It is indexed in *Chemical Abstracts* as 1,2-benzisoxazole and numbered as shown in the figure; its ring index is 1123. Ring system **B** has been described as anthranil, anthroxan, 2,1-benzisoxazole, 3,4-benzisoxazole, β , γ -benzisoxazole, benzo[c]isoxazole (IUPAC nomenclature), and benzpseudoxazole. It is indexed in *Chemical Abstracts* as anthranil and numbered as shown in the figure; its ring index is 1124.

This chapter deals only with ring system **A**, which henceforth will be named and numbered in accordance with the *Chemical Abstracts* system.

The first member of the family, 3-phenyl-1,2-benzisoxazole (2), was synthesized by Cathcart and Meyer a century ago,^{1/892} and the parent compound, 1,2-benzisoxazole (1), was obtained by Conduché in 1908.^{1/08}

This ring system was first reviewed by Quilico,^{1/62} while a systematic coverage of the subject was made by Wünsch and Boulton^{1/67} and updated 15 years later by Smalley.^{1/81}

1.2. PHYSICOCHEMICAL PROPERTIES

The physicochemical behavior of 1,2-benzisoxazole and its derivatives was investigated early, especially with regard to establishing its correct structure However, extensive examination and recording of physicochemical properties have occurred only in more recent years. The subject has been briefly reviewed by Speroni.^{2/62}

1.2.1. Infrared and Raman Spectra

A complete analysis and the attribution of the fundamental vibrations and of some overtones and combination vibrations of 1,2-benzisoxazole (1) have been performed in liquid and in solution.^{1/80} Vapor spectra could not be recorded for 1 because of its decomposition at high temperature (see § 1.4.4).

If the molecule is considered to have a planar structure, it can be attributed to the C_s group of symmetry. In this case there are 36 fundamental vibrations, all of which are IR- and Raman-active, and which can be classified as 10 in-plane bending (γ) and stretching (δ) CH vibrations and 15 ring vibrations (v_i) with A' symmetry; 5 deformation vibrations (γ CH) and 6 out-of-plane bending vibrations (Γ_i) with a A" symmetry. The frequencies of the fundamental vibrations are reported in Tables 1.1 and 1.2, while the original IR and Raman spectra are illustrated in the reference above cited.

For practical purposes the stretching frequency of the nuclear C=N bond is characteristic of the cyclic system, and it is mostly reported in the literature as the IR signature of 1,2-benzisoxazole derivatives. It has a medium to strong absorption that shows some variation according to the structure of the compounds. Some representative examples of this band are reported in Table 1.3. The C=N absorption band is lost in 2,3-dihydro-1,2-benzisoxazole derivatives as shown by the spectrum of 2-*t*-butyl-2,3-dihydro-1,2-benzisoxazole.^{1/84}

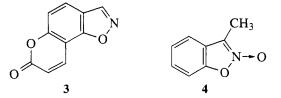
In most cases reported IR spectra deal primarily with the assignment of significant side-chain functions, and are therefore not worth taking into account in this review. In other cases the reported absorptions have not been assigned, or the proposed designation is questionable. In Table 1.4 a few complete IR spectra of selected 1,2-benzisoxazole derivatives are reported; the assignments in brackets are those proposed by the authors.

The absorption frequency of the C=N bond does not seem to change after quaternization of the nitrogen, as shown by the $v_{C=N}$ of *N*-ethyl-1,2-benzisoxa-zolium fluoborate ($v = 1620 \text{ cm}^{-1}$).^{1/65}

The C=N absorption frequency of polynuclear 1,2-benzisoxazole derivatives also seems to remain fairly constant.^{2/80,4/87} However, in derivatives such as **3** the $v_{C=N}$ is reported to be as low as 1530 cm⁻¹.^{2/77}

		Raman		IR Neutral solvents		DMSO Acetone	
Assignment ^{1/80}	v (cm ⁻¹)	Ι	ρ	v (cm ⁻¹)	3	$v (cm^{-1})$	
A' symmetry			_				
v CH isoxazole	3102	23	0.17	3096	9	_	
v ₁ CH	3079	14	0.19	3078	13		_
v ₂ CH		—		3063	25	_	
v ₃ CH		_		3055	19		
v ₄ CH			_	3045	10		
$\delta_1 CH$	1259	46	0.18	1257	46	1258	
δ CH isoxazole	1177	9	0.14	1173	90	1175	1175
$\delta_2 CH$				1154	15	~1157	1157
δ_3 CH	1145	5	0.19	1141	46	1145	1145
$\delta_4 CH$	1119	7	0.69	1116	50	1116	1116
4″ symmetry							
γ ₁ CH				980 w (°)	_		
$\gamma_2 CH$	_		_	~936s	_	_	945
γ ₃ CH	888	3	0.75	886	101	886	886
CH isoxazole	_		_	873	100	_	
γ₄CH		_		752	422	763(°)	

TABLE 1.1. ASSIGNMENTS OF FUNDAMENTAL C-H VIBRATIONS OF 1,2-BENZISOXAZOLE^a

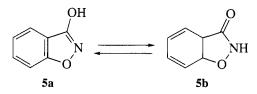

^{*a*} Key: I = Intensity; $\rho =$ depolarization factor; $\varepsilon =$ apparent molar extinction coefficient; w = weak; s = shoulder; (°) = observed only in liquid sample.

		Raman		IR Neutral solv	vents
Assignment ^{1/80}	$v(cm^{-1})$	Ι	ρ	v (cm ⁻¹)	3
A' symmetry					
v ₁	1613	13	0.45	1610	100
v ₂	1582	2		1585	14
V 3	1514	36	0.25	1511	100
V ₄	1473	6	0.18	1470	71
V 5	1432	45	0.19	1427	175
v ₆	1344	26	0.16	1341	55
V ₇	1306	7	0.26	1303	24
v ₈	1227	24	0.10	1227	105
/ ₉	1003	38	0.05	1003	24
/10	934	22	0.06	933	101
211	843	17	0.16	846	100
/12	763	100	0.05	764	94
/13	620	18	0.75	618	34
v14	534	28	0.20	532	11
v15	_			421	45
A" symmetry					
Γι	_	_		744	362
Γ_2				$667 (w)^{a}$	
Γ_3	607	2	dp	604	141
Γ_4	562	3	0.75	556	6
Γ5			—	394	41
Γ ₆	260	4	0.75	256	29
-	218	6	0.73		

TABLE 1.2. FUNDAMENTAL SKELETON VIBRATION OF 1,2-BENZISOXAZOLE"

^{*a*} See legend in Table 1.1 Footnote; dp = depolarized.

In a series of substituted 1,2-benzisoxazole-2-oxides, of which **4** is an example, the $v_{C=N}$ absorption occurred in the range 1570–1620 cm⁻¹, which is quite similar to that for 3,4-diphenylfuroxan (1575–1570 cm⁻¹), and the most characteristic absorptions were those in the ranges 1200–1240 and 1520–1590 cm⁻¹.^{1/86,1/87}



IR spectroscopy has been very useful in establishing the position of the tautomeric equilibrium in 1,2-benzisoxazolin-3-one. The enol form **5a** is preferred in the solid state as shown by the strong absorption at $3000-2500 \text{ cm}^{-1}$, the lack of carbonyl absorption and the C=N absorption at 1620 cm⁻¹. Both forms are

TABLE 1.3. IR DATA FOR THE C=N STRETCHING ABSORPTION OF SELECTED 1,2-BENZISOX AZOLE DERIVATIVES

	R_1	R ₂ N		
R	R ₂	$v_{\rm CN}({\rm cm}^{-1})$	Phase	References
H	Н	1607	CCl ₄	1/65
4-OH	$-CH_3$	1613	Nujol	1/73
6-OCH ₃ ,7-COCH ₃	$-CH_3$	1595	CCl₄	2/80
6-OCH ₂ CHCH ₂	$-CH_3$	1630	Nujol	2/87
н	$-C_6H_5$	1610	CHCl ₃	3/84
H	CH ₃	1600	CHCl ₃	3/84
6-OH,7-COCH ₃	-C ₆ H ₅	1630	CHCl ₃	3/87
5-CH ₃		1550	Nujol	4/84
6-OCH ₃ , 7-Cl)	1620	Nujol	1/77
Н	-СНО	1609	Nujol	1/82
6-OMe	-CH=CH-	1540	Nujol	1/74
Н	-CHBrCOOEt	1600	Nujol	2/83
Н	-CHOHCOOEt	1610	Nujol	2/83
Н	-OCH ₂ CH ₂ NMe ₂	1534	KBr	1/68
Н	-Cl	1613	KBr	3/67

present in chloroform solution (OH absorption as above and carbonyl absorption at 1670 cm⁻¹).^{2/67,1/69,1/71} Methylation with diazomethane gives both 3-methoxy-1,2-benzisoxazole ($v_{C=N}$ 1615 cm⁻¹) and 2-methyl-1,2-benzisoxazolin-3-one (v_{CO} 1675 cm⁻¹).^{1/71}

TABLE 1.4. IR DATA OF SELECTED 1,2-BENZISOXAZOLE DERIVATIVES

R ₁	R ₂	v (cm ⁻¹)	Phase	References
6-CH ₃	-CH ₃	2920 (CH), 1625 (C=N), 1604, 1575 (aromatic), 1346, 1391, 1256, 1152, 860, 800, 761, 638	Neat	1/79
H -ch-	=CH-()-OH	1630 (CN), 1595, 1550 (C=C), 1510, 1475, 1440 (-O-C=N), 1385, 1335, 1280, 1230, 1105, 1015 (aromatic and isoxazole), 965 (HC=CH <i>trans</i>), 940, 830, 750 (aromatic)	KBr	2/79
Н	—N	2900(w), 1608(s), 1510(s), 1482(w), 1440(s), 1393(s), 1333(w), 1247(w), 1224(w), 911(m), 870(m), 747(s)	Neat	1/72
5-Cl	-N ₃	2137(s), 1499(s), 1460(s), 1361(s), 1310(s), 1093(m), 930(m), 820(s), 752 (s), 717(m)	KBr	3/67
5-Cl -	-0-《》	1527(s), 1460(s), 1366(s), 1316(m), 1193(m), 926(m), 820(m), 810(m), 763(s), 749(m), 690(m)	KBr	3/67

On this basis two kinds of derivatives obtained after alkylation or arylation can be recognized.^{1/83,2/84} Accordingly, 3-chloro-1,2-benzisoxazole showed a sharp absorption at 1613 cm⁻¹ ($v_{C=N}$),^{3/67} while in a series of *N*-aryl derivatives of substituted 1,2-benzisoxazolin-3-one the absorption of the carbonyl function ranged from 1728 to 1753 cm⁻¹,^{2/69}

IR spectroscopy in solution at different dilutions has been used to support the attribution of the *E* or *Z* configurations of the isomeric α -oxyimino-1,2-benzisoxazole-3-acetic acid ethyl esters on the basis of the absorption frequency of the OH groups, which for the *Z* series indicates a bonded OH group as opposed to the free OH group of the *E* series.^{2/83}

1.2.2. Ultraviolet Spectra

1,2-Benzisoxazole and its derivatives show only $\pi \rightarrow \pi^*$ transitions in the UV region in accordance with other heterocycles of this kind.

The UV spectrum of the parent compound has been reported by several authors.^{1/41,1/65,1/79} In cyclohexane the band at 280 nm is clearly resolved into a fine structure.^{1/41} Compared to the spectrum of the corresponding open com-

R	$\lambda_{max}(nm)$	log ε	Solvent	References
Н	229	3.88	EtOH	1/79
	234	3.98		
	240	3.91		
	280	3.44		
Н	235	4.00	EtOH	1/65
	243	3.91		
	280	3.46		
6-OCH ₃	219	3.97	H_2O	2/73
	251	3.88		
	283	3.76		
	291	3.73		
5-OCH ₃	236	3.92	H_2O	2/73
	306	3.54	-	
6-Cl	244	4.00	H_2O	2/73
	284	3.47	-	
5-Cl	236	3.95	H_2O	2/73
	293	3.50	-	
6-NO ₂	275	4.18	H_2O	2/73
$5,7-(NO_2)_2$	255	4.15	$H_2O(pH 3)$	2/73
	305	3.61	- '-	

TABLE 1.5. UV DATA OF SELECTED 1,2-BENZISOXAZOLE DERIVATIVES

pound, salicylaldoxime, there is a hypsochromic shift of about 20 nm, which is indicative of the reduced electronic availability and the increased rigidity of the chromophore.

Calculations of $\pi \rightarrow \pi *$ transitions with a variety of theoretical methods [including Pariser–Parr–Pople self-consistent field (PPP SCF) and modified CNDO-CI (complete neglect of differential overlap–configuration interaction)] are in good agreement with experimental data (see § 1.2.8).^{3/69,1/70,2/71,2/72,1/78} The UV spectra of some 1,2-benzisoxazole compounds are reported in Table 1.5. From a comparison of 1,2-benzisoxazole and isoxazole spectral data, von Auwers first proposed the actual structure of this heterocycle.^{1/24} The decomposition kinetics of 1,2-benzisoxazole and several substituted derivatives to the corresponding salicylonitriles have been followed using UV spectra that are fairly different for the two species, especially at pH 10.^{2/73} On the basis of UV studies it has been found that 1,2-benzisoxazole derivatives are very weak bases, weaker than the corresponding isoxazoles (see § 1.2.9).^{1/66}

Methyl substitution gives the expected slight bathochromic effect that seems higher when the methyl group is in position $6^{1/79}$ UV spectra allow better differ-

	R	N	
R	$\lambda_{max}(nm)$	log ε	References
H	231	3.85	1/79
	236	3.91	
	243	3.80	
	280	3.46	
	297(sh)	3.31	
Н	236.5	3.92	4/69
	243.0	3.86	
	282.0	3.49	
	292.0(sh)	_	
Н	235	3.89	3/71
	243	3.83	
	285	3.42	
	330	2.85	
5-CH ₃	232	3.87	1/79
	237	3.92	
	243	3.83	
	289	3.51	
	297(sh)	3.36	
6-CH ₃	240	3.98	1/79
.,	246(sh)	3.89	
	280	3.55	
	289(sh)	3.96	
4-OH	213	4.42	1/73
-	242	3.39	
	292	3.36	
6-OH, 7-NH ₂	228-232	4.03	4/87
	276-278	3.68	
6-OH, 7-COCH ₂ COC ₆ H ₅	238	4.5	3/73
	285	4.5	5115
	370	4.6	
6-OH, 7-N=CHC ₆ H ₅	225	4.41	4/87
	275	4.12	1707
	345	4.21	
C ₆ H ₅			
6-OH, 7-	230	4.13	3/87
	280	4.01	5,67

TABLE 1.6. UV DATA OF SELECTED 3-METHYL-1,2-BENZISOXAZOLE DERIVATIVES (EtOH)

CH₃

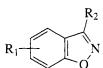
entiation of 3-methyl-1,2-benzisoxazole and 1,2-benzisoxazole-3-acetic acid from the corresponding benzoxazole derivatives than do ¹H-NMR spectra.^{4/69}

The spectral data of some 3-methyl-1,2-benzisoxazole derivatives are reported in Table 1.6.

\bigwedge^{R}

TABLE 1.7. UV DATA OF SELECTED 3-PHENYL-1,2-BENZISOXAZOLE DERIVATIVES (EtOH)

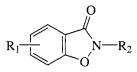
R	λ_{\max} (nm)	log ε	References
3-NO ₂	285	3.81	5/69
2	224	4.29	
2-NHCHO	237(sh)	4.37	2/74
	246(sh)	4.29	
	291	3.90	
2-NHCOCH ₃	235	4.32	2/74
	290	3.89	
2-NH ₂ , 5-Cl	225	4.33	2/74
-	234	4.34	
	278	3.73	
	287(sh)	3.66	
	297	3.56	
	353	3.72	
2-NH ₂	234	4.29	2/74
2	277	3.63	
	284	3.63	
	295	3.65	
	332	3.66	


Even if a sound comparison is made difficult by the lack of sufficient data, substitution with a phenyl ring in position 3 seems to bring about the expected bathochromic and hyperchromic effect. Some UV spectral data of 3-phenyl-1,2-benzisoxazole derivatives are reported in Table 1.7.

The effect of other substituents on the various positions of the 1,2-benzisoxazole ring is reported in Table 1.8. In a series of 2-(1,2-benzisoxazolyl-3) acrylonitriles, UV spectra have been used to establish the *E* and *Z* configurations of the products obtained.^{3/83} UV spectra have been used at different pH to evaluate the pK_a values of 4- and 6-hydroxy-1,2-benzisoxazole-3-carboxylic acid (see § 1.2.9).^{1/75}

The spectral data of selected O and N derivatives of 1,2-benzisoxazolin-3ones are reported in Table 1.9. Usually the *N*-alkyl and *N*-aryl derivatives show a bathochromic shift with respect to the corresponding *O*-alkyl and *O*-aryl derivatives. The N derivatives also show a higher ε . The spectra of some of these derivatives are reproduced in Böshagen and Geiger's work.^{2/69}

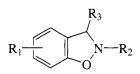
TABLE 1.8. UV DATA OF SUBSTITUTED 1,2-BENZISOXAZOLES


		R ₁ + N			
R	R ₂	$\hat{\lambda}_{max}$ (nm)	log ε	Solvent	References
н	-OH	278	3.51	CH ₃ OH	2/69
	011	282	3.51	01.3011	
		289	3.54		
н	-OH	236	3.70	CH ₃ OH	2/67
-		274(sh)	3.39	,	
		278	3.50		
		282	3.50		
		288.5	3.53		
ł	-OCH ₃	236	3.76	CH ₃ OH	1/71
-	00113	273(sh)	3.45	engon	
		278	3.57		
		282	3.57		
		288	3.58		
Н	-OCOC ₆ H ₅	279	3.70	CH ₃ OH	2/69
	00006115	289(sh)	3.51	ch ₃ on	2/0/
	,CI	209(31)	5.51		
ł	-o-co-	281	3.71	CH ₃ OH	2/69
	-0-00	289(sh)	3.65	engon	2109
ł	-OCOOCH ₃	279	3.50	CH ₃ OH	2/69
		289	3.45	-	
ł	-CH ₂ COOH	237.5	3.78	EtOH	4/69
		244.0	3.67		
		283.0	3.40		
		293(sh)			
ł	-сн=с-Он	230	4.18	EtOH	2/79
	С	255	4.05		
		285	4.12		
		3.22	4.47		
-CH ₃	$-CH=C \longrightarrow OCH_3$	220			2/86, 5/87
,		269			1,00,07,07
	NHOH	313	_		
5-Cl	-OH	291	3,47	CHCl ₃	2/69
~.	~ ~ ~	295	3.47	-1101,	2,07
		302	3.46		
i-Cl	-OCO-C ₆ H ₅	287	3.65	CH ₃ OH	2/69
	000 06115	301(sh)	3.48	0113011	<i>4109</i>
5-Cl		268	4.35	CH ₃ OH	2/69
-01	-0C0-CH3	302(sh)	3.72	013011	2109
5-Cl	-OCOOCH ₃	291	3.37	CH ₃ OH	2/69
		301	3.31		2, 07

R ₁	R ₂	λ_{\max} (nm)	log ε	Solvent	References
5-Cl	-OSO ₂ -CH ₃	293 301(sh)	3.61 3.54	CH ₃ OH	2/69
5-C1	CH_{3O} CN CN $C=C$ H OCH_{3} E	315 390	4.15 3.96	EtOH	3/83
5-Cl	$CN C = C + OCH_3 E$	288 380	4.03 3.83	EtOH	3/83
5,7-Cl ₂ ,6-N(CH ₃) ₂	$N \rightarrow Cl \\ Cl \\ Cl \\ N(CH_3)_2$	218 323	3.75 3.13	EtOH	5/71
4-OH, 6-OCH ₂ CO	ONa -CH ₂ CH ₂ -O	CH _{3 259}	4.01	H ₂ O	3/81
4-OH	-COOH	306	3.41	H ₂ O (pH 2)	1/75
6-OH	-СООН	325 289 312	3,72 3.93 4.07	H ₂ O (pH 13) H ₂ O (pH 3) H ₂ O (pH 10)	1/75

TABLE 1.8 (continued)

TABLE 1.9. UV DATA OF SELECTED 1,2-BENZISOXAZOLIN-3-ONE DERIVATIVES (CH₃OH)



R	R_2	$\hat{\lambda}_{\max}$ (nm)	log ε	References
н	-CH ₃	242(sh)	3.73	1/71
	-/	254(sh)	3.45	
		287	3.73	
		294	3.73	
Н	$-CH_{2}-CH=CH_{2}$	244(sh)	3.76	1/71
	2 2	255(sh)	3.50	
		289	3.72	
		295	3.73	

\mathbf{R}_1	R_2	λ_{\max} (nm)	log ε	References
н	-COCH ₃	299	3.71	2/69
		309	3.69	
	,Cl			
Н	/ 	307	3.60	2/69
-	-co-	315(sh)	3.59	
н	-COOCH ₃	296	3.72	2/69
		306	3.70	
5-Cl	-COCH ₃	312	3.65	2/69
		322	3.62	
5-C1	-COOCH ₃	309	3.64	2/69
		319	3.61	

TABLE 1.9 (continued)

TABLE 1.10. UV DATA OF 2,3-DIHYDRO-1,2-BENZISOXAZOLE DERIVATIVES

R	R_2	R_3	λ_{\max} (nm)	log ε	Solvent	References
н	-C,H5	Н	280	3.34	H ₂ O (pH 5–12)	4/67
			276	3.21	$H_2O(pH1)$	
			269	3.24		
5-NO ₂	Н	-CH ₂ COOH	232	4.06	EtOH	4/71
-		_	309	3.87		
5-NO ₂	H, HCl	CH ₂ COOH	230	3.93	EtOH	4/71
-		_	318	3.93		
5-NO ₂	Н	-CH ₂ COOCH ₃	231	3.93	EtOH	4/71
-			320	3.99		
5-NO ₂	-COCH ₃	-CH2COOH	233.5	418	EtOH	4/71
-		-	302	3.92		

The UV spectra of a few 2,3-dihydro-derivatives are known; they are reported in Table 1.10. There are no reported UV spectral data for 1,2-benzisoxazole-2-oxides.

UV spectra have been reported for only two 1,2-benzisoxazolium salts, and the data are shown in Table 1.11. Even if comparison is difficult because of the limited amount of data available, quaternization of nitrogen seems to induce a strong bathochromic shift in the spectra.

Finally, the data for a few polynuclear condensed 1,2-benzisoxazole derivatives are reported in Table 1.12. In a series of 9(H)-oxopyrano[2,3-g]1,2-benzisoxazoles, three maxima have been observed in all cases around 220, 265, and 320 nm. The former has been attributed to the isoxazole moiety acting as an independent chromophore.³⁷³

$R_1 \longrightarrow N \longrightarrow R_2 \cdot X^-$					
R,	R ₂ /X	$\hat{\lambda}_{max}$ (nm)	log ε	References	
Н	$-C_{2}H_{5}/BF_{4}$	258	4.12	1/65	
		297	3.46		
7-OH	$-C_{2}H_{5}/BF_{4}^{-}$	307	3.42	3/74	
		248	3.94		
		214	3.30		

TABLE 1.11. UV DATA OF 1,2-BENZISOXAZOLIUM SALTS (H₂O)

TABLE 1.12. UV DATA OF SELECTED POLYCYCLIC 1,2-BENZISOXAZOLES

Compound	λ_{\max} (nm)	log ε	Solvent	References
CH ₃				
\sim	220	4.19	EtOH	4/87
N	250	4.30		
0	280	4.43		
}=N				
C ₆ H ₅				
C ₆ H ₅				
	240	4.10	EtOH	3/87
	280	3.86		0,0,
0 4 0	305	3.91		
ОТОН	500	2.51		
CH	ł			
\sim	220	4.10	EtOH	3/73, 3/87
[] N	264(265)	4.39		
0~~0	294(303-306)	4.25		
C ₆ H ₅				
Х				
\rightarrow	X II 220(1)	2.07		2/74
« »	X=H; 230(sh)	3.97	i.PrOH	2/74
CH ₃ COO	286	3.56	ID OF	A / - /
N N	X=Cl; 286	3.80	<i>i</i> .PrOH	2/74
~ 0				

1.2.3. Nuclear Magnetic Resonance Spectra

In the presence of condensed benzene and isoxazole rings, 1,2-benzisoxazole derivatives give NMR spectra that have the characteristics of both nuclei and generally lack original features. Perhaps for this reason NMR studies on this heterocyclic system are much less numerous than those concerning parent benzene and isoxazole rings.