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Preface 

Courses on mathematical methods of physics are among the essential courses 
for graduate programs in physics, which are also offered by most engineering 
departments. Considering that the audience in these coumes comes from all 
subdisciplines of physics and engineering, the content and the level of math- 
ematical formalism has to  be chosen very carefully. Recently the growing in- 
terest in interdisciplinary studies has brought scientists together from physics, 
chemistry, biology, economy, and finance and has increased the demand for 
these courses in which upper-level mathematical techniques are taught. It is 
for this reason that the mathematics departments, who once overlooked these 
courses, are now themselves designing and offering them. 

Most of the available books for these courses are written with theoretical 
physicists in mind and thus are somewhat insensitive to  the needs of this new 
multidisciplinary audience. Besides, these books should not only be tuned 
to the existing practical needs of this multidisciplinary audience but should 
also play a lead role in the development of new interdisciplinary science by 
introducing new techniques to students and researchers. 

About the Book 

We give a coherent treatment of the selected topics with a style that makes 
advanced mathematical tools accessible to a multidisciplinary audience. The 
book is written in a modular way so that each chapter is actually a review of 

mi 
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its subject and can be read independentIy. This makes the book very useful 
as a reference for scientists. We emphasize physical motivation and the mul- 
tidisciplinary nature of the methods discussed. 

The entire book contains enough material for a three-semester course meet- 
ing three hours a week. However, the modular structure of the book gives 
enough flexibility to adopt the book for several different advanced undergrad- 
uate and graduatelevel courses. Chapter 1 is a philosophical prelude about 
physics, mathematics, and mind for the interested reader. It is not a part 
of the curriculum for courses on mathematical methods of physics. Chapters 
2-8, 12, 13 and 15-19 have been used for a tw+semester compulsory gradu- 
ate course meeting three hours a week. Chapters 16-20 can be used for an 
introductory graduate course on Green’s functions. For an upper-level un- 
dergraduate course on special functions, colleagues have used Chapters 1-8. 
Chapter 14 on fractional calculus can be expanded into a one-term elective 
course supported by projects given to students. Chapters 2-11 can be used 
in an introductory graduate course, with emphasis given to Chapters 8-11 
on Stunn-Liouville theory, factorization method, coordinate transformations, 
general tensors, continuous groups, Lie algebras, and representations. 

Students are expected to be familiar with the topics generally covered dur- 
ing the first three years of the science and engineering undergraduate curricu- 
lum. These basically comprise the contents of the books Advanced Calculus by 
Kaplan, Introductory Complex Analysis by Brown and Churchill, and Difler- 
ential Equations by Ross, or the contents of books like Mathematicab Methods 
in Physical Sciences by Boas, Mathematical Methods: for  Students of Physics 
and Related Fields by Hassani, and Essential Mathematical Methods for  Physi- 
cists by Arfken and Weber. Chapters (10 and 11) on coordinates, tensors, and 
groups assume that the student has already seen orthogonal transformations 
and various coordinate systems. These are usually covered during the third 
year of the undergraduate physics curriculum a t  the level of Classical Me- 
chanics by Marion or Theoreticab Mechanics by Bradbury. For the sections 
on special relativity (in Chapter 10) we assume that the student is familiar 
with basic special relativity, which is usually covered during the third year 
of undergraduate curriculum in modern physics courses with text books like 
Concepts of Modern Physics by Beiser. 

Three very interesting chapters on the method of factorization, fractional 
calculus, and path integrals are included for the first time in a text book on 
mathematical methods. These three chapters are also extensive reviews of 
these subjects for beginning researchers and advanced graduate students. 

Summary of the Book 

In Chapter 1 we start with a philosophical prelude about physics, mathemat- 
ics, and mind. 

In Chapters 2-6 we present a detailed discussion of the most frequently 
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encountered special functions in science and engineering. This is also very 
timely, because during the first year of graduate programs these functions 
are used extensively. We emphasize the fact that certain second-order par- 
tial differential equations are encountered in many different areas of science, 
thus allowing one to use similar techniques. First we approach these partial 
differential equations by the method of separation of variables and reduce 
them to a set of ordinary differential equations. They are then solved by the 
method of series, and the special functions are constructed by imposing appro- 
priate boundary conditions. Each chapter is devoted to a particular special 
function, where it is discussed in detail. Chapter 7 introduces hypergeometric 
equation and its solutions. They are very useful in parametric representations 
of the commonly encountered second-order differential equations and their so- 
lutions. Finally our discussion of special functions climaxes with Chapter 8, 
where a systematic treatment of their common properties is given in terms of 
the Sturm-Liouville theory. The subject is now approached as an eigenvalue 
problem for second-order linear differential operators. 

Chapter 9 is one of the special chapters of the book. It is a natural extension 
of the chapter on Sturm-Liouville theory and approaches second-order differ- 
ential equations of physics and engineering from the viewpoint of the theory 
of factorization. After a detailed analysis of the basic theory we discuss spe- 
cific cases. Spherical harmonics, Laguerre polynomials, Hermite polynomials, 
Gegenbauer polynomials, and Bessel functions are revisited and studied in 
detail with the factorization method. This method is not only an interesting 
approach to solving Sturm-Liouville systems, but also has deep connections 
with the symmetries of the system. 

Chapter 10 presents an extensive treatment of coordinates, their transfor- 
mations, and tensors. We start with the Cartesian coordinates, their trans- 
formations, and Cartesian tensors. The discussion is then extended to general 
coordinate transformations and general tensors. We also discuss Minkowski 
spacetime, coordinate transformations in spacetime, and four-tensors in de- 
tail. We also write Maxwell’s equations and Newton’s dynamical theory in 
covariant form and discuss their transformation properties in spacetime. 

In Chapter 11 we discuss continuous groups, Lie algebras, and group rep- 
resentations. Applications to  the rotation group, special unitary group, and 
homogeneous Lorentz group are discussed in detail. An advanced treatment 
of spherical harmonics is given in terms of the rotation group and its repre 
sentations. We also discuss symmetry of differential equations and extension 
(prolongation) of generators. 

Chapters 12 and 13 deal with complex analysis. We discuss the theory of 
analytic functions, mappings, and conformal and Schwarz-Christoffel trans- 
formations with interesting examples like the fringe effects of a parallel plate 
capacitor and fluid flow around an obstacle. We also discuss complex inte- 
grals, series, and analytic continuation along with the methods of evaluating 
some definite integrals. 

Chapter 14 introduces the basics of fractional calculus. After introducing 
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the experimental motivation for why we need fractional derivatives and inte- 
grals, we give a unified representation of the derivative and integral and extend 
it to fractional orders. Equivalency of different definitions, examples, p r o p  
erties, and techniques with fractional derivatives are discussed. We conclude 
with examples from Brownian motion and the Fokker-Planck equation. This 
is an emerging field with enormous potential and with applications to physics, 
chemistry, biology, engineering, and finance. For beginning researchers and 
instructors who want to add something new and interesting to  their course, 
this self-contained chapter is an excellent place to start. 

Chapter 15 contains a comprehensive discussion of infinite series: tests of 
convergence, properties, power series, and uniform convergence along with 
the methods of evaluating sums of infinite series. An interesting section on 
divergent series in physics is added with a discussion of the Casimir effect. 

Chapter 16 treats integral transforms. We start with the general defini- 
tion, and then the two most commonly used integral transforms, Fourier and 
Laplace transforms, are discussed in detail with their various applications and 
techniques. 

Chapter 17 is on variational analysis. Cases with different numbers of de- 
pendent and independent variables are discussed. Problems with constraints, 
variational techniques in eigenvalue problems, and the Rayleigh-Ritz method 
are among other interesting topics covered. 

In Chapter 18 we introduce integral equations. We start with their classifi- 
cation and their relation to differential equations and vice versa. We continue 
with the methods of solving integral equations and conclude with the eigen- 
value problem for integral operators, that is, the Hilbert-Schmidt theory. 

In Chapter 19 (and 20) we present Green’s functions, and this is the second 
climax of this book, where everything discussed so far is used and their con- 
nections seen. We start with the timeindependent Green’s functions in one 
dimension and continue with three-dimensional Green’s functions. We discuss 
their applications to electromagnetic theory and the Schrijdinger equation. 
Next we discuss first-order time-dependent Green’s functions with applica- 
tions to diffusion problems and the timedependent Schrodinger equation. We 
introduce the propagator interpretation and the compounding of propagators. 
We conclude this section with second-order time-dependent Green’s functions, 
and their application to  the wave equation and discuss advanced and retarded 
soh tions. 

Chapter 20 is an extensive discussion of path integrals and their relation 
to Green’s functions. During the past decade or so path integrals have found 
wide range of applications among many different fields ranging from physics 
to finance. We start with the Brownian motion, which is considered a pro- 
totype of many different processes in physics, chemistry, biology, finance etc. 
We discuss the Wiener path integral approach to Brownian motion. After the 
Feynman-Kac formula is introduced, the perturbative solution of the Bloch 
equation is given. Next an interpretation of V ( z )  in the Bloch equation is 
given, and we continue with the methods of evaluating path integrals. We 
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also discuss the Feynman path integral formulation of quantum mechanics 
along with the phase space approach to Feynman path integrals. 

Story of the Book 

Since 1989, I have been teaching the graduate level ‘Methods of Mathematical 
Physics I & 11’ courses at the Middle East Technical University in Ankara. 
Chapters 2-8 with 12 and 13 have been used for the first part and Chapters 
15-19 for the second part of this course, which meets three hours a week. 
Whenever possible I prefer to introduce mathematical techniques through 
physical applications. Examples are often used to extend discussions of spe- 
cific techniques rather than as mere exercises. Topics are introduced in a 
logical sequence and discussed thoroughly. Each sequence climaxes with a 
part where the material of the previous chapters is unified in terms of a gen- 
eral theory, as in Chapter 8 (and 9) on the Sturm-Liouville theory, or with a 
part that utilizes the gains of the previous chapters, as in Chapter 19 (and 
20) on Green’s functions. Chapter 9 is on factorization method, which is a 
natural extension of our discussion on the Sturm-Liouville theory. It also 
presents a different and advanced treatment of special functions. Similarly, 
Chapter 20 on path integrals is a natural extension of our chapter on Green’s 
functions. Chapters 10 and 11 on coordinates, tensors, and continuous groups 
have been located after Chapter 9 on the Sturm-Liouville theory and the fac- 
torization method. Chapters 12 and 13 are on complex techniques, and they 
are self-contained. Chapter 14 on fractional calculus can either be integrated 
into the curriculum of the mathematical methods of physics courses or used 
independently. 

During my lectures and first reading of the book I recommend that readers 
view equations as statements and concentrate on the logical structure of the 
discussions. Later, when they go through the derivations, technical details 
become understood, alternate approaches appear, and some of the questions 
are answered. Sufficient numbers of problems are given at  the back of each 
chapter. They are carefully selected and should be considered an integral part 
of the learning process. 

In a vast area like mathematical methods in science and engineering, there 
is always room for new approaches, new applications, and new topics. In fact, 
the number of books, old and new, written on this subject shows how dynamic 
this field is. Naturally this book carries an imprint of my style and lectures. 
Because the main aim of this book is pedagogy, occasionally I have followed 
other books when their approaches made perfect sense to me. Sometimes 
I indicated this in the text itself, but a complete list is given at  the back. 
Readers of this book will hopefully be well prepared for advanced graduate 
studies in many areas of physics. In particular, as we use the same terminol- 
ogy and style, they should be ready for full-term graduate courses based on 
the books: The Fractional Calculus by Oldham and Spanier and Path Inte- 
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gmls in Physics, Volumes I and 11 by Chaichian and Demichev, or they could 
jump into the advanced sections of these books, which have become standard 
references in their fields. 

I recommend that students familiarize themselves with the existing litera- 
ture. Except for an isolated number of instances I have avoided giving refer- 
ences within the text. The references at  the end should be a good first step in 
the process of meeting the literature. In addition to the references at  the back, 
there are also three websites that are invaluable to students and researchers: 
For original research, http://lanl.arxiv.org/ and the two online encyclope- 
dias: http://en.wikipedia.org and http://scienceworld.wolfram.com/ are very 
useful. For our chapters on special functions these online encyclopedias are 
extremely helpful with graphs and additional information. 

A precursor of this book (Chapters 1-8, 12, 13, and 1519) was published in 
Turkish in 2000. With the addition of two new chapters on fractional calculus 
and path integrals, the revised and expanded version appeared in 2004 as 440 
pages and became a widely used text among the Turkish universities. The pos- 
itive feedback from the Turkish versions helped me to prepare this book with a 
minimum number of errors and glitches. For news and communications about 
the book we will use the website http://www.physics.metu.edu.tr/- bayin, 
which will also contain some relevant links of interest to readers. 

S. BAYIN 

OD TU 
Ankam/TURKE Y 
April 2006 
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