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Series Preface

The field of aerospace is wide ranging and covers a variety of products, disciplines and domains,
not merely in engineering but in many supporting activities. These combine to enable the
aerospace industry to produce exciting and technologically challenging products. A wealth
of knowledge is contained by practitioners and professionals in the industry in the aerospace
fields that is of benefit to other practitioners in the industry, and to those entering the industry
from university or other fields.

The Aerospace Series aims to be a practical and topical series of books for engineering pro-
fessionals, operators and users and allied professions such as commercial and legal executives
in the aerospace industry. The range of topics spans design and development, manufacture,
operation and support of the aircraft as well as infrastructure operations, and developments in
research and technology. The intention is to provide a source of relevant information that will
be of interest and benefit to all those people working in aerospace.

This book co-authored by Roy Langton, Chuck Clark, Martin Hewitt and Lonnie Richards
is a unique treatise on aircraft fuel systems, dealing with the design considerations for both
commercial and military aircraft systems. As well as describing the system and its components
in detail, Aircraft Fuel Systems also deals with the design process and examines the key systems
drivers that a fuel system designer must take into account. This promises to be a standard work
of reference for aircraft fuel systems designers.

Ian Moir, Allan Seabridge and Roy Langton





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1
Introduction

While aircraft fuel systems are not generally regarded as the most glamorous feature of aircraft
functionality they are an essential feature of all aircraft. Their implementation and functional
characteristics play a critical role in the design, certification and operational aspects of both
military and commercial (civil) aircraft. In fact the impact of fuel system design on aircraft
operational capability encompasses a range of technologies that are much more significant
than the nonspecialist would at first realize, particularly when considering the complexities of
large transport and high speed military aircraft applications.

To illustrate this point, Figure 1.1 shows the power and intersystem information flow for
a typical fuel system in a modern transport aircraft application. This ‘aircraft perspective’
demonstrates the interconnectivity of the fuel system with the overall aircraft and provides an
indication of the role of the aircraft fuel system in the functionality of the aircraft as a whole.

This book brings together all of the issues associated with fuel systems design, development
and operation from both an intersystem and intrasystem perspective covering the design,
functional and environmental issues associated with the various technologies, subsystems
and components.

The range of aircraft applications covered herein focuses on gas turbine powered aircraft
from the small business jet to the largest transport aircraft including military applications such
as fighter aircraft and helicopters.

The fuel systems associated with small internal combustion engine-powered aircraft used
by the General Aviation community are not discussed in this publication since the system-level
challenges in this case are minimized by the flight envelope which is confined to low altitudes
and speeds and therefore the fuel system issues for these aircraft applications are relatively
straightforward.

The scope of the material presented herein is focused on all areas of aircraft fuel systems from
the refuel source to the delivery of fuel to the engine or engines of the aircraft. The engine
fuel control system is only covered here at a high level since it is a separate and complex
subject in its own right and will therefore be addressed in depth in a separate Aerospace Series
publication addressing aircraft propulsion systems.

Aircraft Fuel Systems R. Langton, C. Clark, M. Hewitt, L. Richards
c© 2009 John Wiley & Sons, Ltd
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Figure 1.1 The fuel system from an aircraft perspective.

1.1 Review of Fuel Systems Issues

To introduce the subject of aircraft fuel systems the following paragraphs provide an overview
of a number of the fundamental issues in an attempt to provide the reader with a feel for many
of the key system and operational features that must be addressed routinely by the system
design team. The comments offered in this introductory chapter are maintained at a fairly high
level since a much more detailed treatment of every aspect of aircraft fuel systems is covered
in the ensuing chapters.

1.1.1 Basic Fuel System Characteristics and Functions

To begin it must be appreciated that very large quantities of fuel (in terms of the fuel volume
to aircraft volume ratio) must be stored aboard in order that the aircraft can meet its operating
range requirements. This in turn demands a high refueling rate capability particularly in com-
mercial transport applications where turnaround-time is a critical operational factor. While the
introduction of pressure refueling goes a long way to solving this problem it does bring with
it other related challenges such as the control of surge pressure following valve closure as the
required tank quantities are reached. See Chapter 4 for more detail on this subject. Another
pressure refueling-related issue concerns the prevention of electrostatic charge build-up res-
ulting from fuel movement through piping at high velocities (see Chapter 9). Fuel spillage
or structural damage must also be prevented through careful tank venting system design and
rigorous control of the refueling process. This is addressed in Chapter 3 which discusses fuel
storage and venting issues in detail.

Pressure refueling has become the standard used by all commercial and military aircraft
where significant fuel quantities are involved (say 1000 gallons or more) although provision
for gravity refueling is typically available on all but the largest transport aircraft where such a
capability becomes impractical. The system must also make provision for defueling the aircraft



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Introduction 3

for maintenance purposes and also in the, hopefully, rare event of an accident where it becomes
necessary to remove the fuel from the aircraft before the aircraft can be safely moved. This
process utilizes an external suction source. Frequently the on-board fuel pumps can be used to
defuel the aircraft or to transfer fuel between tanks in support of ground maintenance needs.

An issue related to the refuel and defuel function is fuel jettison in flight. This function
becomes an important procedure for large transport aircraft where take-off weight with a
full fuel load can be substantially higher than the maximum landing weight. Therefore a
major failure that takes place during or shortly after take-off can require jettison of fuel to
reduce the weight of the aircraft to an acceptable level before an emergency landing can be
made without exceeding the undercarriage/landing gear equipment design limits. The jettison
system is required to move large quantities of fuel overboard as quickly as possible and to
stop jettison before safe minimum fuel quantities are reached. This recognizes that in such
emergency situations the crew will be very busy flying the airplane and would prefer not to have
to spend valuable time monitoring the jettison process. Today’s modern transports therefore
have sophisticated jettison systems that must be prevented from uncommanded activation and
be able to stop jettison automatically when some predetermined minimum fuel load or aircraft
gross weight has been achieved.

Figure 1.2 shows a typical fuel tank layout for a commercial aircraft. Wing structure is
a common location for fuel storage and in many commercial transports additional tanks are
located in the area between the wings. Longer range aircraft and business jets may have tail
tanks and/or additional fuselage tanks; however, in most cases the fuselage is primarily the
place for passengers, cargo, flight deck (cockpit) and avionics equipment.

Military fighters are a special case and while the wing space is used for fuel storage in
these applications, almost any available space in the fuselage is fair game for fuel since range

Figure 1.2 Typical transport aircraft fuel tank arrangement.
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limitations are a perennial challenge for the military aircraft designer. Often the result is a
number of fuselage tanks with complex shapes and a challenging fluid network design.

Fuel tank design for such large quantities of fuel on board an aircraft is a challenge for
the aircraft structural designer who must also take into account the potential impact of an
uncontained engine rotor burst. Such an event can generate high energy debris that can result
in penetration of fuel tanks that are located in the path of the debris with subsequent loss of
fuel. Consideration has to be made with regard to the ability of the aircraft to survive such an
engine failure when establishing certification of the aircraft. This important issue is dealt with
in more detail in Chapters 2 from an aircraft design and equipment location perspective.

In military applications battle damage with fuel tank penetration can result in loss of fuel
and possible fuel tank explosion with an almost certain loss of the aircraft. For this reason,
fuel tank inerting systems are commonly used to render the space above the fuel (ullage)
safe from potential explosion. From a survivability perspective it is the overpressure resulting
from a fuel tank explosion that can destroy an aircraft. Many different inerting techniques
have been used by the military community over the past forty years including halon, stored
liquid nitrogen, and reticulated foam installed in the tanks. More recently the On-Board Inert
Gas Generation System (or OBIGGS) has become the standard approach to tank inerting
because of the significant improvements in air-separation technology that have taken place in
the past ten years. This system uses special-purpose fiber bundles to strip and dispose of a
large percentage of the oxygen molecules from incoming air resulting in the generation of a
source of nitrogen-enriched air (NEA). Engine bleed air is typically used as a source of air
for separation. NEA output from the fiber bundles contains only a small percentage of oxygen
and much less than what is required to sustain a fire or an explosion and therefore replacement
of the ullage air with NEA will render a fuel tank inert and safe from potential explosion. A
secondary but important issue concerns the air in solution within the fuel itself. Kerosene fuel
can contain up to 14 % of air by volume at standard sea level conditions. Therefore as the
aircraft climbs, this air, and more importantly the oxygen in the air, comes out of solution and
can serve as a potential ignition source that must be dealt with in any effective inerting system
solution.

Since the loss of TWA Flight 800 over Long Island in July 1996, the OBIGGS type of
system, hitherto only used by the military, is becoming a commonly used subsystem in today’s
commercial aircraft.

This and other fuel tank safety issues are covered in detail in Chapter 10.
In many large transport aircraft the ratio of maximum fuel weight to total aircraft gross weight

can be as much as much as 50 %. This can be compared to about 5 % for the typical automobile.
This feature can in turn result in substantial variations in aircraft handling characteristics
between the initial and final phases of flight.

Also, since fuel tanks are located in the wings, the effect of wing sweep is to change the
longitudinal center of gravity (CG) of the aircraft as fuel is consumed causing a change in
aircraft static stability and hence handling characteristics. In some aircraft the longitudinal CG
is actively controlled by the fuel management system through the movement of fuel between
fore and aft tanks automatically during the cruise phase.

The subject of CG control and other fuel management issues are described in depth in
Chapters 4 and 5.

For commercial aircraft, optimizing the aircraft longitudinal CG during cruise minimizes
profile drag which, in turn, maximizes the operating range of the aircraft.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Introduction 5

In the case of the Concorde supersonic transport, the fuel system was used to keep the
aircraft stable over the wide range of speeds involved by moving fuel aft during supersonic
flight and pumping it forward as the aircraft decelerated at the end of the cruise phase. Thus
the fuel system became a critical part of the aircraft’s flight control system and its failure mode
criticality played an important role in the fuel system design solution. A description of the
Concorde fuel system is presented in Chapter 12 of this book. Even though this aircraft is no
longer in service the fuel system design issues outlined would remain applicable to any future
supersonic transport aircraft application.

Another frequent use of the fuel contained in the wings of larger aircraft is to provide wing
load alleviation to minimize wing bending moment and thereby reduce long-term wing fatigue
effects. This benefit is achieved by using inner wing tank fuel before outer tank fuel. This is
discussed further in Chapters 3 and 4.

In military applications the CG variation issue can be further aggravated by the use of
variable geometry (variable sweep) wings and by the use of afterburners (reheat) where very
large fuel flow rates can cause fast changes in aircraft balance. The United States F-111, B-1
and F-14 and the Panavia Tornado are examples of the use of variable wing sweep technology.
In these cases the fuel system must compensate for the aircraft CG variation that occurs during
changes in wing sweep so that pilot workload and variations in aircraft handling characteristics
are kept to a minimum.

A major fuel system issue regarding military aircraft applications is the ability to provide
aerial (or in-flight) refueling. This critical need has become an essential function in modern
military aircraft applications. For strike aircraft, take-off with a full weapons load followed
by a climb to altitude can consume a large percentage of the fuel on board. The ability to
top-off the fuel tanks after reaching operational altitude provides an essential extension of
the aircraft’s mission capability and is considered a key force multiplier. The aerial refueling
function further complicates the fuel system design by having to provide an in-flight hook-
up system with fluid-tight connections and appropriate safe disconnect capability in case of
unforeseen emergencies.

Over the past 50 years standard aerial refueling equipment and procedures have been estab-
lished by NATO countries ensure full interoperability between coalition forces. The US Air
Force has developed a flying boom standard that provides a much higher flow rate capability
than the probe and drogue standard adopted by the US Navy and NATO. A detailed description
of all aerial refueling standards used by the United States and NATO is covered in Chapter 5.

A major requirement that presents a number of key operational issues to the fuel system
designer is the need to provide venting of the ullage space in the fuel tanks. Wing tanks while
large in volume remain relatively thin particularly at the more outboard sections. During flight
these tanks bend and twist with aerodynamic loads as well as being subject to wide variations
in both pitch and roll attitude. The challenge for the vent system designer is to ensure that
air pockets cannot be trapped during any combination of tank quantity and aircraft attitude
throughout the complete flight envelope of the aircraft. It is also critical that there is sufficient
vent capacity to maintain a small differential pressure between the tank ullage and the outside
ambient during maximum descent rate since only a small pressure differential between the
outside ambient and the fuel ullage space can induce very large loads on the aircraft structure
because of the large surface areas involved.

A challenging vent system related issue concerns the management of water as a fuel con-
taminant. This is most significant in large transport, long-range applications where substantial
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quantities of water can condense into the fuel tanks during a descent into a hot and humid
destination following an extended cruise at high altitude. The high utilization rates of modern
commercial transports often make the practice of routine water drainage impractical since there
is seldom enough time between missions for the water in the fuel to separate out so that it can
be drained from the fuel tank sump.

Water management, therefore, is a major operational issue facing today’s transport aircraft
and the designers of the next generation of long-range aircraft need solutions to this problem
that can be effectively applied. A more in-depth discussion of this problem is presented in
Chapter 3.

Military aircraft that operate at very high altitudes use ‘Closed vent’ systems to ensure that
the ullage pressure in the fuel in the tanks remains above the fuel vapor pressure under all
operational flight conditions. This adds considerable complexity to the vent system since
the pressure in the ullage relative to the outside ambient conditions must be kept within
safe limits by controlling the airflow in and out of this space as the aircraft climbs and
descends.

During flight the fuel system must make sure that all of the fuel on board remains available
to the engines through timely transfer of fuel from the auxiliary tanks (where applicable) to the
engine feed tanks as the mission progresses. This process has flight-critical implications and
therefore flight deck (or cockpit) displays typically provide a continuously updated display of
the total fuel on board and its specific location. In order to ensure high integrity of the fuel
transfer process the crew will usually have the ability to manually intervene if necessary, by
selecting various pumps and valves, to provide continued safe flight in the event of a transfer
system malfunction. The good news is that fuel system faults do not have an immediate impact
on aircraft safety in the same way that a flight control system fault would have, because the
effects on the aircraft performance of fuel system-related failures tend to develop slowly. If the
fuel system develops a fault that results in a fuel transfer problem, it may be many minutes or
even hours before the fault has any significant impact on the aircraft. In most cases warnings
to the crew of fuel system functional faults do not have to be acted upon urgently (except
perhaps a low level fuel warning which requires the crew to act or land immediately). While
this situation is comforting it can also be a reason for overlooking potentially serious issues.

This was the case with Air Transat flight TS 236 from Toronto to Lisbon in August 2001 that
ended in an emergency landing in the Azores after loss of both engines as a result of a fuel leak
in the Starboard engine. The automatic fuel management system continued to compensate for
the fuel leak on the right-hand side of the aircraft by transferring fuel from the good side of the
aircraft to the leaky side of the aircraft so that fuel was eventually lost overboard to the point
where first one and than then both engines lost power. With more vigilance during the early
part of the flight instead of being overly dependent upon the automatic systems that had the
effect of masking an ongoing problem, this event could probably been avoided. Fortunately
the aircraft landed safely and no lives were lost.

1.1.2 Fuel Quantity Measurement

The challenge for the fuel quantity measurement system is to provide accurate information over
a wide range of aircraft attitudes and variations in fuel properties that occur, even for a common
fuel type, as a result of refueling from different locations around the world. A 1 % error in fuel



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Introduction 7

quantity measurement for a commercial transport aircraft with a 100 tonnes fuel capacity is
1 tonne which is equivalent to some 10 passengers and their baggage. Also, as a result of the
tank geometry, tank sumps and fuel transfer galleries on board, a small portion of the total
fuel stored on board may be classified as either unusable or ungaugable. In either case this
represents an operating burden for the aircraft.

Measurement of fuel quantity is accomplished by an array of in-tank sensors that are designed
to detect the fuel surface at a number of locations within the tank from which volumetric
information, and hence mass, can be calculated.

The most commonly used sensing technology in aircraft fuel quantity gauging systems today
is that utilizing capacitance sensors, commonly referred to as probes or tank units.Acapacitance
probe typically comprises a pair of concentric tubes designed for near vertical mounting at a
specific location within a fuel tank to act as an electronic ‘dip stick’. The capacitance between
each of the two concentric tubes varies with the wetted length due to the permittivity difference
between fuel and air.

The number of probes required is determined by the accuracy requirements and a number of
separate arrays may be required to provide adequate functionality in the presence of equipment
failures.

Capacitance gauging has been the mainstay of aircraft fuel quantity measurement technology
for decades. A key factor for reluctance within the industry to make changes in the fuel gauging
technology is the cost of in-tank maintenance. The expectation of the airline operator is to never
have to go inside a fuel tank to perform unscheduled maintenance and that in-tank hardware
must continue to operate safely and without the need for maintenance for 20 years or so.

Nevertheless, alternative technologies have been tried and are continually being studied.
Some of the new gauging technologies currently being evaluated are discussed in Chapter 13.

The Boeing 777 gauging system is a particularly good example of this point. Boeing made
a decision on the 777 program to change from traditional capacitance gauging technology to
ultrasonic gauging in an attempt to improve in-tank maintenance costs.

Ultrasonic gauging locates the fuel surface using a ‘Sonar-like’ technique wherein an ultra-
sonic wave is emitted and its echo from the surface detected. By knowledge of the speed
of sound through the fuel, the fuel surface position can therefore be identified and, using a
number of emitters, a surface plane can be defined and the fuel quantity computed. A detailed
treatment of gauging system sensor technologies is presented in Chapter 7 and a description
of the Boeing 777 fuel system and particularly the ultrasonic gauging system is described in
Chapter 12.

It is interesting to note that the latest Boeing commercial transport aircraft program, the
Boeing 787 Dreamliner reverted back to capacitance gauging technology for its fuel quantity
measurement system.

The in-tank sensor arrays are excited electronically and the ‘Fuel height’ signals from
the various probes are converted, using proprietary software algorithms, into tank quantity
information for display to the flight crew.

Fuel quantity gauging systems are mass measuring rather than volumetric systems and they
provide for continuous measurement over the full range of fuel quantity. Mass measurement
is the most important parameter as it is a measure of stored energy related to fuel calorific
content and, therefore, engine thrust. Nevertheless, discrete volumetric fuel measurement is
also important and may be catered for by fuel level sensors which can either be integral to the
gauging system or a separate system, depending on the requirements.
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Examples of level sensing functions include high level sensing to ensure adequate fuel
expansion space in a specific fuel tank by initiating fuel shut-off during refuel and transfer
operations and low level sensing to provide warning to the flight crew of a low fuel tank
quantity state.

In addition to the primary fuel gauging function a second measurement system called ‘Sec-
ondary gauging’ is required to ensure the integrity of this critical function and to permit safe
aircraft dispatch in the presence of gauging system failures. The secondary gauge must use
dissimilar technology to guard against common mode failures. A common type of secondary
gauge is the Magnetic Level Indicator (MLI) where the position of the floating magnet can be
read by the ground crew on a stick protruding from the base of the fuel tank. Several MLIs are
usually provided. While this secondary measurement technique is significantly less accurate
than the primary system it does serve to support the gauging system integrity requirement.

A detailed treatment fuel quantity measurement can be found in Chapters 4 and 7 from a
system and equipment perspective respectively.

1.1.3 Fuel Properties and Environmental Issues

Perhaps the most significant issues to be recognized and dealt with regarding aircraft fuel
systems are the wide variations in environmental conditions imposed by the flight envelope
and the associated variations in local pressure and temperature that must be tolerated by the
fuel and the equipment involved in its management. This is illustrated in qualitative terms in
Figure 1.3.

A detailed treatment of fuel properties as they affect aircraft fuel systems can be found in
Chapter 8.

Fuel Properties

Viscosity limit

Flash point

Density

Vapor
pressure

Fuel Temperature

40 °C

0 °C

–40 °C

–80 °C

–120 °C

Cold day

Hot day

Standard day

60,000 ft40,000 ft20,000 ftSea Level

Figure 1.3 Fuel characteristics vs operating conditions.

Three highly significant characteristics of today’s fuels are density (as it varies with temper-
ature), vapor pressure and freeze point. The density variation means that an aircraft with full
tanks at high temperature will have a significantly lower range (and gross weight) than an air-
craft with full tanks at low temperature because the energy stored in the fuel is a function of its


