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Preface

The theory of stellar evolution is by now well established, after more than half a
century of continuous development, and its main predictions confirmed by various
empirical tests. As a consequence, we can now use its results with some confidence,
and obtain vital information about the structure and evolution of the universe from
the analysis of the stellar components of local and high redshift galaxies.

A wide range of techniques developed in the last decades make use of stellar
evolution models, and are routinely used to estimate distances, ages, star formation
histories and the chemical evolution of galaxies; obtaining this kind of information is,
in turn, a necessary first step to address fundamental cosmological problems like the
dynamical status and structure of the universe, the galaxy formation and evolution
mechanisms. Due to their relevance, these methods rooted in stellar evolution should
be part of the scientific background of any graduate and undergraduate astronomy and
astrophysics student, as well as researchers interested not only in stellar modeling,
but also in galaxy and cosmology studies.

In this respect, we believe there is a gap in the existing literature at the level of
senior undergraduate and graduate textbooks that needs to be filled. A number of
good books devoted to the theory of stellar evolution do exist, and a few discussions
about the application of stellar models to cosmological problems are scattered in
the literature (especially the methods to determine distances and ages of globular
clusters). However, an organic and self-contained presentation of both topics, that is
also able to highlight their intimate connections, is still lacking. As an example, the
so-called ‘stellar population synthesis techniques’ — a fundamental tool for studying
the properties of galaxies — are hardly discussed in any existing stellar evolution
textbook.

The main aim of this book is to fill this gap. It is based on the experience of
one of us (MS) in developing and teaching a third year undergraduate course in
advanced stellar astrophysics and on our joint scientific research of the last 15 years.
We present, in a homogeneous and self-contained way, first the theory of stellar
evolution, and then the related techniques that are widely applied by researchers to
estimate cosmological parameters and study the evolution of galaxies.

The first chapter introduces the standard Big Bang cosmology and highlights the
role played by stars within the framework of our currently accepted cosmology. The
two following chapters introduce the basic physics needed to understand how stars
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work, the set of differential equations that describes the structure and evolution of
stars, and the numerical techniques to solve them.

Chapters 4 to 7 present both a qualitative and quantitative picture of the life cycle
of single stars (although we give some basic information about the evolution of
interacting binary systems when dealing with Type Ia supernovae progenitors) from
their formation to the final stages. The emphasis in our presentation is placed on
those properties that are needed to understand and apply the methods discussed in
the rest of the book, that is, the evolution with time of the photometric and chemical
properties (i.e. evolution of effective temperatures, luminosities, surface chemical
abundances) of stars, as a function of their initial mass and chemical composition.

The next chapter describes the steps (often missing in stellar evolution books)
necessary to transform the results from theoretical models into observable properties.
Finally, Chapters 9 to 11 present an extended range of methods that can be applied to
different types of stellar populations — both resolved and unresolved — to estimate their
distances, ages, star formation histories and chemical evolution with time, building
on the theory of stellar evolution we have presented in the previous chapters.

We have included a number of references which are not meant to be a totally
comprehensive list, but should be intended only as a first guide through the vast array
of publications on the subject.

This book has greatly benefited from the help of a large number of friends and
colleagues. First of all, special thanks go to David Hyder (Liverpool John Moores
University) and Lucio Primo Pacinelli (Astronomical Observatory of Collurania)
for their invaluable help in producing many of the figures for this book. Katrina
Exter is warmly thanked for her careful editing of many chapters; Antonio Aparicio,
Giuseppe Bono, Daniel Brown, Vittorio Castellani, Carme Gallart, Alan Irwin, Marco
Limongi, Marcella Marconi and Adriano Pietrinferni are acknowledged for many
discussions, for having read and commented on various chapters of this book and
helped with some of the figures. We are also indebted to Leo Girardi, Phil James,
Kevin Krisciunas, Bruno Leibundgut, Luciano Piersanti and Oscar Straniero for
additional figures included in the book.

Sue Percival and Phil James are warmly acknowledged for their encouragement
during the preparation of the manuscript, Suzanne Amin and Anna Piersimoni for
their endless patience during all these months. We are also deeply indebted to Achim
Weiss and the Max Planck Institut fiir Astrophysik (MS), Antonio Aparicio and the
Instituto de Astrofisica de Canarias (SC) for their invitation and hospitality. During
our stays at those institutes a substantial part of the manuscript was prepared. Finally,
we wish to send a heartfelt thank-you to all colleagues with whom we have worked
in the course of these wonderful years of fruitful scientific research.

Liverpool Maurizio Salaris
Teramo Santi Cassisi
March 2005



1 Stars and the Universe

1.1 Setting the stage

Stars are not distributed randomly in the universe, but are assembled through gravita-
tional interactions into galaxies. Typical distances between stars in a given galaxy are
of the order of 1 parsec (pc) whereas distances between galaxies are typically of the
order of 100 kpc—1Mpc (1 pc is the distance at which the semi-major axis of Earth
orbit subtends an angle of 1 arcsecond; this corresponds to ~3.26 light years, where
one light year is the distance travelled by light in one year, i.e. 9.4607 x 10'7 cm).

There are three basic types of galaxies: spirals, ellipticals and irregulars (see
Figure 1.1). Spiral galaxies (our galaxy, the Milky Way, is a spiral galaxy) constitute
more than half of the bright galaxies that we observe within ~100Mpc of the Sun.
They generally comprise a faint spherical halo, a bright nucleus (or bulge) and a disk
that contains luminous spiral arms; spirals have typical masses of the order of 10" M,
(1M, denotes one solar mass, i.e. 1.989 x 10% g). Spirals are divided into normal
and barred spirals, depending on whether the spiral arms emerge from the nucleus or
start at the end of a bar springing symmetrically from the nucleus. Dust and young
stars are contained in the disk whereas the nucleus and halo are populated by older
stars. Elliptical galaxies account for ~10 per cent of the bright galaxies, have an
elliptical shape, no sign of a spiral structure nor of dust and young stars, a mass range
between ~10° and ~10'2 M, and in general resemble the nuclei of spirals. There is
no sign of significant rotational motions of the stars within ellipticals, whereas stars
in the disks of spirals show ordered rotational motion.

These two broad types of galaxies are bridged morphologically by the so-called
lenticular galaxies, which make up about 20 per cent of the galaxies, and look
like elongated ellipticals without bars and spiral structure. The third broad group of
galaxies are the irregulars, that show no regular structure, no rotational symmetry
and are relatively rare and faint.

Evolution of Stars and Stellar Populations Maurizio Salaris and Santi Cassisi
© 2005 John Wiley & Sons, Ltd



2 STARS AND THE UNIVERSE

SO Sa Sb Sc
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Figure 1.1 The so-called tuning fork diagram, i.e. the galaxy morphological classification.
Elliptical galaxies are denoted by E (the various subclasses are denoted by the approximate value
of the ellipticity) spirals by S, barred spirals by SB; examples of Dwarf elliptical (dE), Irregular
(Irr) and Peculiar (Pec) galaxies are also displayed (courtesy of P. James)

Many galaxies show various types of non-thermal emission over a large wavelength
range, from radio to X-ray, and are called active galaxies. These active galaxies
display a large range of properties that can probably be explained invoking one
single mechanism (possibly related to accretion of matter onto a black hole); the
difference in their properties is most likely due to the fact that we are observing the
same kind of object at different angles, and therefore we see radiation from different
regions within the galaxy. Examples of active galaxies are the Seyfert galaxies, radio
galaxies, BL Lac objects and quasars. There are also so-called starburst galaxies,
e.g. galaxies displaying a mild form of activity, and showing a strong burst of star
formation.

For many years it was believed that galaxies extend as far as they are visible.
However, starting from the 1970s, the orbits of neutral hydrogen clouds circling
around individual spiral galaxies provided rotation curves (e.g. rotational velocity as
a function of the distance d from the galactic centre) that, instead of dropping as
Vd beyond the edge of the visible matter distribution (as expected from Keplerian
orbits after the limit of the mass distribution is reached) show a flat profile over large
distances well beyond this limit. This can be explained only by a steady increase
with distance of the galaxy mass, beyond the edge of the visible mass distribution.
This dark matter reveals its presence only through its gravitational pull, since it does
not produce any kind of detectable radiation.



SETTING THE STAGE 3

Even galaxies are not distributed randomly in the universe, but are aggregated
in pairs or groups, which in turn are often gathered into larger clusters of galaxies.
Our galaxy (often referred to as the Galaxy) belongs to the so-called Local Group
of galaxies, that includes about 20 objects (mainly small) among them the Large
Magellanic Cloud (LMC) the Small Magellanic Cloud (SMC) and Andromeda (M31).
The nearest cluster of galaxies is the Virgo cluster (at a distance of about 20 Mpc).
Further away are other galaxy clusters, among them the Coma cluster, located at a
distance of about 100 Mpc, that contains thousands of objects. Deep galaxy surveys
(e.g. the APM, COSMOS, 2dF and SDSS surveys) have studied and are still probing
the distribution of galaxies in the universe, and have revealed even more complex
structures, like filaments, sheets and superclusters, that are groupings of clusters of
galaxies.

Dark matter is also found within clusters of galaxies. This can be inferred studying
the X-ray emission of the hot ionized intracluster gas that is accelerated by the
gravitational field of the cluster. A rough comparison of visible and dark matter
contribution to the total matter density of the universe tells us that about 90 per cent
of the matter contained in the universe is dark.

It is evident from this brief description that overall the universe appears to be
clumpy, but the averaged properties in volumes of space of the order of 100 Mpc
are smoother, and the local inhomogeneities can be treated as perturbations to the
general homogeneity of the universe.

The dynamical status of the universe is revealed by spectroscopic observations of
galaxies. The observed redshift of their spectral lines shows that overall galaxies are
receding from us (in the generally accepted assumption that the observed redshift is
due to the Doppler effect) with a velocity v that increases linearly with their distance
D, so

v=H, x D,

as first discovered by Hubble and Humason during the 1920s (hence the name of
Hubble law for this relationship). The constant H, is called the Hubble constant.
Taken at face value this relationship seems to locate us in a privileged point, from
where all galaxies are escaping. However, if one considers the overall homogeneity
of the universe, the same Hubble law has to apply to any other location and the
phenomenon of the recession of the galaxies might be looked upon as an expansion
of the universe as a whole; a useful and widely used analogy is that of the two-
dimensional surface of a balloon that is being inflated. If the galaxies are points
drawn on the surface of the balloon, they will appear to be receding from each other
in the same way as the Hubble law, irrespective of their location.

Superimposed on the general recession of galaxies are local peculiar velocities
due to the gravitational pull generated by the local clumpiness of the universe. For
example, the Milky Way and M31 are moving towards each other at a speed of
about 120 kms~!, and the Local Group, is approaching the Virgo Cluster at a speed
of ~170kms~". On a larger scale, the Local Group, Virgo Cluster and thousands of
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other galaxies are streaming at a speed of about 600 kms~! towards the so called
Great Attractor, a concentration of mass in the Centaurus constellation, located at a
distance of the order of 70 Mpc. These peculiar velocities become negligible with
respect to the general recession of the galaxies (Hubble flow) when considering
increasingly distant objects, for which the recession velocity predicted by the Hubble
law is increasingly high.

Another discovery of fundamental importance for our understanding of the uni-
verse was made serendipitously in 1965 by Penzias and Wilson. Observations of
electromagnetic radiation in a generic frequency interval reveal peaks associated with
discrete sources — i.e. stars or galaxies — located at specific directions; when these
peaks are eliminated there remains a dominant residual radiation in the microwave fre-
quency range. The spectrum of this cosmic microwave background (CMB) radiation
is extremely well approximated by that of a black body with a temperature of 2.725 K.
After removing the effect of the local motion of the Sun and of our galaxy, the CMB
temperature is to a first approximation constant when looking at different points in the
sky, suggesting a remarkable isotropy which is hard to explain in terms of residual
emission by discrete sources. From the CMB temperature one easily obtains the energy
density associated to the CMB, €y, given that peyp = €cyp/c® ~ 4.64 x 10734 g cm?

0
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Figure 1.2 Plot of the CMB temperature fluctuations (in units of 107¢K) as a function of the
angular scale in degrees (upper horizontal axis) and the so-called wave number [ ~ /6 (lower
horizontal axis); this is also called the power spectrum of the CMB fluctuations
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(¢ denotes the speed of light, 2.998 x 10'°cms~!). This CMB photon density is the
dominant component of the present radiation density in the universe; a rough com-
parison of pqyp With the present matter density p shows that at the present time the
density associated with the photons is about three orders of magnitude lower than the
matter density, including the dark matter contribution.

In 1992 the COBE satellite first discovered tiny variations 67 of the CMB tem-
perature, of the order of 8T/T ~1075 (where T is the global mean of the CMB
temperature) when looking at different points in the sky. By computing the average
over the sky of the ratio 67/T (temperature fluctuation) measured from any two
points separated by an angle 6, one obtains what is called the angular power spectrum
of the CMB temperature anisotropies, displayed in Figure 1.2. This power spectrum
shows the existence of a series of peaks located at specific angular scales.

A comprehensive theory for the structure and evolution of the universe must be able
to explain the basic observations outlined above in terms of evolutionary processes
rooted in accepted physics theories. The following sections introduce briefly the
Hot Big Bang theory, which is the presently widely accepted cosmological theory.
Detailed presentations of cosmology at various levels of complexity can be found in
[11], [57], [118] and [142].

1.2 Cosmic kinematics

A cornerstone of the Big Bang theory is the so-called cosmological principle: it states
that the large-scale structure of the universe is homogeneous and isotropic. Homo-
geneity means that the physical properties of the universe are invariant by translation;
isotropy means that they are also rotationally invariant. Both these properties can be
applied only considering average properties of large volumes of space, where the
local structures (galaxies, clusters of galaxies) are smeared out over the averaging
volumes.

As discussed before, the adequacy of the cosmological principle can be empirically
verified by studying the distribution of clusters of galaxies on scales of the order
of 100 Mpc and by the isotropy of the CMB. Locally the universe is clumpy, but
this clumpiness disappears when averaging the matter density over large enough
volumes. In this way the local clumpiness is treated as a perturbation to the general
smoothness of the universe. The universe is then treated as a fluid whose particles
are galaxies, moving according to the Hubble law; within this picture of a cosmic
fluid the cosmological principle implies that every co-moving observer (i.e. moving
with the Hubble flow) in the cosmic fluid has the same history.

A first step when discussing events happening in the universe is to set up an
appropriate coordinate system. For the time coordinate a natural choice is to use
standard clocks co-moving with the cosmic fluid, that will define a cosmic time ¢; an
operational way to synchronize ¢ for co-moving observers at different locations is to
set ¢ to the same value when each observer sees that a property of the cosmic fluid,
i.e. the average local density of matter p, has reached a certain agreed value. After
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synchronization, by virtue of the cosmological principle, the two observers must be
able to measure exactly the same value (possibly different from the one at the time
of synchronization) of that property whenever their clocks show the same time.

As for the three spatial coordinates, the cosmological principle greatly restricts the
possible geometries. The assumption of homogeneity and isotropy requires that the
tridimensional space has a single curvature, i.e. it must have the same value at all
positions, but can in principle depend on time. The space—time interval ds between
two events in an homogeneous and isotropic static space can be written as follows

2

ds*=cd* — | ——
1—Kr?

+ 726’ + r* sin’ 9d¢2>

where K is the spatial curvature, dt the cosmic time separation, r the radial coordinate
and 0 and ¢ the polar and azimuthal angles in spherical coordinates, respectively.
The expansion (or contraction) of the universe can be accounted for by redefining the
radial coordinate r as r = R(t) y — x being dimensionless — and the curvature K as
K(t)=k/R(1)*. The constant k and coordinate y are defined in a way that k =+1 for
a positive spatial curvature, k =0 for a flat space and k = —1 for a negative curvature.
R() is the so-called cosmic scale factor, that has the dimension of a distance and is
dependent on the cosmic time ¢. With these substitutions one obtains the so-called
Friedmann—Robertson—Walker (FRW) metric:

dx*

2 2.2 2
ds-=c"dt —R(t) (1——]{)(2

+ X*d0* + x*sin® 9d¢2> (1.1)

The values of the three spatial coordinates y, 8 and ¢ are constant for an observer
at rest with respect to the expansion of the cosmic fluid. One can easily see that the
factor R(z) in Equation (1.1) allows a scaling of the spatial surfaces that depends only
on time, thus preserving the homogeneity and isotropy dictated by the cosmological
principle. It is important to stress that it is only by virtue of the cosmological principle
that we can uniquely define a four-dimensional coordinate system co-moving with
the cosmic flow. As an example, the definition of cosmic time would be impossible
in a universe without homogeneity and isotropy, because we could not synchronize
the various clocks using mean properties (that would not be the same everywhere at
a given time 7) of the cosmic flow.

The geometrical properties of the three-dimensional space determined by the value
of k can be briefly illustrated as follows. Let us consider at a cosmic instant ¢ a sphere
with centre at an arbitrary origin where y =0, and surface located at a fixed value x;
the difference between the coordinates of the centre of the sphere and the surface is
equal to r = R(t) x. The area A of the spherical surface of coordinate radius r = R(¢) ¥
is, by definition, A =4mr®> =4mR(r)*x*. The physical radius R, of the spherical
surface is the distance between the centre and surface of the sphere measured with
a standard rod at the same cosmic time ¢. This means that one has to determine the
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interval As? between the two events assuming dt =0, so that Rp =+/—As?. From the
FRW metric one obtains
X dX

R, R(t)fo N (1.2)
R, is equal to R(?) sin”' x, R(f)x and R(r)sinh™' y when k=1,0 and —1, respec-
tively. When k=0 one has y = R,/R(r), and A=4mR’, i.e. r is equal to R, and
the area A increases as Rﬁ, as in Euclidean geometry. When k =+1 one has r =
R(#)sin(R,/R(1)) and A= 47R(1)? sinz(Rp /R(t)), which reaches a maximum value
A=47R(1)*> when R, = (m/2)R(t), then becomes zero when R, = 7R(r) and has in
general a periodic behaviour. This means that in the case of k =41 space is closed
and the periodicity corresponds to different circumnavigations. In the case of k= —1
then A =47R(t)? sinhz(Rp /R(t)), which increases with R, faster than in the case of
a Euclidean space.

It is easy to see how simply R(?) describes the observed expansion of the universe.
Let us set y =0 at the location of our own galaxy, that is approximately co-moving
with the local cosmic fluid (hence its spatial coordinate does not change with time)
and consider another galaxy — also at rest with respect to the expansion of the
universe — whose position is specified by a value y of the radial coordinate (the
angles 6 and ¢ are assumed to be equal to zero for both galaxies). Its proper distance
(defined in the same way as for the proper radius R, discussed before) D at a given
cosmic time ¢ is given by:

D=R(?) / X

0 /1 —kx?
As in the case of Equation (1.2) D is equal to R(¢)sin"' x, R(f)x and R(r)sinh™' y
when k=1, 0 and —1, respectively. The velocity v of the recession of the galaxy due
to the expansion of the universe is

dD dR(t)f _dR(t) 1 D
m dt R(1)

This looks exactly like the Hubble law; in fact, by writing

_dR(1) 1
H(t)= T m (1.3)
we obtain
v=H(t) x D

H(t) corresponds to the Hubble constant and one can notice that its value can change
with cosmic time. The value of H(f) determined at the present time is denoted as H,,.
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This result is clearly independent of the location of the origin for the radial coordi-
nate Y, since any position in the universe is equivalent according to the cosmological
principle. It is important to notice that locally, e.g. within the solar system or within a
given galaxy, one cannot see any effect of the cosmic expansion, since the local grav-
itational effects dominate. For distances large enough (D > ¢/H(t)) the last equation
predicts recession velocities larger than the speed of light, an occurrence that seems
to go against special relativity. The contradiction is, however, only apparent, given
that galaxies recede from us faster than the speed of light (superluminal recession)
because of the expansion of space; locally, they are at rest or moving in their local
inertial reference frame with peculiar velocities < c.

In the following section we will briefly describe the observational counterpart of
v=H(t) x D and show how it probes the evolution of the kinematic status of the
universe.

1.2.1 Cosmological redshifts and distances

What we measure to estimate the recession velocity of galaxies is a redshift z, that
can be related to the change of R(¢) with time. Consider light reaching us (located
at y =0) from a galaxy at a radial coordinate y. Two consecutive maxima of the
electromagnetic wave are emitted at times f, and ¢, + 0, and received at times #, and
1, + Oty; if 0t, = 8t, we would not observe any redshift since the wavelength of the
electromagnetic wave is given by the spatial distance between the two consecutive
maxima, i.e. the observed wavelength is A, = c61,, and the emitted one is A, = c0t,.
We will now find the relationship between 6¢, and 6t,,. Since ds =0 for light, we have

/te R(t) / V1 —k)(
to+01
/ze+6re R(t) ‘/ m

for the first and second maximum, respectively. The right-hand side of both equations
is the same, therefore we can write

/.z0+5t0 dt o dt
o, R(1) S R()
The first term on the left-hand side of the previous equation can be rewritten as

10+8ty ¢ o dt fo+0ty ¢t te+8te At
il w L
‘/tc*’stc R(t) fe R(t) ) R(t) 1 R(t)

e

and therefore

to+01 dt to+61, d[
/z R@‘/, R(r)

0 e
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The intervals 8¢, and 61, are negligible compared with the expansion timescale of
the universe, and therefore R(?) is to a good approximation constant during these two
time intervals; inserting this condition into the previous equation provides

ot ot

€

R(tO) B R(te)
The redshift z = (A, — A.)/A, is therefore given by

_3t0_1_R(to)_l
T TR

(1.4)

In an expanding universe z > 0 (since R(¢,) > R(t,)) as observed. If the redshift is
small enough, i.e. ¢, is close to #, in cosmological terms, we can expand R(z,) about
t, using the Taylor formula, and retain only the terms up to the second order:

dR(ty)
dt

d*R(1y)
dr?

R = RO + (1 — 1) T 4 2 (1, — 1y

We can now define H, as

dR(t,) 1

Ho=Hl) ==, R(1,)

i.e. the present value of the Hubble constant, and the so-called deceleration parameter

d*R(t,) 1
dr*  R(ty)H}

Qo= (1.5)

Both H, and ¢, are related to the present rate of expansion of the universe. H,
measures the actual expansion rate, whilst g, is positive if the expansion is slowing
down (hence the name deceleration parameter) or negative if the opposite is true.
With these definitions the second-order expansion of R(7,) can be rewritten as

R(t.) = R(t) [1 + Hy(t. — 19) — %%Hg(te - t0)2:|

and after additional manipulations one obtains the following useful results:

= Holty 10+ Hilt, =10 (1+ 340 (16)
zo—ze=Hio[z— (1+%q0> zz] (1.7)
X= R(IZ)HO [z — %(1 +q0)zz:| (1.8)
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These relationships between z, H, and g, hold in the case of a redshift due to
the expansion of the universe. Superimposed on the expansion of the universe are
local peculiar velocities (e.g. blue- and redshifts) due to the motions caused by
local anisotropies in the matter distribution; an example is local motions in clusters
and groups of galaxies due to the gravitational potential of the cluster itself. These
effects are minimized by observing suitably distant objects, where the velocities
corresponding to the expansion of the universe become so large that they make local
peculiar motions negligible.

From an observational point of view, the Hubble law needs, in addition to the
measurements of the redshift z, an estimate of galaxy distances. This is usually done
by comparing the observed flux / received from certain standard candles (i.e. objects
of known intrinsic luminosity L) with their intrinsic luminosities. Traditionally one
uses the inverse square law to determine the distance:

172
d= (4%1) (1.9)

This result is based on the conservation of energy and assumes a flat static space.
In cosmology, the distance obtained through Equation (1.9) is called the luminosity
distance, and is denoted by dj .

Consider a light source located at a radial co-moving coordinate y; at a given
cosmic time ¢, the source emits photons that reach the observer located at y =0 at
time #,. By the time the light reaches the observer it is distributed uniformly across a
sphere of coordinate radius R(7,)y. The area of the spherical surface at the observer
location centred at the source is therefore given by 47R(%,)? x*. The photons emitted
by the source are redshifted by the expansion of the universe, and their energy is
therefore reduced by a factor (1 + z) when measured by the observer; this is because
the wavelength is increased by a factor (1 + z) and the photon energy is proportional
to the inverse of its wavelength. There is also an additional reduction by a factor
(1 + z) due to the so-called time dilation effect, i.e. the observer receives less photons
per unit time than emitted at the source. This can easily be understood by means of
the same arguments as were applied in the case of the wave maxima, that led to the
notion of redshift. We found before that the time between two consecutive maxima
at emission is different from that at reception; the same holds for the time interval
between photons emitted by the source, and implies that the rate of reception of
photons is different from the rate of emission. Taking into account these two effects,
conservation of energy dictates that:

o1 L
T (142)? 47R(1)° X2

We now define the luminosity distance d; of the observed source, according to Equa-
tion (1.9); one obtains d; = R(t,) x(1 + z), which can be rewritten using Equation (1.8)
as (retaining the terms up to the second order in z):
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c 1
szﬁZO[l—i-E(l—qo)z] (1.10)
The first term is the empirical Hubble law, with the recession velocity given by
the product cz. The higher-order correction term is proportional to the deceleration
parameter ¢, and starts to play a role when z > 0.1.

Another way to determine cosmological distances is to consider objects (e.g.
galaxies) with known diameter D, and compare the measured angular diameters ©
with the intrinsic ones. One can define a diameter distance d D, as

d, =-2 (1.11)

which is equal to d; for a flat static space. Consider an object located at the radial
co-moving coordinate y, that emits light at time ¢,; if the observer is located at
X =0 and receives the light from the object at ¢, the relationship between D, and
O can easily be obtained by determining V/As? where As is obtained integrating the
FRW metric with dt = dy = d¢ =0. This provides dp, = R(t,) x. By comparing the
latter equation with d; = R(#,) x(1 + z) obtained before and using the definition of z
we obtain

dy =
Dp_(1_|_z)2

In principle d D, is different from d;, but the two distances converge to the same
value when z — 0.

It should be clear from this brief discussion that the empirical study of the trends
of d; and d D, with redshift z provides an estimate of the kinematical parameters H,,
and g,. A third possible method to determine the kinematical status of the universe
involves number counts of galaxies with a flux greater than some specified value
[ (N(1)). Assuming there are n galaxies per unit volume, in a static flat universe (with
uniform distribution of galaxies) one expects

4 L\
ND==mn|-—
3 4l

where L is the intrinsic galaxy luminosity, supposed constant. For an expanding
universe it can be shown that (as a second-order approximation in z)

- =2 () -2 )]
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where n(t,) is the number density at the present time (e.g. in the low redshift
universe); notice that by a fortuitous cancellation of terms this relationship does not
depend on ¢g,. The correction term to the static flat case is always negative, so that
in principle one should always observe fewer sources than predicted by the simple
[7*/% formula.

There are many practical difficulties in implementing these three tests; the reason
is that we are assuming the existence of perfect standard candles and the absence of
evolutionary effects on the size, and brightness of galaxies. Evolutionary effects are
particularly important since a high redshift means a time far in the past, when galaxies
had a very different age from the present one. A detailed discussion of these classical
cosmological tests and the related observational problems can be found in [187]. In
recent years the class of stellar objects called Type la supernovae (see Section 7.6)
has been used as an effective standard candle and applied with great success to study
the d, —z relationship (see [146]).

We conclude this section by discussing briefly the concept of particle horizon in
an FRW expanding universe. In general, as the universe expands and ages, a generic
observer is able to see increasingly distant objects as the light they emitted has time
to arrive at the observer’s location. This implies that as time increases, increasingly
larger regions of space come into causal contact with the observer, who will therefore
be able to ‘see’ increasingly larger portions of the universe. We can ask ourselves
what is the co-moving coordinate ), of the most distant galaxy we can see at a given
cosmic time #. Increasing values of y, with time mean that we are actually seeing
more and more distant galaxies (supposed to be at rest with respect to the cosmic
expansion) as the time increases. Consider a radially travelling photon, for which
ds=0. From the FRW metric we obtain

/" dar’ _I/XH dx
o R(t) cho JT—kx?
and therefore

. todr
XHZSIH C/O M k=+1

tdr
Xy ==¢C A m k=0
. tdr
Xy = sinh <c A m) k=-—1 (1.12)

If the space has k=0 or k= —1 it is in principle possible, for specific forms of R(¢),
to have an infinite y,,; this means that all galaxies in the universe might eventually
be visible at a certain time ¢ for particular forms of the function R(z). If k=+1 the
behaviour of ), is periodic, and if the argument of the sine function is equal to or
larger than 77, one can sweep the entire universe.
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1.3 Cosmic dynamics

The previous discussion about the kinematics of the cosmic fluid was based exclu-
sively on the properties of the FRW metrics which, in turn, depend only on the
hypothesis of homogeneous and isotropic cosmic fluid. To determine the behaviour
of R(#) with cosmic time ¢ and the value of k we need to apply a theory for the
physical force(s) governing the evolution of the cosmic fluid. The only fundamental
interaction able to bridge the relevant cosmological scale is the gravitational force,
therefore we need to use a theory of gravity — the general relativity theory — to
describe the evolution of FRW universes.
The case of a space with the FRW metrics provides the equation

(dR_<f>> ey BTGPOR(Y

1.13
dt 3 (1.13)

where G is the gravitational constant (6.6742 x 10~3dyn cm? g=2) and p is the matter
density. Equation (1.13) was obtained in 1922 by Friedmann, who solved Einstein’s
field equations for an isotropic and homogeneous universe. As we will see in a
moment, these equations predict an expanding universe. A more general form of
the field equations contains the constant A — called the cosmological constant —
introduced by Einstein in 1917 in order to obtain static universes (the expansion of
the universe had not been discovered yet). It is important to notice that the value of
A must be small in absolute terms, since the planetary motions in the solar system
are well described by the Einstein field equations with A =0. Including A in the
gravitational field equations provides

dR(1)\’ ,  (87Gp(t) + A)R(1)
(7) = ket 3

(1.14)

It is clear that the evolution of R(t) is controlled by the density (p), the geometry (k)
and the cosmological constant (A). By using the definition of H(f) one can rewrite
Equation (1.14) as

k> 8mGp(t) A
RG)? 3 3

H(1)* = (1.15)
It is customary to introduce the critical density p, =3H(7)?/(87G) and define the
density parameter (), = p/p., an equivalent for the cosmological constant ), =
A/(3H(t)?), and the sum Q =Q,+ Q,. With these definitions Equation (1.15)
becomes

(1 —Q)H(1)*R(1)* = —kc? (1.16)

We can immediately see from this form of the Friedmann equation that there is an
intimate connection between the density of matter plus the cosmological constant,
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and the geometry of space. () =1 gives a flat space, {) > 1 a positive curvature, and
Q) <1 a negative curvature. It is also important to notice the obvious fact that ()
changes with time, since H(¢) and R(¢) both change with 7, but the product kc? is a
constant.

1.3.1 Histories of R(¢)

Equation (1.14) enables us to perform a simple analysis of the behaviour of R(r)
for various model universes, once an additional equation for the density is obtained;
this equation can be determined by applying the first principle of thermodynamics
to the cosmic fluid. In an isolated system the first law of thermodynamics states that
dU = —PdV where U is the internal energy of the system, V its volume and P the
pressure. The internal energy is pc? times the volume V (i.e. the energy associated
with the rest mass of the matter) so that the time evolution of the system according
to the first law is

d(p()c*V(1)) _PdV(t)
dt - dt

which can also be rewritten as

d(p()c*R(@)’) _  ,dR(1)°

1.17
dt dt (L.17)

using the fact that the volume V scales as R(?)°. Let us now assume that the density
is dominated by matter and not by radiation; this is a very good assumption since
observationally — as discussed before — one finds that at the present time the matter
density is about three orders of magnitude larger than the density associated with
radiation (p, = €,/c?, where €, is the photon energy density). If the matter is non-
relativistic (a correct assumption for almost the whole evolution of the universe) its
pressure is negligible with respect to pc® and Equation (1.17) provides

dp(t) 1 __ dR() 1

dt p(t) dt R(1)

(1.18)

which implies

p(OR(1)* = p(to)R (1)’

where 1, is the present cosmic time and ¢ a generic value. This reflects the simple fact
that the density of non-relativistic matter is decreasing because of dilution as space
is expanding. If photons were to be the dominant contributor to the total density, the
previous relationship would be different. In fact, for photons (and more generally for
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relativistic particles) P = (p,c*)/3 and P is no longer negligible with respect to U.
Therefore Equation (1.17) would provide
dp,(t) 1 4dR(t) 1
dt p.(1) dt R(1)

(1.19)

and

p(DR(1)* = p, (1) R(1y)*

The scaling of p(7) with R(#)* is firstly due to the decrease of the number density of
photons as R(#)~* when the universe expands (since the volume increases as R(f)%).
In addition, the energy of individual photons decreases as R(z)~! because of the
cosmological redshift and therefore both €, and p, decrease with time as R(f)™*,
faster than the matter density.

By considering a matter dominated universe one now can rewrite Equation (1.14) as

2 3 2
s '

Differentiation of this equation with respect to ¢ provides:

IPR()  4mGp(t)R(1;)° | AR(r)
d2 — 3R(1)? 3

This equation shows clearly how the self gravitation of matter (represented by p)
acts to slow down the expansion of the universe, because it appears as a negative
contribution to the acceleration of R(#). On the other hand, a positive A acts like a
negative density and tends to accelerate the expansion of the universe; a particular
choice of A makes the universe static (although in a situation of unstable equilibrium).
The term (AR(¢))/3 is often called the cosmic repulsion term.

It is now easy to determine some general properties of R(f) in a matter dominated
universe. If A is zero or negative the acceleration of R(r) is always negative; at some
time in the past R(f) must have reached zero and therefore p was infinite (i.e. a
singularity is attained). It is natural to set the zero point of the cosmic time at this
instant, which can also be considered the origin of the universe. As for the future
evolution, if A is negative, R(¢) will also intersect the ¢ axis some time in the future
(hence a final implosion) since the expansion will slow down, eventually stop and
then reverse to a contraction. If A is zero the acceleration can become zero in the
future if R(#) becomes infinite, and therefore the expansion can slow down without
ever being followed by a contraction. The precise behaviour depends in this case on
the value of k. If k=—1 or 0 the future collapse is avoided, but not if k =+1.

If A is positive then R(r) is not always decelerating and there is the possibility
of avoiding a singularity in the past. In fact, if k =+1 one can obtain from Equa-
tions (1.20) and (1.21) that in the past there has been a minimum of R(¢) different from
zero, given by R}, = (4mGp(1,)R(t,)*)/A if the cosmological constant satisfies the

following relation: A < (c®)/(4wGp(t,)R(t,)*)?. As for the future evolution, if k =0

(1.21)
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or —1 the expansion continues forever, whereas if k =+1 the expansion may vanish
and then be followed by a contraction, depending upon the value of A.

For historical interest we show briefly how it is possible to obtain a static universe
by tuning the value of A. In a static universe both R(#) and p(r) are constant,
and both velocity and acceleration of R(f) are equal to zero. With these constraints
Equations (1.20) and (1.21) provide A =4mp(t,)G, k/R> = (47p(t,)G)/c*, where R
denotes the constant value of R(7). Since R has to be positive and k can be only equal
to 0, +1, —1, we have that a static universe will have k=+1 and R=c/,/47p(t,)G.

We conclude by providing analytical relationships between R(¢) and ¢ for the case
of flat geometry, i.e. 1 =1 and k =0, and arbitrary values of A, which are relevant
to the presently favoured cosmological model. With this choice of parameters the
universe began from a singular state (R =0 and p = oo at t =0) and Equation (1.20)
gives (see also Figure 1.3):

1/3
R(t)=R(l‘o)(M) sinh2/3(%t 3A> A>0

A
R(1) = R(t,)(67Gp(t,)) °r** A =0

1/3
R(t)=R(t0)(%) sinm(%t 3|A|) A <0 (1.22)

For A =0 one obtains the very simple result g, = 1/2, H(¢) =2/(3¢) and therefore
the age of the universe is 7, =2/(3H,). The quantity 1/H, is often called Hubble time.

A>0
1
< A=0
A<O

t—

Figure 1.3 Qualitative behaviour of the scale factor R(f) with respect to the cosmic time ¢ for
models with =1 and k=0



