MATHEMATICAL METHODS IN SCIENCE AND ENGINEERING

Ş. SELÇUK BAYIN

Middle East Technical University Ankara, Turkey

A JOHN WILEY & SONS, INC., PUBLICATION

MATHEMATICAL METHODS IN SCIENCE AND ENGINEERING

MATHEMATICAL METHODS IN SCIENCE AND ENGINEERING

Ş. SELÇUK BAYIN

Middle East Technical University Ankara, Turkey

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright © 2006 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic format. For information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data is available.

ISBN-13 978-0-470-04142-0 ISBN-10 0-470-04142-0

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

Contents

Preface	xxi
A cknowledgments	xxvii
NATURE and MATHEMATICS	1
1.1 Mathematics and Nature	3
1.2 Laws of Nature	4
1.3 Mathematics and Mind	5
1.4 Is Mathematics the Only Language for Nature?	6
1.5 Nature and Mankind	γ
LEGENDRE EQUATION and POLYNOMIALS	g
2.1 Legendre Equation	10
2.1.1 Method of Separation of Variables	12
2.2 Series Solution of the Legendre Equation	13
2.2.1 Frobenius Method	16
2.3 Legendre Polynomials	17
2.3.1 Rodriguez Formula	19
2.3.2 Generating Function	19
2.3.3 Recursion Relations	21
2.3.4 Special Values	22
	PrefaceAcknowledgmentsNATURE and MATHEMATICS1.1Mathematics and Nature1.2Laws of Nature1.3Mathematics and Mind1.4Is Mathematics the Only Language for Nature?1.5Nature and MankindLEGENDRE EQUATION and POLYNOMIALS2.1Legendre Equation2.1.1Method of Separation of Variables2.2Series Solution of the Legendre Equation2.3.1Frobenius Method2.3.2Generating Function2.3.3Recursion Relations2.3.4Special Values

		2.3.5 Special Integrals	23
		2.3.6 Orthogonality and Completeness	24
	2.4	Associated Legendre Equation and its Solutions	28
	-	2.4.1 Associated Legendre Polynomials	30
		2.4.2 Orthogonality of the Associated Legendre	
		Polynomials	31
	2.5	Spherical Harmonics	<i>33</i>
		Problems	36
3	LAC	GUERRE POLYNOMIALS	43
	3.1	Laguerre Equation and Polynomials	45
	3.2	Other Definitions of Laguerre Polynomials	46
		3.2.1 Generating Function of Laguerre Polynomials	46
		3.2.2 Rodriguez Formula for the Laguerre Polynomials	47
	3.3	Orthogonality of Laguerre Polynomials	48
	3.4	Other Properties of Laguerre Polynomials	50
	,	3.4.1 Recursion Relations	50
		3.4.2 Special Values of Laguerre Polynomials	50
	3.5	Associated Laguerre Equation and Polynomials	51
	3.6	Properties of Associated Laguerre Polynomials	52
		3.6.1 Generating Function	52
		3.6.2 Rodriguez Formula and Orthogonality	53
		3.6.3 Recursion Relations	53
		Problems	53
4	HE	RMITE POLYNOMIALS	57
	4.1	Hermite Equation and Polynomials	58
	4.2	Other Definitions of Hermite Polynomials	60
		4.2.1 Generating Function	60
		4.2.2 Rodriguez Formula	61
	4.3	Recursion Relations and Orthogonality	62
		Problems	66
5	GE	GENBAUER and CHEBYSHEV POLYNOMIALS	71
	5.1	Cosmology and Gegenbauer Polynomials	71
	5.2	Gegenbauer Equation and its Solutions	$\gamma 5$

		5.2.1	Orthogonality and the Generating Function	$\gamma 5$
	5.3	Cheby	shev Equation and Polynomials	75
		5.3.1	Chebyshev Polynomials of the First Kind	75
		5.3.2	Relation of Chebyshev and Gegenbauer Polynomials	76
		5.3.3	Chebyshev Polynomials of the Second Kind	<i>76</i>
		5.3.4	Orthogonality and the Generating Function of Chebyshev Polynomials	78
		5.3.5	Another Definition for the Chebyshev Polynomials of the Second Kind	78
		Proble	ems	$\gamma 9$
6	BES	SEL F	UNCTIONS	83
	6.1	Besse	l's Equation	85
	6.2	Soluti	ions of Bessel's Equation	86
		6.2.1	Bessel Functions $J_{\pm m}(x), N_m(x), and$	86
		699	M_m (x) Modified Ressel Functions I (x) and K (x)	88
		623	Subtrical Bessel Functions $i_m(x)$ and $K_m(x)$	00
		0.2.0	$h_{1,2}^{(1,2)}(x)$	88
	6.3	Other	Definitions of the Bessel Functions	89
		6.3.1	Generating Function	89
		6.3.2	Integral Definitions	90
	6.4	Recur	sion Relations of the Bessel Functions	90
	6.5	Ortho Funct	gonality and the Roots of the Bessel	90
	6.6	Bound	dary Conditions for the Bessel Functions	91
	6.7	Wron	skians of Pairs of Solutions	95
		Proble	ems	97
7	HY	PERGI	EOMETRIC FUNCTIONS	99
	7.1	Hyper	geometric Series	99
	7.2	Hyper Funct	geometric Representations of Special	103
	73	Confl	uent Hyperaeometric Equation	101
		Proble	ems	105

8	STU	RM-LIC	OUVILLE THEORY	107
	8.1	Self-Ad	djoint Differential Operators	107
	8.2	Sturm-	Liouville Systems	108
	8.3	Hermi	tian Operators	110
	8.4	Proper	ties of Hermitian Operators	110
	•	8.4.1	Real Eigenvalues	111
		.4.2	Orthogonality of Eigenfunctions	111
		8.4.3	Completeness of the Set of Eigenfunctions	
			$\{u_m(x)\}$	112
	8.5	Genero	alized Fourier Series	113
	8.6	Trigon	ometric Fourier Series	114
	8.7	Hermi	tian Operators in Quantum Mechanics	115
		Problem	ms	118
g	STU	RM-LIC	OUVILLE SYSTEMS and the FACTORIZAT	'ION
	MET	HOD		121
	9.1	Anothe	er Form for the Sturm-Liouville Equation	122
	9.2	Methoe	d of Factorization	123
	9.3	Theory	J of Factorization and the Ladder Operators	124
	9.4	Solutio	ons via the Factorization Method	130
		9.4.1	Case I ($m > 0$ and $\mu(m)$ is an increasing function)	130
		9.4.2	Case II $(m > 0 \text{ and } \mu(m) \text{ is a decreasing function})$	131
	9.5	Techni	ique and the Categories of Factorization	132
		9.5.1	Possible Forms for $k(z,m)$	133
	9.6	Associ	ated Legendre Equation (Type A)	137
		9.6.1	Determining the Eigenvalues λ_l	<i>139</i>
		9.6.2	Construction of the Eigenfunctions	140
		9.6.3	Ladder Operators for the Spherical	
			Harmonics	141
		9.6.4	Interpretation of the L_{\pm} Operators	143
		9.6.5	Ladder Operators for the l Eigenvalues	145
	9.7	Schröd and th	linger Equation for a Single-Electron Atom e Factorization Method (Type F)	151
	9.8	Gegent	bauer Functions (Type A)	153
	9.9	Symm	etric Top (Type A)	154
	9.10	Bessel	Functions (Type C)	155
	9.11	Harma	onic Oscillator (Type D)	156

Prol	blems
1 100	101163

10	CO	ORDINATES and TENSORS	163
	10.1	Cartesian Coordinates	163
		10.1.1 Algebra of Vectors	164
		10.1.2 Differentiation of Vectors	166
	10.2	Orthogonal Transformations	166
		10.2.1 Rotations About Cartesian Axes	170
	10.3	Formal Properties of the Rotation Matrix	170
	10.4	Euler Angles and Arbitrary Rotations	172
	10.5	Active and Passive Interpretations of Rotations	174
	10.6	Infinitesimal Transformations	175
		10.6.1 Infinitesimal Transformations Commute	177
	10.7	Cartesian Tensors	178
		10.7.1 Operations with Cartesian Tensors	178
		10.7.2 Tensor Densities or Pseudotensors	179
	10.8	Generalized Coordinates and General Tensors	180
		10.8.1 Contravariant and Covariant Components	181
		10.8.2 Metric Tensor and the Line Element	183
		10.8.3 Geometric Interpretation of Covariant	
		and Contravariant Components	186
	10.9	Operations with General Tensors	188
		10.9.1 Einstein Summation Convention	188
		10.9.2 Contraction of Indices	188
		10.9.3 Multiplication of Tensors	189
		10.9.4 The Quotient Theorem	189
		10.9.5 Equality of Tensors	189
		10.9.6 Tensor Densities	189
		10.9.7 Differentiation of Tensors	190
		10.9.8 Some Covariant Derivatives	193
		10.9.9 Riemann Curvature Tensor	195
		10.9.10 Geodesics	196
		10.9.11 Invariance and Covariance	197
	10.1	0 Spacetime and Four-Tensors	197
		10.10.1 Minkowski Spacetime	197
		10.10.2 Lorentz Transformation and the Theory	
		of Special Relativity	199
		10.10.3 Time Dilation and Length Contraction	201
		10.10.4 Addition of Velocities	201

	10.10.5 For	ur-Tensors in Minkowski Spacetime	202
	10.10.6 For	ur-Velocity	204
	10.10.7 For	ur-Momentum and Conservation Laws	205
	10.10.8 Ma	ass of a Moving Particle	207
	10.10.9 Wa	we Four-Vector	208
	10.10.10 De	erivative Operators in Spacetime	208
	10.10.11 Ra K F	elative Orientation of Axes in \overline{K} and Frames	209
	10.10.12 M Spa	laxwell's Equations in Minkowski cetime	211
	10.10.13 T Fiel	ransformation of Electromagnetic	213
	10.10.14 M Pote	laxwell's Equations in Terms of entials	214
	10.10.15 C The	ovariance of Newton's Dynamical	215
	Problems	.,,	216
11	CONTINUOUS	GROUPS and REPRESENTATIONS	223
	11.1 Definition	of a Group	224
	11.1.1 Terr	minology	224
	11.2 Infinitesim	al Ring or Lie Algebra	226
	11.3 Lie Algebra	a of the Rotation Group $R(3)$	227
	11.3.1 Ano	ther Approach to $rR(3)$	228
	11.4 Group Invo	iriants	231
	11.4.1 Lore	entz Transformation	232
	11.5 Unitary Gr	oup in Two Dimensions: U(2)	234
	11.6 Special Uni	itary Group SU(2)	236
	11.7 Lie Algebra	1 of SU(2)	237
	11.7.1 Ano	ther Approach to ^r SU(2)	239
	11.8 Lorentz Gr	oup and its Lie Algebra	241
	11.9 Group Rep	resentations	246
	11.9.1 Sch	ur's Lemma	247
	11.9.2 Gro	up Character	247
	11.9.3 Uni	tary Representation	248
	11.10 Representa	tions of $R(3)$	248
	11.11 Spherical H	Iarmonics and Representations of $R(3)$	249
	11.11.1 An Mec	guan momenium in Quanium hanics	249

11.11.2 Rotation of the Physical System	250
11.11.3 Rotation Operator in Terms of the Euler	
Angles	251
11.11.4 Rotation Operator in Terms of the	
Original Coordinates	251
11.11.5 Eigenvalue Equations for L_z, L_{\pm} , and L^2	255
11.11.6 Generalized Fourier Expansion in	
Spherical Harmonics	255
11.11.7 Matrix Elements of L_x, L_y , and L_z	257
11.11.8 Rotation Matrices for the Spherical	
Harmonics	258
11.11.9 Evaluation of the $d_{m'm}^l(\beta)$ Matrices	260
11.11.10 Inverse of the $d_{m'm}^l(\beta)$ Matrices	261
11.11.11 Differential Equation for $d_{m'm}^l(\beta)$	262
11.11.12 Addition Theorem for Spherical	
Harmonics	264
11.11.13 Determination of I_l in the Addition	
Theorem	266
11.12 Irreducible Representations of SU(2)	268
11.13 Relation of $SU(2)$ and $R(3)$	269
11.14 Group Spaces	272
11.14.1 Real Vector Space	272
11.14.2 Inner Product Space	273
11.14.3 Four-Vector Space	274
11.14.4 Complex Vector Space	274
11.14.5 Function Space and Hilbert Space	274
11.14.6 Completeness of the Set of Eigenfunctions	
$\left\{ u_{m}\left(x ight) ight\}$	275
11.15 Hilbert Space and Quantum Mechanics	276
11.16 Continuous Groups and Symmetries	277
11.16.1 One-Parameter Point Groups and Their	
Generators	278
11.16.2 Transformation of Generators and	0.00
Normal Forms	279
11.16.3 The Case of Multiple Parameters	281
11.16.4 Action of Generators on Functions	281
11.16.5 Infinitesimal Transformation of	0.00
Derivatives: Extension of Generators	282
11.16.6 Symmetries of Differential Equations	285
Problems	288

12	COI	MPLEX VARIABLES and FUNCTIONS	293
	12.1	Complex Algebra	293
	12.2	Complex Functions	295
	12.3	Complex Derivatives and Analytic Functions	296
		12.3.1 Analytic Functions	297
		12.3.2 Harmonic Functions	299
	12.4	Mappings	300
		12.4.1 Conformal Mappings	313
		12.4.2 Electrostatics and Conformal Mappings	314
		12.4.3 Fluid Mechanics and Conformal Mappings	318
		12.4.4 Schwarz-Christoffel Transformations	322
		Problems	329
13	COM	IPLEX INTEGRALS and SERIES	335
	13.1	Complex Integral Theorems	335
	13.2	Taylor Series	<i>339</i>
	13.3	Laurent Series	340
	13.4	Classification of Singular Points	347
	13.5	Residue Theorem	347
	13.6	Analytic Continuation	349
	13.7	Complex Techniques in Taking Some Definite Integrals	352
	13.8	Gamma and Beta Functions	360
	10.0	13.8.1 Gamma Function	360
		13.8.2 Beta Function	362
		13.8.3 Useful Relations of the Gamma Functions	364
		13.8 / Incomplete Gamma and Beta Functions	361
	13.9	Cauchy Principal Value Integral	365
	13.10	Contour Integral Representations of Some Special Functions	369
		13 10 1 Legendre Polynomials	369
		13.10.2 Laguerre Polynomials	371
		Problems	373
14	FRA "DIF	CTIONAL DERIVATIVES and INTEGRALS: "FERINTEGRALS"	379
	14.1	Unified Expression of Derivatives and Integrals	381
	•	14.1.1 Notation and Definitions	381
		14.1.2 The nth Derivative of a Function	382

	14.1.3	Successive Integrals	384
	14.1.4	Unification of Derivative and Integral	
		Operations for Integer Orders	385
14.2	Differ	integrals	385
	14.2.1	Grünwald's Definition of Differintegrals	385
	14.2.2	Riemann-Liouville Definition of Differinteg 387	rals
14.3	Other	Definitions of Differintegrals	390
-	14.3.1	Cauchy Integral Formula	390
	14.3.2	Riemann Formula	395
	14.3.3	Differintegrals via Laplace Transforms	396
14.4	Proper	rties of Differintegrals	399
	14.4.1	Linearity	399
	14.4.2	Homogeneity	399
	14.4.3	Scale Transformation	400
	14.4.4	Differintegral of a Series	400
	14.4.5	Composition of Differintegrals	400
	14.4.6	Leibniz's Rule	407
	14.4.7	Right- and Left-Handed Differintegrals	407
	14.4.8	Dependence on the Lower Limit	408
14.5	Differ	integrals of Some Functions	409
·	14.5.1	Differintegral of a Constant	409
	14.5.2	Differint egral of $[x-a]$	410
	14.5.3	Differint gral of $[x-a]^p$ $(p>-1)$	411
	14.5.4	Differint egral of $[1-x]^p$	412
	14.5.5	Differint equal of $exp(\pm x)$	412
	14.5.6	Differint equal of $\ln(x)$	412
	14.5.7	Some Semiderivatives and Semi-integrals	413
14.6	Mathe	matical Techniques with Differintegrals	413
	14.6.1	Laplace Transform of Differintegrals	413
	14.6.2	Extraordinary Differential Equations	417
	14.6.3	Mittag-Leffler Functions	418
	14.6.4	Semidifferential Equations	, 419
	14.6.5	Evaluating Definite Integrals by Differintegr 421	rals
	14.6.6	Evaluation of Sums of Series by Differintegrals	123
	14.6.7	Special Functions Expressed as Differintegre 424	als

	14.7	Applications of Differintegrals in Science and Engineering	
		1/ 7 1 Continuous Time Random Walk (CTRW)	7
		14.7.2 Fractional Fokker-Planck Equations	1
		Problems	4
15	INF	INITE SERIES	4
	15.1	Convergence of Infinite Series	2
	15.2	Absolute Convergence	4
	15.3	Convergence Tests	4
		15.3.1 Comparison Test	
		15.3.2 Ratio Test	,
		15.3.3 Cauchy Root Test	
		15.3.4 Integral Test	
		15.3.5 Raabe Test	
		15.3.6 Cauchy Theorem	
		15.3.7 Gauss Test and Legendre Series	
		15.3.8 Alternating Series	
	15.4	Algebra of Series	
		15.4.1 Rearrangement of Series	
	15.5	Useful Inequalities About Series	
	15.6	Series of Functions	
		15.6.1 Uniform Convergence	,
		15.6.2 Weierstrass M-Test	
		15.6.3 Abel Test	
		15.6.4 Properties of Uniformly Convergent Series	
	15.7	Taylor Series	
		15.7.1 Maclaurin Theorem	
		15.7.2 Binomial Theorem	
		15.7.3 Taylor Series for Functions with Multiple Variables	
	15.8	Power Series	
		15.8.1 Convergence of Power Series	
		15.8.2 Continuity	,
		15.8.3 Differentiation and Integration of Power Series	
		15.8.4 Uniqueness Theorem	
		15.8.5 Inversion of Power Series	
	15.9	Summation of Infinite Series	

		15.9.1 Bernoulli Polynomials and Their	
		Properties	452
		15.9.2 Euler-Maclaurin Sum Formula	454
		15.9.3 Using Residue Theorem to Sum Infinite Series	458
		15.9.4 Evaluating Sums of Series by Differintegrals 461	
		15.9.5 Asymptotic Series	462
	15.10	0 Divergent Series in Physics	465
		15.10.1 Casimir Effect and Renormalization	465
		15.10.2 Casimir Effect and MEMS	468
	15.1.	1 Infinite Products	468
		15.11.1 Sine, Cosine, and the Gamma Functions	470
		Problems	472
16	INT	CEGRAL TRANSFORMS	477
	16.1	Some Commonly Encountered Integral Transforms 478	
	16.2	Derivation of the Fourier Integral	479
		16.2.1 Fourier Series	479
		16.2.2 Dirac-Delta Function	481
	16.3	Fourier and Inverse Fourier Transforms	481
		16.3.1 Fourier Sine and Cosine Transforms	482
		16.3.2 Fourier Transform of a Derivative	484
		16.3.3 Convolution Theorem	485
		16.3.4 Existence of Fourier Transforms	486
		16.3.5 Fourier Transforms in Three Dimensions	486
	16.4	Some Theorems on Fourier Transforms	487
	16.5	Laplace Transforms	490
	16.6	Inverse Laplace Transforms	491
		16.6.1 Bromwich Integral	492
		16.6.2 Elementary Laplace Transforms	492
		16.6.3 Theorems About Laplace Transforms	494
		16.6.4 Method of Partial Fractions	501
	16.7	Laplace Transform of a Derivative	503
		16.7.1 Laplace Transforms in n Dimensions	511
	16.8	Relation Between Laplace and Fourier Transforms 511	
	16.9	Mellin Transforms	512

Problems

17	VARIATIONAL ANALYSIS		
	17.1	Presence of One Dependent and One Independent	= 10
		Variable	518
		17.1.1 Euler Equation	518 500
		17.1.2 Another Form of the Euler Equation	520
		17.1.3 Applications of the Euler Equation	520
	17.2	Presence of More Than One Dependent Variable	523
	17.3	Presence of More Than One Independent	501
		Variable	524
	17.4	Presence of More Than One Dependent and	EDE
	100 0	Independent Variables	020 500
	17.5	Presence of Higher-Oraer Derivatives	927
	17.0	Isoperimetric Problems and the Presence of Construints	500
	100	Construints	529
	17.1	Application to Classical Mechanics	000 200
	17.8	Eigenvalue Problem and Variational Analysis	030 raa
	17.9	Rayleigh-Ritz Method	539
		Problems	543
18	INTI	EGRAL EQUATIONS	547
	18.1	Classification of Integral Equations	548
	18.2	Integral and Differential Equations	548
	18.3	How to Convert Some Differential Equations	
		into Integral Equations	550
	18.4	How to Convert Some Integral Equations into	
		Differential Equations	552
	18.5	Solution of Integral Equations	553
		18.5.1 Method of Successive Iterations:	
		Neumann Series	554
		18.5.2 Error Calculation in Neumann Series	556
		18.5.3 Solution for the Case of Separable Kernels	556
		18.5.4 Solution of Integral Equations by Integral Transforms	550
	196	Integral Franciscon and Figure Angles Problems	003
	10.0	(Hilbert-Schmidt Theory)	560
		18.6.1 Eigenvalues Are Real for Hermitian	000
		Operators	560
		10 6 0 Outbacon aliter of Figure functions	560

18.6.2 Orthogonality of Eigenfunctions 562

18.7	18.6.3 Completeness of the Eigenfunction Set Eigenvalue Problem for the Non-Hermitian	562	
	Kernels	564	
	Problems	565	
19 GR	19 GREEN'S FUNCTIONS		
19.1	Time-Independent Green's Functions	567	
	19.1.1 Green's Functions in One Dimension	567	
	19.1.2 Abel's Formula	569	
	19.1.3 How to Construct a Green's Function	569	
	19.1.4 The Differential Equation That the		
	Green's Function Satisfies	572	
	19.1.5 Single-Point Boundary Conditions	572	
	19.1.6 Green's Function for the Operator d^2/dx^2	573	
	19.1.7 Green's Functions for Inhomogeneous Boundary Conditions	575	
	19.1.8 Green's Functions and the Eigenvalue Problems	579	
	19.1.9 Green's Function for the Helmholtz Equation in One Dimension	582	
	19.1.10 Green's Functions and the Dirac-Delta Function	583	
	19.1.11 Green's Function for the Helmholtz Equation for All Space–Continuum Limit	584	
	19.1.12 Green's Function for the Helmholtz Equation in Three Dimensions	593	
	19.1.13 Green's Functions in Three Dimensions with a Discrete Spectrum	594	
	19.1.14 Green's Function for the Laplace Operator Inside a Sphere	596	
	19.1.15 Green's Functions for the Helmholtz Equation for All Space–Poisson and		
	Schrödinger Equations	597	
	19.1.16 General Boundary Conditions and	000	
,	Applications to Electrostatics	603	
19.2	Time-Dependent Green's Functions	606	
	19.2.1 Green's Functions with First-Order Time	606	
	10.00 D _{momentation}	000	
	19.2.2 FTUPUYULUTS	009	
	19.2.5 Compounding Propagators	009	

20

	19.2.4	Propagator for the Diffusion Equation with Periodic Boundary Conditions	610
	19.2.5	Propagator for the Diffusion Equation in	
		the Continuum Limit	611
	19.2.6	Green's Functions in the Presence of	
		Sources or Interactions	613
	19.2.7	Green's Function for the Schrödinger	
		Equation for Free Particles	615
	19.2.8	Green's Function for the Schrödinger	615
	1000	Equation in the Presence of Interactions	010
	19.2.9	Second-Oraer Time-Dependent Greens	616
	10011	Pronagators for the Scalar Wave	010
	19.2.10	Equation	618
	19.2.11	Advanced and Retarded Green's Functions	621
	19.2.12	Advanced and Retarded Green's Functions	
		for the Scalar Wave Equation	624
	Proble	ms	626
GRE	EN'S F	UNCTIONS and PATH INTEGRALS	633
20.1	Brown	ian Motion and the Diffusion Problem	633
20.2	Wiene	r Path Integral Approach to Brownian	
	Motior	1	635
20.3	The F_{α}	eynman-Kac Formula and the Perturbative	<u>coo</u>
001	Solutio	on of the Bloch Equation	639
20.4	Deriva	tion of the Feynman-Kac Formula	641
20.5	Interp	retation of $V(x)$ in the Bloch Equation	643
20.6	Metho	ds of Calculating Path Integrals	640
	20.6.1	Method of Time Slices	647
	20.6.2	Evaluating Path Integrals with the ESKC	610
	0060	Deth Internale by the Method of Finite	049
	20.0.3	Flements	650
	2061	Path Integrals by the "Semiclassical"	000
	20.0.4	Method	650
20.7	Feynm	an Path Integral Formulation of Quantum	
	Mecha	nics	655
	20.7.1	Schrödinger Equation for a Free Particle	655
	20.7.2	Schrödinger Equation in the Presence of	
		Interactions	658
20.8	Feynm	an Phase Space Path Integral	659

20.9 Feynman Phase Space Path Integr the Presence of Quadratic Depend	ral in ence on
Momentum	660 <i>660</i>
Problems	663
References	665
Index	669

Preface

Courses on mathematical methods of physics are among the essential courses for graduate programs in physics, which are also offered by most engineering departments. Considering that the audience in these courses comes from all subdisciplines of physics and engineering, the content and the level of mathematical formalism has to be chosen very carefully. Recently the growing interest in interdisciplinary studies has brought scientists together from physics, chemistry, biology, economy, and finance and has increased the demand for these courses in which upper-level mathematical techniques are taught. It is for this reason that the mathematics departments, who once overlooked these courses, are now themselves designing and offering them.

Most of the available books for these courses are written with theoretical physicists in mind and thus are somewhat insensitive to the needs of this new multidisciplinary audience. Besides, these books should not only be tuned to the existing practical needs of this multidisciplinary audience but should also play a lead role in the development of new interdisciplinary science by introducing new techniques to students and researchers.

About the Book

We give a coherent treatment of the selected topics with a style that makes advanced mathematical tools accessible to a multidisciplinary audience. The book is written in a modular way so that each chapter is actually a review of its subject and can be read independently. This makes the book very useful as a reference for scientists. We emphasize physical motivation and the multidisciplinary nature of the methods discussed.

The entire book contains enough material for a three-semester course meeting three hours a week. However, the modular structure of the book gives enough flexibility to adopt the book for several different advanced undergraduate and graduate-level courses. Chapter 1 is a philosophical prelude about physics, mathematics, and mind for the interested reader. It is not a part of the curriculum for courses on mathematical methods of physics. Chapters 2-8, 12, 13 and 15-19 have been used for a two-semester compulsory graduate course meeting three hours a week. Chapters 16-20 can be used for an introductory graduate course on Green's functions. For an upper-level undergraduate course on special functions, colleagues have used Chapters 1-8. Chapter 14 on fractional calculus can be expanded into a one-term elective course supported by projects given to students. Chapters 2-11 can be used in an introductory graduate course, with emphasis given to Chapters 8-11 on Sturm-Liouville theory, factorization method, coordinate transformations, general tensors, continuous groups, Lie algebras, and representations.

Students are expected to be familiar with the topics generally covered during the first three years of the science and engineering undergraduate curriculum. These basically comprise the contents of the books Advanced Calculus by Kaplan, Introductory Complex Analysis by Brown and Churchill, and Differential Equations by Ross, or the contents of books like Mathematical Methods in Physical Sciences by Boas, Mathematical Methods: for Students of Physics and Related Fields by Hassani, and Essential Mathematical Methods for Physicists by Arfken and Weber. Chapters (10 and 11) on coordinates, tensors, and groups assume that the student has already seen orthogonal transformations and various coordinate systems. These are usually covered during the third year of the undergraduate physics curriculum at the level of Classical Mechanics by Marion or Theoretical Mechanics by Bradbury. For the sections on special relativity (in Chapter 10) we assume that the student is familiar with basic special relativity, which is usually covered during the third year of undergraduate curriculum in modern physics courses with text books like Concepts of Modern Physics by Beiser.

Three very interesting chapters on the method of factorization, fractional calculus, and path integrals are included for the first time in a text book on mathematical methods. These three chapters are also extensive reviews of these subjects for beginning researchers and advanced graduate students.

Summary of the Book

In Chapter 1 we start with a philosophical prelude about physics, mathematics, and mind.

In Chapters 2-6 we present a detailed discussion of the most frequently

encountered special functions in science and engineering. This is also very timely, because during the first year of graduate programs these functions are used extensively. We emphasize the fact that certain second-order partial differential equations are encountered in many different areas of science, thus allowing one to use similar techniques. First we approach these partial differential equations by the method of separation of variables and reduce them to a set of ordinary differential equations. They are then solved by the method of series, and the special functions are constructed by imposing appropriate boundary conditions. Each chapter is devoted to a particular special function, where it is discussed in detail. Chapter 7 introduces hypergeometric equation and its solutions. They are very useful in parametric representations of the commonly encountered second-order differential equations and their solutions. Finally our discussion of special functions climaxes with Chapter 8, where a systematic treatment of their common properties is given in terms of the Sturm-Liouville theory. The subject is now approached as an eigenvalue problem for second-order linear differential operators.

Chapter 9 is one of the special chapters of the book. It is a natural extension of the chapter on Sturm-Liouville theory and approaches second-order differential equations of physics and engineering from the viewpoint of the theory of factorization. After a detailed analysis of the basic theory we discuss specific cases. Spherical harmonics, Laguerre polynomials, Hermite polynomials, Gegenbauer polynomials, and Bessel functions are revisited and studied in detail with the factorization method. This method is not only an interesting approach to solving Sturm-Liouville systems, but also has deep connections with the symmetries of the system.

Chapter 10 presents an extensive treatment of coordinates, their transformations, and tensors. We start with the Cartesian coordinates, their transformations, and Cartesian tensors. The discussion is then extended to general coordinate transformations and general tensors. We also discuss Minkowski spacetime, coordinate transformations in spacetime, and four-tensors in detail. We also write Maxwell's equations and Newton's dynamical theory in covariant form and discuss their transformation properties in spacetime.

In Chapter 11 we discuss continuous groups, Lie algebras, and group representations. Applications to the rotation group, special unitary group, and homogeneous Lorentz group are discussed in detail. An advanced treatment of spherical harmonics is given in terms of the rotation group and its representations. We also discuss symmetry of differential equations and extension (prolongation) of generators.

Chapters 12 and 13 deal with complex analysis. We discuss the theory of analytic functions, mappings, and conformal and Schwarz-Christoffel transformations with interesting examples like the fringe effects of a parallel plate capacitor and fluid flow around an obstacle. We also discuss complex integrals, series, and analytic continuation along with the methods of evaluating some definite integrals.

Chapter 14 introduces the basics of fractional calculus. After introducing

the experimental motivation for why we need fractional derivatives and integrals, we give a unified representation of the derivative and integral and extend it to fractional orders. Equivalency of different definitions, examples, properties, and techniques with fractional derivatives are discussed. We conclude with examples from Brownian motion and the Fokker-Planck equation. This is an emerging field with enormous potential and with applications to physics, chemistry, biology, engineering, and finance. For beginning researchers and instructors who want to add something new and interesting to their course, this self-contained chapter is an excellent place to start.

Chapter 15 contains a comprehensive discussion of infinite series: tests of convergence, properties, power series, and uniform convergence along with the methods of evaluating sums of infinite series. An interesting section on divergent series in physics is added with a discussion of the Casimir effect.

Chapter 16 treats integral transforms. We start with the general definition, and then the two most commonly used integral transforms, Fourier and Laplace transforms, are discussed in detail with their various applications and techniques.

Chapter 17 is on variational analysis. Cases with different numbers of dependent and independent variables are discussed. Problems with constraints, variational techniques in eigenvalue problems, and the Rayleigh-Ritz method are among other interesting topics covered.

In Chapter 18 we introduce integral equations. We start with their classification and their relation to differential equations and vice versa. We continue with the methods of solving integral equations and conclude with the eigenvalue problem for integral operators, that is, the Hilbert-Schmidt theory.

In Chapter 19 (and 20) we present Green's functions, and this is the second climax of this book, where everything discussed so far is used and their connections seen. We start with the time-independent Green's functions in one dimension and continue with three-dimensional Green's functions. We discuss their applications to electromagnetic theory and the Schrödinger equation. Next we discuss first-order time-dependent Green's functions with applications to diffusion problems and the time-dependent Schrödinger equation. We introduce the propagator interpretation and the compounding of propagators. We conclude this section with second-order time-dependent Green's functions, and their application to the wave equation and discuss advanced and retarded solutions.

Chapter 20 is an extensive discussion of path integrals and their relation to Green's functions. During the past decade or so path integrals have found wide range of applications among many different fields ranging from physics to finance. We start with the Brownian motion, which is considered a prototype of many different processes in physics, chemistry, biology, finance etc. We discuss the Wiener path integral approach to Brownian motion. After the Feynman-Kac formula is introduced, the perturbative solution of the Bloch equation is given. Next an interpretation of V(x) in the Bloch equation is given, and we continue with the methods of evaluating path integrals. We also discuss the Feynman path integral formulation of quantum mechanics along with the phase space approach to Feynman path integrals.

Story of the Book

Since 1989, I have been teaching the graduate level 'Methods of Mathematical Physics I & II' courses at the Middle East Technical University in Ankara. Chapters 2-8 with 12 and 13 have been used for the first part and Chapters 15-19 for the second part of this course, which meets three hours a week. Whenever possible I prefer to introduce mathematical techniques through physical applications. Examples are often used to extend discussions of specific techniques rather than as mere exercises. Topics are introduced in a logical sequence and discussed thoroughly. Each sequence climaxes with a part where the material of the previous chapters is unified in terms of a general theory, as in Chapter 8 (and 9) on the Sturm-Liouville theory, or with a part that utilizes the gains of the previous chapters, as in Chapter 19 (and 20) on Green's functions. Chapter 9 is on factorization method, which is a natural extension of our discussion on the Sturm-Liouville theory. It also presents a different and advanced treatment of special functions. Similarly, Chapter 20 on path integrals is a natural extension of our chapter on Green's functions. Chapters 10 and 11 on coordinates, tensors, and continuous groups have been located after Chapter 9 on the Sturm-Liouville theory and the factorization method. Chapters 12 and 13 are on complex techniques, and they are self-contained. Chapter 14 on fractional calculus can either be integrated into the curriculum of the mathematical methods of physics courses or used independently.

During my lectures and first reading of the book I recommend that readers view equations as statements and concentrate on the logical structure of the discussions. Later, when they go through the derivations, technical details become understood, alternate approaches appear, and some of the questions are answered. Sufficient numbers of problems are given at the back of each chapter. They are carefully selected and should be considered an integral part of the learning process.

In a vast area like mathematical methods in science and engineering, there is always room for new approaches, new applications, and new topics. In fact, the number of books, old and new, written on this subject shows how dynamic this field is. Naturally this book carries an imprint of my style and lectures. Because the main aim of this book is pedagogy, occasionally I have followed other books when their approaches made perfect sense to me. Sometimes I indicated this in the text itself, but a complete list is given at the back. Readers of this book will hopefully be well prepared for advanced graduate studies in many areas of physics. In particular, as we use the same terminology and style, they should be ready for full-term graduate courses based on the books: *The Fractional Calculus* by Oldham and Spanier and *Path Inte-* grals in Physics, Volumes I and II by Chaichian and Demichev, or they could jump into the advanced sections of these books, which have become standard references in their fields.

I recommend that students familiarize themselves with the existing literature. Except for an isolated number of instances I have avoided giving references within the text. The references at the end should be a good first step in the process of meeting the literature. In addition to the references at the back, there are also three websites that are invaluable to students and researchers: For original research, http://lanl.arxiv.org/ and the two online encyclopedias: http://en.wikipedia.org and http://scienceworld.wolfram.com/ are very useful. For our chapters on special functions these online encyclopedias are extremely helpful with graphs and additional information.

A precursor of this book (Chapters 1-8, 12, 13, and 15-19) was published in Turkish in 2000. With the addition of two new chapters on fractional calculus and path integrals, the revised and expanded version appeared in 2004 as 440 pages and became a widely used text among the Turkish universities. The positive feedback from the Turkish versions helped me to prepare this book with a minimum number of errors and glitches. For news and communications about the book we will use the website http://www.physics.metu.edu.tr/~ bayin, which will also contain some relevant links of interest to readers.

S. BAYIN

ODTÜ Ankara/TURKEY April 2006

Acknowledgments

I would like to pay tribute to all the scientists and mathematicians whose works contributed to the subjects discussed in this book. I would also like to compliment the authors of the existing books on mathematical methods of physics. I appreciate the time and dedication that went into writing them. Most of them existed even before I was a graduate student. I have benefitted from them greatly. I am indebted to Prof. K.T. Hecht of the University of Michigan, whose excellent lectures and clear style had a great influence on me. I am grateful to Prof. P.G.L. Leach for sharing his wisdom with me and for meticulously reading Chapters 1 and 9 with 14 and 20. I also thank Prof. N. K. Pak for many interesting and stimulating discussions, encouragement, and critical reading of the chapter on path integrals. I thank Wiley for the support by a grant during the preparation of the camera ready copy. My special thanks go to my editors at Wiley, Steve Quigley, Susanne Steitz, and Danielle Lacourciere for sharing my excitement and their utmost care in bringing this book into existence.

I finally thank my wife, Adalet, and daughter, Sumru, for their endless support during the long and strenuous period of writing, which spanned over several years.

Ş.S.B.

xxvii