MATHEMATICAL METHODS IN SCIENCE AND ENGINEERING

Ş. SELÇUK BAYIN
Middle East Technical University
Ankara, Turkey

This Page Intentionally Left Blank

MATHEMATICAL
 METHODS IN SCIENCE AND ENGINEERING

This Page Intentionally Left Blank

MATHEMATICAL METHODS IN SCIENCE AND ENGINEERING

Ş. SELÇUK BAYIN
Middle East Technical University
Ankara, Turkey

Copyright 02006 by John Wiley \& Sons, Inc. All rights reserved.
Published by John Wiley \& Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) $750-4470$, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley \& Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at htt://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic format. For information about Wiley products, visit our web site at www.wiley.com.

Libnary of Congness Cataloging-in-Publication Data is available.

ISBN-13 978-0-470-04142-0
ISBN-10 0-470-04142-0

Printed in the United States of America.

Contents

Preface $x x i$
Acknowledgments xxvii
1 NATURE and MATHEMATICS 1
1.1 Mathematics and Nature 3
1.2 Laws of Nature 4
1.3 Mathematics and Mind 5
1.4 Is Mathematics the Only Language for Nature? 6
1.5 Nature and Mankind 7
2 LEGENDRE EQUATION and POLYNOMIALS 9
2.1 Legendre Equation 10
2.1.1 Method of Separation of Variables 12
2.2 Series Solution of the Legendre Equation 13
2.2.1 Frobenius Method 16
2.3 Legendre Polynomials 17
2.3.1 Rodriguez Formula 19
2.3.2 Generating Function 19
2.3.3 Recursion Relations 21
2.3.4 Special Values 22
2.3.5 Special Integrals 23
2.3.6 Orthogonality and Completeness 24
2.4 Associated Legendre Equation and its Solutions 28
2.4.1 Associated Legendre Polynomials 30
2.4.2 Orthogonality of the Associated Legendre Polynomials 31
2.5 Spherical Harmonics 33
Problems 36
3 LAGUERRE POLYNOMIALS 43
3.1 Laguerre Equation and Polynomials 45
3.2 Other Definitions of Laguerre Polynomials 46
3.2.1 Generating Function of Laguerre Polynomials 46
3.2.2 Rodriguez Formula for the Laguerre Polynomials 47
3.3 Orthogonality of Laguerre Polynomials 48
3.4 Other Properties of Laguerre Polynomials 50
3.4.1 Recursion Relations 50
3.4.2 Special Values of Laguerre Polynomials 50
3.5 Associated Laguerre Equation and Polynomials 51
3.6 Properties of Associated Laguerre Polynomials 52
3.6.1 Generating Function 52
3.6.2 Rodriguez Formula and Orthogonality 53
3.6.3 Recursion Relations 53
Problems 53
4 HERMITE POLYNOMIALS 57
4.1 Hermite Equation and Polynomials 58
4.2 Other Definitions of Hermite Polynomials 60
4.2.1 Generating Function 60
4.2.2 Rodriguez Formula 61
4.3 Recursion Relations and Orthogonality 62
Problems 66
5 GEGENBAUER and CHEBYSHEV POLYNOMIALS 71
5.1 Cosmology and Gegenbauer Polynomials 71
5.2 Gegenbauer Equation and its Solutions 75
5.2.1 Orthogonality and the Generating Function 75
5.3 Chebyshev Equation and Polynomials 75
5.3.1 Chebyshev Polynomials of the First Kind 75
5.3.2 Relation of Chebyshev and Gegenbauer Polynomials 76
5.3.3 Chebyshev Polynomials of the Second Kind 76
5.3.4 Orthogonality and the Generating Function of Chebyshev Polynomials 78
5.3.5 Another Definition for the Chebyshev Polynomials of the Second Kind 78
Problems 79
6 BESSEL FUNCTIONS 83
6.1 Bessel's Equation 85
6.2 Solutions of Bessel's Equation 86
6.2.1 Bessel Functions $J_{ \pm m}(x), N_{m}(x)$, and $H_{m}^{(1,2)}(x)$ 86
6.2.2 Modified Bessel Functions $I_{m}(x)$ and $K_{m}(x)$ 88
6.2.3 Spherical Bessel Functions $j_{l}(x), n_{l}(x)$, and $h_{l}^{(1,2)}(x)$ 88
6.3 Other Definitions of the Bessel Functions 89
6.3.1 Generating Function 89
6.3.2 Integral Definitions 90
6.4 Recursion Relations of the Bessel Functions 90
6.5 Orthogonality and the Roots of the Bessel Functions 90
6.6 Boundary Conditions for the Bessel Functions 91
6.7 Wronskians of Pairs of Solutions 95
Problems 97
7 HYPERGEOMETRIC FUNCTIONS 99
7.1 Hypergeometric Series 99
7.2 Hypergeometric Representations of Special Functions 103
7.3 Confluent Hypergeometric Equation 104
Problems 105
8 STURM-LIOUVILLE THEORY 107
8.1 Self-Adjoint Differential Operators 107
8.2 Sturm-Liouville Systems 108
8.3 Hermitian Operators 110
8.4 Properties of Hermitian Operators 110
8.4.1 Real Eigenvalues 111
8.4.2 Orthogonality of Eigenfunctions 111
8.4.3 Completeness of the Set of Eigenfunctions $\left\{u_{m}(x)\right\}$ 112
8.5 Generalized Fourier Series 113
8.6 Trigonometric Fourier Series 114
8.7 Hermitian Operators in Quantum Mechanics 115
Problems 118
9 STURM-LIOUVILLE SYSTEMS and the FACTORIZATION METHOD 121
9.1 Another Form for the Sturm-Liouville Equation 122
9.2 Method of Factorization 123
9.3 Theory of Factorization and the Ladder Operators 124
9.4 Solutions via the Factorization Method 130
9.4.1 Case I ($m>0$ and $\mu(m)$ is an increasing function) 130
9.4.2 Case II ($m>0$ and $\mu(m)$ is a decreasing function) 131
9.5 Technique and the Categories of Factorization 132
9.5.1 Possible Forms for $k(z, m)$ 133
9. 6 Associated Legendre Equation (Type A) 137
9.6.1 Determining the Eigenvalues λ_{l} 139
9.6.2 Construction of the Eigenfunctions 140
9.6.3 Ladder Operators for the Spherical Harmonics 141
9.6.4 Interpretation of the $L_{ \pm}$Operators 143
9.6.5 Ladder Operators for the l Eigenvalues 145
9.7 Schrödinger Equation for a Single-Electron Atom and the Factorization Method (Type F) 151
9.8 Gegenbauer Functions (Type A) 153
9.9 Symmetric Top (Type A) 154
9.10 Bessel Functions (Type C) 155
9.11 Harmonic Oscillator (Type D) 156
Problems 157
10 COORDINATES and TENSORS 163
10.1 Cartesian Coordinates 163
10.1.1 Algebra of Vectors 164
10.1.2 Differentiation of Vectors 166
10.2 Orthogonal Transformations 166
10.2.1 Rotations About Cartesian Axes 170
10.3 Formal Properties of the Rotation Matrix 170
10.4 Euler Angles and Arbitrary Rotations 172
10.5 Active and Passive Interpretations of Rotations 174
10.6 Infinitesimal Transformations 175
10.6.1 Infinitesimal Transformations Commute 177
10.7 Cartesian Tensors 178
10.7.1 Operations with Cartesian Tensors 178
10.7.2 Tensor Densities or Pseudotensors 179
10.8 Generalized Coordinates and General Tensors 180
10.8.1 Contravariant and Covariant Components 181
10.8.2 Metric Tensor and the Line Element 183
10.8.3 Geometric Interpretation of Covariant and Contravariant Components 186
10.9 Operations with General Tensors 188
10.9.1 Einstein Summation Convention 188
10.9.2 Contraction of Indices 188
10.9.3 Multiplication of Tensors 189
10.9.4 The Quotient Theorem 189
10.9.5 Equality of Tensors 189
10.9.6 Tensor Densities 189
10.9.7 Differentiation of Tensors 190
10.9.8 Some Covariant Derivatives 193
10.9.9 Riemann Curvature Tensor 195
10.9.10 Geodesics 196
10.9.11 Invariance and Covariance 197
10.10 Spacetime and Four-Tensors 197
10.10.1 Minkowski Spacetime 197
10.10.2 Lorentz Transformation and the Theory of Special Relativity 199
10.10.3 Time Dilation and Length Contraction 201
10.10.4 Addition of Velocities 201
10.10.5 Four-Tensors in Minkowski Spacetime 202
10.10.6 Four-Velocity 204
10.10.7 Four-Momentum and Conservation Laws 205
10.10.8 Mass of a Moving Particle 207
10.10.9 Wave Four-Vector 208
10.10.10 Derivative Operators in Spacetime 208
10.10.11 Relative Orientation of Axes in \bar{K} and K Frames 209
10.10.12 Maxwell's Equations in Minkowski Spacetime 211
10.10.13 Transformation of Electromagnetic Fields 213
10.10.14 Maxwell's Equations in Terms of Potentials 214
10.10.15 Covariance of Newton's Dynamical Theory 215
Problems 216
11 CONTINUOUS GROUPS and REPRESENTATIONS 223
11.1 Definition of a Group 224
11.1.1 Terminology 224
11.2 Infinitesimal Ring or Lie Algebra 226
11.3 Lie Algebra of the Rotation Group R(3) 227
11.3.1 Another Approach to ${ }^{r} R(3)$ 228
11.4 Group Invariants 231
11.4.1 Lorentz Transformation 232
11.5 Unitary Group in Two Dimensions: $U(2)$ 234
11.6 Special Unitary Group $S U(2)$ 236
11.7 Lie Algebra of $S U(2)$ 237
11.7.1 Another Approach to ${ }^{r} S U(2)$ 239
11.8 Lorentz Group and its Lie Algebra 241
11.9 Group Representations 246
11.9.1 Schur's Lemma 247
11.9.2 Group Character 247
11.9 .3 Unitary Representation 248
11.10 Representations of $R(3)$ 248
11.11 Spherical Harmonics and Representations of $R(3)$ 249
11.11.1 Angular Momentum in Quantum Mechanics 249
11.11.2 Rotation of the Physical System 250
11.11.3 Rotation Operator in Terms of the Euler Angles 251
11.11.4 Rotation Operator in Terms of the Original Coordinates 251
11.11.5 Eigenvalue Equations for $L_{z}, L_{ \pm}$, and L^{2} 255
11.11.6 Generalized Fourier Expansion in Spherical Harmonics 255
11.11.7 Matrix Elements of L_{x}, L_{y}, and L_{z} 257
11.11.8 Rotation Matrices for the Spherical Harmonics 258
11.11.9 Evaluation of the $d_{m^{\prime} m}^{l}(\beta)$ Matrices 260
11.11.10 Inverse of the $d_{m^{\prime} m}^{l}(\beta)$ Matrices 261
11.11.11 Differential Equation for $d_{m^{\prime} m}^{l}(\beta)$ 262
11.11.12 Addition Theorem for Spherical Harmonics 264
11.11.13 Determination of I_{l} in the Addition Theorem 266
11.12 Irreducible Representations of $\operatorname{SU}(2)$ 268
11.13 Relation of $S U(2)$ and $R(3)$ 269
11.14Group Spaces 272
11.14.1 Real Vector Space 272
11.14.2 Inner Product Space 273
11.14.3 Four-Vector Space 274
11.14.4 Complex Vector Space 274
11.14.5 Function Space and Hilbert Space 274
11.14.6 Completeness of the Set of Eigenfunctions $\left\{u_{m}(x)\right\}$ 275
11.15 Hilbert Space and Quantum Mechanics 276
11.16 Continuous Groups and Symmetries 277
11.16.1 One-Parameter Point Groups and Their Generators 278
11.16.2 Transformation of Generators and Normal Forms 279
11.16.3 The Case of Multiple Parameters 281
11.16.4 Action of Generators on Functions 281
11.16.5 Infinitesimal Transformation of Derivatives: Extension of Generators 282
11.16.6 Symmetries of Differential Equations 285
Problems 288
12 COMPLEX VARIABLES and FUNCTIONS 293
12.1 Complex Algebra 293
12.2 Complex Functions 295
12.3 Complex Derivatives and Analytic Functions 296
12.3.1 Analytic Functions 297
12.3.2 Harmonic Functions 299
12.4 Mappings 300
12.4.1 Conformal Mappings 313
12.4.2 Electrostatics and Conformal Mappings 314
12.4.3 Fluid Mechanics and Conformal Mappings 318
12.4.4 Schwarz-Christoffel Transformations 322
Problems 329
13 COMPLEX INTEGRALS and SERIES 335
13.1 Complex Integral Theorems 335
13.2 Taylor Series 339
13.3 Laurent Series 340
13.4 Classification of Singular Points 347
13.5 Residue Theorem 347
13.6 Analytic Continuation 349
13.7 Complex Techniques in Taking Some Definite Integrals 352
13.8 Gamma and Beta Functions 360
13.8.1 Gamma Function 360
13.8.2 Beta Function 362
13.8.3 Useful Relations of the Gamma Functions 364
13.8.4 Incomplete Gamma and Beta Functions 364
13.9 Cauchy Principal Value Integral 365
13.10 Contour Integral Representations of Some Special Functions 369
13.10.1 Legendre Polynomials 369
13.10.2 Laguerre Polynomials 371
Problems 373
14 FRACTIONAL DERIVATIVES and INTEGRALS: "DIFFERINTEGRALS" 379
14.1 Unified Expression of Derivatives and Integrals 381
14.1.1 Notation and Definitions 381
14.1.2 The nth Derivative of a Function 382
14.1.3 Successive Integrals 384
14.1.4 Unification of Derivative and Integral Operations for Integer Orders 385
14.2 Differintegrals 385
14.2.1 Grünwald's Definition of Differintegrals 385
14.2.2 Riemann-Liouville Definition of Differintegrals 387
14.3 Other Definitions of Differintegrals 390
14.3.1 Cauchy Integral Formula 390
14.3.2 Riemann Formula 395
14.3.3 Differintegrals via Laplace Transforms 396
14.4 Properties of Differintegrals 399
14.4.1 Linearity 399
14.4.2 Homogeneity 399
14.4.3 Scale Transformation 400
14.4.4 Differintegral of a Series 400
14.4.5 Composition of Differintegrals 400
14.4.6 Leibniz's Rule 407
14.4.7 Right- and Left-Handed Differintegrals 407
14.4.8 Dependence on the Lower Limit 408
14.5 Differintegrals of Some Functions 409
14.5.1 Differintegral of a Constant 409
14.5.2 Differintegral of $[x-a]$ 410
14.5.3 Differintegral of $[x-a]^{p} \quad(p>-1)$ 411
14.5.4 Differintegral of $[1-x]^{p}$ 412
14.5.5 Differintegral of $\exp (\pm x)$ 412
14.5.6 Differintegral of $\ln (x)$ 412
14.5.7 Some Semiderivatives and Semi-integrals 413
14.6 Mathematical Techniques with Differintegrals 413
14.6.1 Laplace Transform of Differintegrals 413
14.6.2 Extraordinary Differential Equations 417
14.6.3 Mittag-Leffler Functions 418
14.6.4 Semidifferential Equations 419
14.6.5 Evaluating Definite Integrals by Differintegrals 421
14.6.6 Evaluation of Sums of Series by Differintegrals423
14.6.7 Special Functions Expressed as Differintegrals 424
14.7 Applications of Differintegrals in Science and Engineering 424
14.7.1 Continuous Time Random Walk (CTRW) 424
14.7.2 Fractional Fokker-Planck Equations 427
Problems 429
15 INFINITE SERIES 431
15.1 Convergence of Infinite Series 431
15.2 Absolute Convergence 432
15.3 Convergence Tests 433
15.3.1 Comparison Test 433
15.3.2 Ratio Test 433
15.3.3 Cauchy Root Test 439
15.3.4 Integral Test 434
15.3.5 Raabe Test 435
15.3.6 Cauchy Theorem 435
15.3.7 Gauss Test and Legendre Series 436
15.3.8 Alternating Series 439
15.4 Algebra of Series 439
15.4.1 Rearrangement of Series 440
15.5 Useful Inequalities About Series 442
15.6 Series of Functions 442
15.6.1 Uniform Convergence 443
15.6.2 Weierstrass M-Test 443
15.6.3 Abel Test 444
15.6.4 Properties of Uniformly Convergent Series 445
15.7 Taylor Series 445
15.7.1 Maclaurin Theorem 446
15.7.2 Binomial Theorem 447
15.7.3 Taylor Series for Functions with Multiple Variables 448
15.8 Power Series 449
15.8.1 Convergence of Power Series 450
15.8.2 Continuity 450
15.8.3 Differentiation and Integration of Power Series 450
15.8.4 Uniqueness Theorem 451
15.8.5 Inversion of Power Series 451
15.9 Summation of Infinite Series 452
15.9.1 Bernoulli Polynomials and Their Properties 452
15.9.2 Euler-Maclaurin Sum Formula 454
15.9.3 Using Residue Theorem to Sum Infinite Series 458
15.9.4 Evaluating Sums of Series by Differintegrals 461
15.9.5 Asymptotic Series 462
15.10 Divergent Series in Physics 465
15.10.1 Casimir Effect and Renormalization 465
15.10.2 Casimir Effect and MEMS 468
15.11 Infinite Products 468
15.11.1 Sine, Cosine, and the Gamma Functions 470
Problems 472
16 INTEGRAL TRANSFORMS 477
16.1 Some Commonly Encountered Integral Transforms 478
16.2 Derivation of the Fourier Integral 479
16.2.1 Fourier Series 479
16.2.2 Dirac-Delta Function 481
16.3 Fourier and Inverse Fourier Transforms 481
16.3.1 Fourier Sine and Cosine Transforms 482
16.3.2 Fourier Transform of a Derivative 484
16.3.3 Convolution Theorem 485
16.3.4 Existence of Fourier Transforms 486
16.3.5 Fourier Transforms in Three Dimensions 486
16.4 Some Theorems on Fourier Transforms 487
16.5 Laplace Transforms 490
16.6 Inverse Laplace Transforms 491
16.6.1 Bromwich Integral 492
16.6.2 Elementary Laplace Transforms 492
16.6.3 Theorems About Laplace Transforms 494
16.6.4 Method of Partial Fractions 501
16.7 Laplace Transform of a Derivative 503
16.7.1 Laplace Transforms in n Dimensions 511
16.8 Relation Between Laplace and Fourier Transforms 511
16.9 Mellin Transforms 512
Problems 512
17 VARIATIONAL ANALYSIS 517
17.1 Presence of One Dependent and One Independent Variable 518
17.1.1 Euler Equation 518
17.1.2 Another Form of the Euler Equation 520
17.1.3 Applications of the Euler Equation 520
17.2 Presence of More Than One Dependent Variable 523
17.3 Presence of More Than One Independent Variable 524
17.4 Presence of More Than One Dependent and Independent Variables 526
17.5 Presence of Higher-Order Derivatives 527
17.6 Isoperimetric Problems and the Presence of Constraints 529
17.7 Application to Classical Mechanics 533
17.8 Eigenvalue Problem and Variational Analysis 535
17.9 Rayleigh-Ritz Method 539
Problems 543
18 INTEGRAL EQUATIONS 547
18.1 Classification of Integral Equations 548
18.2 Integral and Differential Equations 548
18.3 How to Convert Some Differential Equations into Integral Equations 550
18.4 How to Convert Some Integral Equations into Differential Equations 552
18.5 Solution of Integral Equations 553
18.5.1 Method of Successive Iterations: Neumann Series 554
18.5.2 Error Calculation in Neumann Series 556
18.5.3 Solution for the Case of Separable Kernels 556
18.5.4 Solution of Integral Equations by Integral Transforms 559
18.6 Integral Equations and Eigenvalue Problems (Hilbert-Schmidt Theory) 560
18.6.1 Eigenvalues Are Real for Hermitian Operators 560
18.6.2 Orthogonality of Eigenfunctions 562
18.6.3 Completeness of the Eigenfunction Set 562
18.7 Eigenvalue Problem for the Non-Hermitian Kernels 564
Problems 565
19 GREEN'S FUNCTIONS 567
19.1 Time-Independent Green's Functions 567
19.1.1 Green's Functions in One Dimension 567
19.1.2 Abel's Formula 569
19.1.3 How to Construct a Green's Function 569
19.1.4 The Differential Equation That the Green's Function Satisfies 572
19.1.5 Single-Point Boundary Conditions 572
19.1.6 Green's Function for the Operator $d^{2} / d x^{2}$ 579
19.1.7 Green's Functions for Inhomogeneous Boundary Conditions 575
19.1.8 Green's Functions and the Eigenvalue Problems 579
19.1.9 Green's Function for the Helmholtz Equation in One Dimension 582
19.1.10 Green's Functions and the Dirac-Delta Function 583
19.1.11 Green's Function for the Helmholtz Equation for All Space-Continuum Limit 584
19.1.12 Green's Function for the Helmholtz Equation in Three Dimensions 593
19.1.13 Green's Functions in Three Dimensions with a Discrete Spectrum 594
19.1.14 Green's Function for the Laplace Operator Inside a Sphere 596
19.1.15 Green's Functions for the Helmholtz Equation for All Space-Poisson and Schrödinger Equations 597
19.1.16 General Boundary Conditions and Applications to Electrostatics 603
19.2 Time-Dependent Green's Functions 606
19.2.1 Green's Functions with First-Order Time Dependence 606
19.2.2 Propagators 609
19.2.3 Compounding Propagators 609
19.2.4 Propagator for the Diffusion Equation with Periodic Boundary Conditions 610
19.2.5 Propagator for the Diffusion Equation in the Continuum Limit 611
19.2.6 Green's Functions in the Presence of Sources or Interactions 613
19.2.7 Green's Function for the Schrödinger Equation for Free Particles 615
19.2.8 Green's Function for the Schrödinger Equation in the Presence of Interactions 615
19.2.9 Second-Order Time-Dependent Green's Functions 616
19.2.10 Propagators for the Scalar Wave Equation 618
19.2.11 Advanced and Retarded Green's Functions 621
19.2.12 Advanced and Retarded Green's Functions for the Scalar Wave Equation 624
Problems 626
20 GREEN'S FUNCTIONS and PATH INTEGRALS 633
20.1 Brownian Motion and the Diffusion Problem 633
20.2 Wiener Path Integral Approach to Brownian Motion 635
20.3 The Feynman-Kac Formula and the Perturbative Solution of the Bloch Equation 639
20.4 Derivation of the Feynman-Kac Formula 641
20.5 Interpretation of $V(x)$ in the Bloch Equation 643
20.6 Methods of Calculating Path Integrals 646
20.6.1 Method of Time Slices 647
20.6.2 Evaluating Path Integrals with the ESKC Relation 649
20.6.3 Path Integrals by the Method of Finite Elements 650
20.6.4 Path Integrals by the "Semiclassical" Method 650
20.7 Feynman Path Integral Formulation of Quantum Mechanics 655
20.7.1 Schrödinger Equation for a Free Particle 655
20.7.2 Schrödinger Equation in the Presence of Interactions 658
20.8 Feynman Phase Space Path Integral 659
20.9 Feynman Phase Space Path Integral in the Presence of Quadratic Dependence on Momentum 660
Problems 663
References 665
Index 669

This Page Intentionally Left Blank

Preface

Courses on mathematical methods of physics are among the essential courses for graduate programs in physics, which are also offered by most engineering departments. Considering that the audience in these courses comes from all subdisciplines of physics and engineering, the content and the level of mathematical formalism has to be chosen very carefully. Recently the growing interest in interdisciplinary studies has brought scientists together from physics, chemistry, biology, economy, and finance and has increased the demand for these courses in which upper-level mathematical techniques are taught. It is for this reason that the mathematics departments, who once overlooked these courses, are now themselves designing and offering them.

Most of the available books for these courses are written with theoretical physicists in mind and thus are somewhat insensitive to the needs of this new multidisciplinary audience. Besides, these books should not only be tuned to the existing practical needs of this multidisciplinary audience but should also play a lead role in the development of new interdisciplinary science by introducing new techniques to students and researchers.

About the Book

We give a coherent treatment of the selected topics with a style that makes advanced mathematical tools accessible to a multidisciplinary audience. The book is written in a modular way so that each chapter is actually a review of
its subject and can be read independently. This makes the book very useful as a reference for scientists. We emphasize physical motivation and the multidisciplinary nature of the methods discussed.

The entire book contains enough material for a three-semester course meeting three hours a week. However, the modular structure of the book gives enough flexibility to adopt the book for several different advanced undergraduate and graduate-level courses. Chapter 1 is a philosophical prelude about physics, mathematics, and mind for the interested reader. It is not a part of the curriculum for courses on mathematical methods of physics. Chapters 2-8, 12, 13 and 15-19 have been used for a two-semester compulsory graduate course meeting three hours a week. Chapters $16-20$ can be used for an introductory graduate course on Green's functions. For an upper-level undergraduate course on special functions, colleagues have used Chapters 1-8. Chapter 14 on fractional calculus can be expanded into a one-term elective course supported by projects given to students. Chapters 2-11 can be used in an introductory graduate course, with emphasis given to Chapters 8-11 on Sturm-Liouville theory, factorization method, coordinate transformations, general tensors, continuous groups, Lie algebras, and representations.

Students are expected to be familiar with the topics generally covered during the first three years of the science and engineering undergraduate curriculum. These basically comprise the contents of the books Advanced Calculus by Kaplan, Introductory Complex Analysis by Brown and Churchill, and Differential Equations by Ross, or the contents of books like Mathematical Methods in Physical Sciences by Boas, Mathematical Methods: for Students of Physics and Related Fields by Hassani, and Essential Mathematical Methods for Physicists by Arfken and Weber. Chapters (10 and 11) on coordinates, tensors, and groups assume that the student has already seen orthogonal transformations and various coordinate systems. These are usually covered during the third year of the undergraduate physics curriculum at the level of Classical Mechanics by Marion or Theoretical Mechanics by Bradbury. For the sections on special relativity (in Chapter 10) we assume that the student is familiar with basic special relativity, which is usually covered during the third year of undergraduate curriculum in modern physics courses with text books like Concepts of Modern Physics by Beiser.

Three very interesting chapters on the method of factorization, fractional calculus, and path integrals are included for the first time in a text book on mathematical methods. These three chapters are also extensive reviews of these subjects for beginning researchers and advanced graduate students.

Summary of the Book

In Chapter 1 we start with a philosophical prelude about physics, mathematics, and mind.

In Chapters 2-6 we present a detailed discussion of the most frequently
encountered special functions in science and engineering. This is also very timely, because during the first year of graduate programs these functions are used extensively. We emphasize the fact that certain second-order partial differential equations are encountered in many different areas of science, thus allowing one to use similar techniques. First we approach these partial differential equations by the method of separation of variables and reduce them to a set of ordinary differential equations. They are then solved by the method of series, and the special functions are constructed by imposing appropriate boundary conditions. Each chapter is devoted to a particular special function, where it is discussed in detail. Chapter 7 introduces hypergeometric equation and its solutions. They are very useful in parametric representations of the commonly encountered second-order differential equations and their solutions. Finally our discussion of special functions climaxes with Chapter 8, where a systematic treatment of their common properties is given in terms of the Sturm-Liouville theory. The subject is now approached as an eigenvalue problem for second-order linear differential operators.

Chapter 9 is one of the special chapters of the book. It is a natural extension of the chapter on Sturm-Liouville theory and approaches second-order differential equations of physics and engineering from the viewpoint of the theory of factorization. After a detailed analysis of the basic theory we discuss specific cases. Spherical harmonics, Laguerre polynomials, Hermite polynomials, Gegenbauer polynomials, and Bessel functions are revisited and studied in detail with the factorization method. This method is not only an interesting approach to solving Sturm-Liouville systems, but also has deep connections with the symmetries of the system.

Chapter 10 presents an extensive treatment of coordinates, their transformations, and tensors. We start with the Cartesian coordinates, their transformations, and Cartesian tensors. The discussion is then extended to general coordinate transformations and general tensors. We also discuss Minkowski spacetime, coordinate transformations in spacetime, and four-tensors in detail. We also write Maxwell's equations and Newton's dynamical theory in covariant form and discuss their transformation properties in spacetime.

In Chapter 11 we discuss continuous groups, Lie algebras, and group representations. Applications to the rotation group, special unitary group, and homogeneous Lorentz group are discussed in detail. An advanced treatment of spherical harmonics is given in terms of the rotation group and its representations. We also discuss symmetry of differential equations and extension (prolongation) of generators.

Chapters 12 and 13 deal with complex analysis. We discuss the theory of analytic functions, mappings, and conformal and Schwarz-Christoffel transformations with interesting examples like the fringe effects of a parallel plate capacitor and fluid flow around an obstacle. We also discuss complex integrals, series, and analytic continuation along with the methods of evaluating some definite integrals.

Chapter 14 introduces the basics of fractional calculus. After introducing
the experimental motivation for why we need fractional derivatives and integrals, we give a unified representation of the derivative and integral and extend it to fractional orders. Equivalency of different definitions, examples, properties, and techniques with fractional derivatives are discussed. We conclude with examples from Brownian motion and the Fokker-Planck equation. This is an emerging field with enormous potential and with applications to physics, chemistry, biology, engineering, and finance. For beginning researchers and instructors who want to add something new and interesting to their course, this self-contained chapter is an excellent place to start.

Chapter 15 contains a comprehensive discussion of infinite series: tests of convergence, properties, power series, and uniform convergence along with the methods of evaluating sums of infinite series. An interesting section on divergent series in physics is added with a discussion of the Casimir effect.

Chapter 16 treats integral transforms. We start with the general definition, and then the two most commonly used integral transforms, Fourier and Laplace transforms, are discussed in detail with their various applications and techniques.

Chapter 17 is on variational analysis. Cases with different numbers of dependent and independent variables are discussed. Problems with constraints, variational techniques in eigenvalue problems, and the Rayleigh-Ritz method are among other interesting topics covered.

In Chapter 18 we introduce integral equations. We start with their classification and their relation to differential equations and vice versa. We continue with the methods of solving integral equations and conclude with the eigenvalue problem for integral operators, that is, the Hilbert-Schmidt theory.

In Chapter 19 (and 20) we present Green's functions, and this is the second climax of this book, where everything discussed so far is used and their connections seen. We start with the time-independent Green's functions in one dimension and continue with three-dimensional Green's functions. We discuss their applications to electromagnetic theory and the Schrödinger equation. Next we discuss first-order time-dependent Green's functions with applications to diffusion problems and the time-dependent Schrödinger equation. We introduce the propagator interpretation and the compounding of propagators. We conclude this section with second-order time-dependent Green's functions, and their application to the wave equation and discuss advanced and retarded solutions.

Chapter 20 is an extensive discussion of path integrals and their relation to Green's functions. During the past decade or so path integrals have found wide range of applications among many different fields ranging from physics to finance. We start with the Brownian motion, which is considered a prototype of many different processes in physics, chemistry, biology, finance etc. We discuss the Wiener path integral approach to Brownian motion. After the Feynman-Kac formula is introduced, the perturbative solution of the Bloch equation is given. Next an interpretation of $V(x)$ in the Bloch equation is given, and we continue with the methods of evaluating path integrals. We
also discuss the Feynman path integral formulation of quantum mechanics along with the phase space approach to Feynman path integrals.

Story of the Book

Since 1989, I have been teaching the graduate level 'Methods of Mathematical Physics I \& II' courses at the Middle East Technical University in Ankara. Chapters 2-8 with 12 and 13 have been used for the first part and Chapters 15-19 for the second part of this course, which meets three hours a week. Whenever possible I prefer to introduce mathematical techniques through physical applications. Examples are often used to extend discussions of specific techniques rather than as mere exercises. Topics are introduced in a logical sequence and discussed thoroughly. Each sequence climaxes with a part where the material of the previous chapters is unified in terms of a general theory, as in Chapter 8 (and 9) on the Sturm-Liouville theory, or with a part that utilizes the gains of the previous chapters, as in Chapter 19 (and 20) on Green's functions. Chapter 9 is on factorization method, which is a natural extension of our discussion on the Sturm-Liouville theory. It also presents a different and advanced treatment of special functions. Similarly, Chapter 20 on path integrals is a natural extension of our chapter on Green's functions. Chapters 10 and 11 on coordinates, tensors, and continuous groups have been located after Chapter 9 on the Sturm-Liouville theory and the factorization method. Chapters 12 and 13 are on complex techniques, and they are self-contained. Chapter 14 on fractional calculus can either be integrated into the curriculum of the mathematical methods of physics courses or used independently.

During my lectures and first reading of the book I recommend that readers view equations as statements and concentrate on the logical structure of the discussions. Later, when they go through the derivations, technical details become understood, alternate approaches appear, and some of the questions are answered. Sufficient numbers of problems are given at the back of each chapter. They are carefully selected and should be considered an integral part of the learning process.

In a vast area like mathematical methods in science and engineering, there is always room for new approaches, new applications, and new topics. In fact, the number of books, old and new, written on this subject shows how dynamic this field is. Naturally this book carries an imprint of my style and lectures. Because the main aim of this book is pedagogy, occasionally I have followed other books when their approaches made perfect sense to me. Sometimes I indicated this in the text itself, but a complete list is given at the back. Readers of this book will hopefully be well prepared for advanced graduate studies in many areas of physics. In particular, as we use the same terminology and style, they should be ready for full-term graduate courses based on the books: The Fractional Calculus by Oldham and Spanier and Path Inte-
grals in Physics, Volumes I and II by Chaichian and Demichev, or they could jump into the advanced sections of these books, which have become standard references in their fields.

I recommend that students familiarize themselves with the existing literature. Except for an isolated number of instances I have avoided giving references within the text. The references at the end should be a good first step in the process of meeting the literature. In addition to the references at the back, there are also three websites that are invaluable to students and researchers: For original research, http://lanl.arxiv.org/ and the two online encyclopedias: http://en.wikipedia.org and http://scienceworld.wolfram.com/ are very useful. For our chapters on special functions these online encyclopedias are extremely helpful with graphs and additional information.

A precursor of this book (Chapters 1-8, 12, 13, and 15-19) was published in Turkish in 2000. With the addition of two new chapters on fractional calculus and path integrals, the revised and expanded version appeared in 2004 as 440 pages and became a widely used text among the Turkish universities. The positive feedback from the Turkish versions helped me to prepare this book with a minimum number of errors and glitches. For news and communications about the book we will use the website http://www.physics.metu.edu.tr/~ bayin, which will also contain some relevant links of interest to readers.
$O D T \ddot{U}$
Ankara/TURKEY
April 2006

Acknowledgments

I would like to pay tribute to all the scientists and mathematicians whose works contributed to the subjects discussed in this book. I would also like to compliment the authors of the existing books on mathematical methods of physics. I appreciate the time and dedication that went into writing them. Most of them existed even before I was a graduate student. I have benefitted from them greatly. I am indebted to Prof. K.T. Hecht of the University of Michigan, whose excellent lectures and clear style had a great influence on me. I am grateful to Prof. P.G.L. Leach for sharing his wisdom with me and for meticulously reading Chapters 1 and 9 with 14 and 20 . I also thank Prof. N. K. Pak for many interesting and stimulating discussions, encouragement, and critical reading of the chapter on path integrals. I thank Wiley for the support by a grant during the preparation of the camera ready copy. My special thanks go to my editors at Wiley, Steve Quigley, Susanne Steitz, and Danielle Lacourciere for sharing my excitement and their utmost care in bringing this book into existence.

I finally thank my wife, Adalet, and daughter, Sumru, for their endless support during the long and strenuous period of writing, which spanned over several years.

Ş.S.B.

This Page Intentionally Left Blank

