
EFFECTIVE
GROUNDWATER
MODEL CALIBRATION

With Analysis of Data, Sensitivities,
Predictions, and Uncertainty

MARY C. HILL
CLAIRE R. TIEDEMAN





Innodata
File Attachment
9780470041079.jpg





EFFECTIVE
GROUNDWATER
MODEL CALIBRATION





EFFECTIVE
GROUNDWATER
MODEL CALIBRATION

With Analysis of Data, Sensitivities,
Predictions, and Uncertainty

MARY C. HILL
CLAIRE R. TIEDEMAN



Published 2007 by John Wiley & Sons, Inc., Hoboken, New Jersey.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or

by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as

permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior

written permission of the Publisher, or authorization through payment of the appropriate per-copy fee

to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400,

fax 978-750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission

should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken,

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in

preparing this book, they make no representations or warranties with respect to the accuracy or

completeness of the contents of this book and specifically disclaim any implied warranties of

merchantability or fitness for a particular purpose. No warranty may be created or extended by sales

representatives or written sales materials. The advice and strategies contained herein may not be suitable

for your situation. You should consult with a professional where appropriate. Neither the publisher

nor author shall be liable for any loss of profit or any other commercial damages, including but not limited

to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please

contact our Customer Care Department within the United States at 877-762-2974, outside the United

States at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may

not be available in electronic formats. For more information about Wiley products, visit our web site at

www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Hill, Mary C. (Mary Catherine)

Effective groundwater model calibration: with analysis of data,

sensitivities, predictions, and uncertainty/Mary C. Hill, Claire R.

Tiedeman.

p. cm.

Includes index.

ISBN-13: 978-0-471-77636-9 (cloth)

ISBN-10: 0-471-77636-X (cloth)

1. Groundwater- -Mathematical models. 2. Hydrologic models. I. Tiedeman,

Claire R. II. Title.

GB1001.72.M35H55 2006

551.490105118- -dc22 2005036657

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

NJ 07030, 201-748-6011, fax 201-748-6008, or online at http://www.wiley.com/go/permission.

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com


We dedicate this book to the groundwater modelers and software

developers of the U.S. Geological Survey. These men and women

devote their careers to providing sound scientific analyses for policy

makers and to enabling others in the government and the private

sector to do the same. We are honored to be their colleagues.

We also dedicate this book to the United States taxpayers, to whom

we are ultimately accountable. They have supported our educations,

salaries, field work and students. We hope our efforts have improved

the understanding and management of their groundwater resources.

With love, we also dedicate this book to our husbands and families.





CONTENTS

Preface xvii

1 Introduction 1

1.1 Book and Associated Contributions: Methods, Guidelines,

Exercises, Answers, Software, and PowerPoint Files, 1

1.2 Model Calibration with Inverse Modeling, 3

1.2.1 Parameterization, 5

1.2.2 Objective Function, 6

1.2.3 Utility of Inverse Modeling and Associated Methods, 6

1.2.4 Using the Model to Quantitatively Connect Parameters,

Observations, and Predictions, 7

1.3 Relation of this Book to Other Ideas and Previous Works, 8

1.3.1 Predictive Versus Calibrated Models, 8

1.3.2 Previous Work, 8

1.4 A Few Definitions, 12

1.4.1 Linear and Nonlinear, 12

1.4.2 Precision, Accuracy, Reliability, and Uncertainty, 13

1.5 Advantageous Expertise and Suggested Readings, 14

1.6 Overview of Chapters 2 Through 15, 16

vii



2 Computer Software and Groundwater Management Problem

Used in the Exercises 18

2.1 Computer Programs MODFLOW-2000, UCODE_2005,

and PEST, 18

2.2 Groundwater Management Problem Used for the Exercises, 21

2.2.1 Purpose and Strategy, 23

2.2.2 Flow System Characteristics, 23

2.3 Exercises, 24

Exercise 2.1: Simulate Steady-State Heads and

Perform Preparatory Steps, 25

3 Comparing Observed and Simulated Values Using

Objective Functions 26

3.1 Weighted Least-Squares Objective Function, 26

3.1.1 With a Diagonal Weight Matrix, 27

3.1.2 With a Full Weight Matrix, 28

3.2 Alternative Objective Functions, 28

3.2.1 Maximum-Likelihood Objective Function, 29

3.2.2 L1 Norm Objective Function, 29

3.2.3 Multiobjective Function, 29

3.3 Requirements for Accurate Simulated Results, 30

3.3.1 Accurate Model, 30

3.3.2 Unbiased Observations and Prior Information, 30

3.3.3 Weighting Reflects Errors, 31

3.4 Additional Issues

3.4.1 Prior Information, 32

3.4.2 Weighting, 34

3.4.3 Residuals and Weighted Residuals, 35

3.5 Least-Squares Objective-Function Surfaces, 35

3.6 Exercises, 36

Exercise 3.1: Steady-State Parameter Definition, 36

Exercise 3.2: Observations for the Steady-State Problem, 38

Exercise 3.3: Evaluate Model Fit Using Starting Parameter

Values, 40

4 Determining the Information that Observations Provide on

Parameter Values using Fit-Independent Statistics 41

4.1 Using Observations, 42

4.1.1 Model Construction and Parameter Definition, 42

4.1.2 Parameter Values, 43

viii CONTENTS



4.2 When to Determine the Information that Observations

Provide About Parameter Values, 44

4.3 Fit-Independent Statistics for Sensitivity Analysis, 46

4.3.1 Sensitivities, 47

4.3.2 Scaling, 48

4.3.3 Dimensionless Scaled Sensitivities (dss), 48

4.3.4 Composite Scaled Sensitivities (css), 50

4.3.5 Parameter Correlation Coefficients (pcc), 51

4.3.6 Leverage Statistics, 54

4.3.7 One-Percent Scaled Sensitivities, 54

4.4 Advantages and Limitations of Fit-Independent

Statistics for Sensitivity Analysis, 56

4.4.1 Scaled Sensitivities, 56

4.4.2 Parameter Correlation Coefficients, 58

4.4.3 Leverage Statistics, 59

4.5 Exercises, 60

Exercise 4.1: Sensitivity Analysis for the Steady-State

Model with Starting Parameter Values, 60

5 Estimating Parameter Values 67

5.1 The Modified Gauss–Newton Gradient Method, 68

5.1.1 Normal Equations, 68

5.1.2 An Example, 74

5.1.3 Convergence Criteria, 76

5.2 Alternative Optimization Methods, 77

5.3 Multiobjective Optimization, 78

5.4 Log-Transformed Parameters, 78

5.5 Use of Limits on Estimated Parameter Values, 80

5.6 Exercises, 80

Exercise 5.1: Modified Gauss–Newton Method

and Application to a Two-Parameter Problem, 80

Exercise 5.2: Estimate the Parameters

of the Steady-State Model, 87

6 Evaluating Model Fit 93

6.1 Magnitude of Residuals and Weighted Residuals, 93

6.2 Identify Systematic Misfit, 94

6.3 Measures of Overall Model Fit, 94

6.3.1 Objective-Function Value, 95

CONTENTS ix



6.3.2 Calculated Error Variance and Standard Error, 95

6.3.3 AIC, AICc, and BIC Statistics, 98

6.4 Analyzing Model Fit Graphically and Related Statistics, 99

6.4.1 Using Graphical Analysis of Weighted Residuals to

Detect Model Error, 100

6.4.2 Weighted Residuals Versus Weighted or Unweighted

Simulated Values and Minimum, Maximum, and Average

Weighted Residuals, 100

6.4.3 Weighted or Unweighted Observations Versus Simulated

Values and Correlation Coefficient R, 105

6.4.4 Graphs and Maps Using Independent Variables

and the Runs Statistic, 106

6.4.5 Normal Probability Graphs and Correlation

Coefficient RN
2 , 108

6.4.6 Acceptable Deviations from Random,

Normally Distributed Weighted Residuals, 111

6.5 Exercises, 113

Exercise 6.1: Statistical Measures of Overall Fit, 113

Exercise 6.2: Evaluate Graph Model fit and Related Statistics, 115

7 Evaluating Estimated Parameter Values

and Parameter Uncertainty 124

7.1 Reevaluating Composite Scaled Sensitivities, 124

7.2 Using Statistics from the Parameter Variance–Covariance

Matrix, 125

7.2.1 Five Versions of the Variance–Covariance Matrix, 125

7.2.2 Parameter Variances, Covariances, Standard Deviations,

Coefficients of Variation, and Correlation Coefficients, 126

7.2.3 Relation Between Sample and Regression Statistics, 127

7.2.4 Statistics for Log-Transformed Parameters, 130

7.2.5 When to Use the Five Versions of the

Parameter Variance–Covariance Matrix, 130

7.2.6 Some Alternate Methods: Eigenvectors, Eigenvalues,

and Singular Value Decomposition, 132

7.3 Identifying Observations Important to Estimated

Parameter Values, 132

7.3.1 Leverage Statistics, 134

7.3.2 Influence Statistics, 134

7.4 Uniqueness and Optimality of the Estimated

Parameter Values, 137

7.5 Quantifying Parameter Value Uncertainty, 137

x CONTENTS



7.5.1 Inferential Statistics, 137

7.5.2 Monte Carlo Methods, 140

7.6 Checking Parameter Estimates Against Reasonable Values, 140

7.7 Testing Linearity, 142

7.8 Exercises, 145

Exercise 7.1: Parameter Statistics, 145

Exercise 7.2: Consider All the Different Correlation

Coefficients Presented, 155

Exercise 7.3: Test for Linearity, 155

8 Evaluating Model Predictions, Data Needs, and

Prediction Uncertainty 158

8.1 Simulating Predictions and Prediction Sensitivities and

Standard Deviations, 158

8.2 Using Predictions to Guide Collection of Data that

Directly Characterize System Properties, 159

8.2.1 Prediction Scaled Sensitivities (pss), 160

8.2.2 Prediction Scaled Sensitivities Used in Conjunction

with Composite Scaled Sensitivities, 162

8.2.3 Parameter Correlation Coefficients without and

with Predictions, 162

8.2.4 Composite and Prediction Scaled Sensitivities Used

with Parameter Correlation Coefficients, 165

8.2.5 Parameter–Prediction (ppr) Statistic, 166

8.3 Using Predictions to Guide Collection of Observation Data, 170

8.3.1 Use of Prediction, Composite, and Dimensionless Scaled

Sensitivities and Parameter Correlation Coefficients, 170

8.3.2 Observation–Prediction (opr) Statistic, 171

8.3.3 Insights About the opr Statistic from Other

Fit-Independent Statistics, 173

8.3.4 Implications for Monitoring Network Design, 174

8.4 Quantifying Prediction Uncertainty Using Inferential Statistics, 174

8.4.1 Definitions, 175

8.4.2 Linear Confidence and Prediction Intervals

on Predictions, 176

8.4.3 Nonlinear Confidence and Prediction Intervals, 177

8.4.4 Using the Theis Example to Understand Linear and

Nonlinear Confidence Intervals, 181

8.4.5 Differences and Their Standard Deviations, Confidence

Intervals, and Prediction Intervals, 182

CONTENTS xi



8.4.6 Using Confidence Intervals to Serve the Purposes

of Traditional Sensitivity Analysis, 184

8.5 Quantifying Prediction Uncertainty Using Monte

Carlo Analysis, 185

8.5.1 Elements of a Monte Carlo Analysis, 185

8.5.2 Relation Between Monte Carlo Analysis and Linear and

Nonlinear Confidence Intervals, 187

8.5.3 Using the Theis Example to Understand Monte

Carlo Methods, 188

8.6 Quantifying Prediction Uncertainty Using Alternative Models, 189

8.7 Testing Model Nonlinearity with Respect

to the Predictions, 189

8.8 Exercises, 193

Exercise 8.1: Predict Advective Transport and Perform

Sensitivity Analysis, 195

Exercise 8.2: Prediction Uncertainty Measured

Using Inferential Statistics, 207

9 Calibrating Transient and Transport

Models and Recalibrating Existing Models 213

9.1 Strategies for Calibrating Transient Models, 213

9.1.1 Initial Conditions, 213

9.1.2 Transient Observations, 214

9.1.3 Additional Model Inputs, 216

9.2 Strategies for Calibrating Transport Models, 217

9.2.1 Selecting Processes to Include, 217

9.2.2 Defining Source Geometry and Concentrations, 218

9.2.3 Scale Issues, 219

9.2.4 Numerical Issues: Model Accuracy and Execution

Time, 220

9.2.5 Transport Observations, 223

9.2.6 Additional Model Inputs, 225

9.2.7 Examples of Obtaining a Tractable,

Useful Model, 226

9.3 Strategies for Recalibrating Existing Models, 227

9.4 Exercises (optional), 228

Exercises 9.1 and 9.2: Simulate Transient Hydraulic Heads

and Perform Preparatory Steps, 229

Exercise 9.3: Transient Parameter Definition, 230

xii CONTENTS



Exercise 9.4: Observations for the Transient Problem, 231

Exercise 9.5: Evaluate Transient Model Fit Using Starting

Parameter Values, 235

Exercise 9.6: Sensitivity Analysis for the Initial Model, 235

Exercise 9.7: Estimate Parameters for the Transient System

by Nonlinear Regression, 243

Exercise 9.8: Evaluate Measures of Model Fit, 244

Exercise 9.9: Perform Graphical Analyses of Model Fit

and Evaluate Related Statistics, 246

Exercise 9.10: Evaluate Estimated Parameters, 250

Exercise 9.11: Test for Linearity, 253

Exercise 9.12: Predictions, 254

10 Guidelines for Effective Modeling 260

10.1 Purpose of the Guidelines, 263

10.2 Relation to Previous Work, 264

10.3 Suggestions for Effective Implementation, 264

11 Guidelines 1 Through 8—Model Development 268

Guideline 1: Apply the Principle of Parsimony, 268

G1.1 Problem, 269

G1.2 Constructive Approaches, 270

Guideline 2: Use a Broad Range of System Information to

Constrain the Problem, 272

G2.1 Data Assimilation, 273

G2.2 Using System Information, 273

G2.3 Data Management, 274

G2.4 Application: Characterizing a Fractured

Dolomite Aquifer, 277

Guideline 3: Maintain a Well-Posed, Comprehensive

Regression Problem, 277

G3.1 Examples, 278

G3.2 Effects of Nonlinearity on the css and pcc, 281

Guideline 4: Include Many Kinds of Data as Observations

in the Regression, 284

G4.1 Interpolated “Observations”, 284

G4.2 Clustered Observations, 285

G4.3 Observations that Are Inconsistent with

Model Construction, 286

CONTENTS xiii



G4.4 Applications: Using Different Types of Observations

to Calibrate Groundwater Flow and Transport

Models, 287

Guideline 5: Use Prior Information Carefully, 288

G5.1 Use of Prior Information Compared

with Observations, 288

G5.2 Highly Parameterized Models, 290

G5.3 Applications: Geophysical Data, 291

Guideline 6: Assign Weights that Reflect Errors, 291

G6.1 Determine Weights, 294

G6.2 Issues of Weighting in Nonlinear Regression, 298

Guideline 7: Encourage Convergence by Making the Model

More Accurate and Evaluating the Observations, 306

Guideline 8: Consider Alternative Models, 308

G8.1 Develop Alternative Models, 309

G8.2 Discriminate Between Models, 310

G8.3 Simulate Predictions with Alternative Models, 312

G8.4 Application, 313

12 Guidelines 9 and 10—Model Testing 315

Guideline 9: Evaluate Model Fit, 316

G9.1 Determine Model Fit, 316

G9.2 Examine Fit for Existing Observations Important

to the Purpose of the Model, 320

G9.3 Diagnose the Cause of Poor Model Fit, 320

Guideline 10: Evaluate Optimized Parameter Values, 323

G10.1 Quantify Parameter-Value Uncertainty, 323

G10.2 Use Parameter Estimates to Detect Model Error, 323

G10.3 Diagnose the Cause of Unreasonable Optimal

Parameter Estimates, 326

G10.4 Identify Observations Important to the

Parameter Estimates, 327

G10.5 Reduce or Increase the Number of Parameters, 328

13 Guidelines 11 and 12—Potential New Data 329

Guideline 11: Identify New Data to Improve Simulated Processes,

Features, and Properties, 330

Guideline 12: Identify New Data to Improve Predictions, 334

G12.1 Potential New Data to Improve Features and Properties

Governing System Dynamics, 334

G12.2 Potential New Data to Support Observations, 335

xiv CONTENTS



14 Guidelines 13 and 14—Prediction Uncertainty 337

Guideline 13: Evaluate Prediction Uncertainty and Accuracy

Using Deterministic Methods, 337

G13.1 Use Regression to Determine Whether Predicted

Values Are Contradicted by the Calibrated

Model, 337

G13.2 Use Omitted Data and Postaudits, 338

Guideline 14: Quantify Prediction Uncertainty Using

Statistical Methods, 339

G14.1 Inferential Statistics, 341

G14.2 Monte Carlo Methods, 341

15 Using and Testing the Methods and Guidelines 345

15.1 Execution Time Issues, 345

15.2 Field Applications and Synthetic Test Cases, 347

15.2.1 The Death Valley Regional Flow System,

California and Nevada, USA, 347

15.2.2 Grindsted Landfill, Denmark, 370

Appendix A: Objective Function Issues 374

A.1 Derivation of the Maximum-Likelihood

Objective Function, 375

A.2 Relation of the Maximum-Likelihood and

Least-Squares Objective Functions, 376

A.3 Assumptions Required for Diagonal

Weighting to be Correct, 376

A.4 References, 381

Appendix B: Calculation Details of the Modified

Gauss–Newton Method 383

B.1 Vectors and Matrices for Nonlinear Regression, 383

B.2 Quasi-Newton Updating of the Normal Equations, 384

B.3 Calculating the Damping Parameter, 385

B.4 Solving the Normal Equations, 389

B.5 References, 390

Appendix C: Two Important Properties of Linear Regression
and the Effects of Nonlinearity 391

C.1 Identities Needed for the Proofs, 392

C.1.1 True Linear Model, 392

C.1.2 True Nonlinear Model, 392

CONTENTS xv



C.1.3 Linearized True Nonlinear Model, 392

C.1.4 Approximate Linear Model, 392

C.1.5 Approximate Nonlinear Model, 393

C.1.6 Linearized Approximate Nonlinear Model, 393

C.1.7 The Importance of X and X, 394

C.1.8 Considering Many Observations, 394

C.1.9 Normal Equations, 395

C.1.10 Random Variables, 395

C.1.11 Expected Value, 395

C.1.12 Variance–Covariance Matrix of a Vector, 395

C.2 Proof of Property 1: Parameters Estimated by Linear

Regression are Unbiased, 395

C.3 Proof of Property 2: The Weight Matrix Needs to be Defined

in a Particular Way for Eq. (7.1) to Apply and for the

Parameter Estimates to have the Smallest Variance, 396

C.4 References, 398

Appendix D: Selected Statistical Tables 399

D.1 References, 406

References 407

Index 427

xvi CONTENTS



PREFACE
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to teach a semester course at the University of Colorado in Boulder, Colorado in
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ful students. We thank them for their interest, enthusiasm, good humor, and encour-

agement as we struggled to develop many of the ideas presented in this book.

We also are deeply indebted to the following colleagues for insightful discus-
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A. D’Agnese, Claudia C. Faunt, Arlen W. Harbaugh, Edward R. Banta, Marshall

W. Gannett, and D. Matthew Ely of the U.S. Geological Survey, Eileen P. Poeter

of the Colorado School of Mines, Evan R. Anderman formerly of Calibra Consult-
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2000, PEST, UCODE, and UCODE_2005 throughout the years have been

invaluable.

The book benefited from the careful reviews provided by Peter Kitanidis of

Stanford University, Eileen Poeter of the Colorado School of Mines and the Inter-

national GroundWater Modeling Center (USA), Steen Christensen of the University

of Aarhus (Denmark), Roseanna Neupauer of the University of Virginia (USA) (now
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All errors and omissions are the sole responsibility of the authors.
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1
INTRODUCTION

In many fields of science and engineering, mathematical models are used to

represent complex processes and results are used for system management and risk

analysis. The methods commonly used to develop and apply such models often

do not take full advantage of either the data available for model construction and

calibration or the developed model. This book presents a set of methods and guide-

lines that, it is hoped, will improve how data and models are used.

This introductory chapter first describes the contributions of the book, including a

description of what is on the associated web site. Sections 1.2 and 1.3 provide some

context for the book by reviewing inverse modeling and considering the methods

covered by the book relative to other paradigms for integrating data and models.

After providing a few definitions, Chapter 1 concludes with a discussion of the

expertise readers are expected to possess and some suggested readings and an

overview of Chapters 2 through 15.

1.1 BOOK AND ASSOCIATED CONTRIBUTIONS: METHODS,

GUIDELINES, EXERCISES, ANSWERS, SOFTWARE, AND

POWERPOINT FILES

The methods presented in the book include (1) sensitivity analysis for evaluating

the information content of data, (2) data assessment strategies for identifying

(a) existing measurements that dominate model development and predictions

1
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and (b) potential measurements likely to improve the reliability of predictions,

(3) calibration techniques for developing models that are consistent with the data

in some optimal manner, and (4) uncertainty evaluation for quantifying and commu-

nicating the potential error in simulated results (e.g., predictions) that often are used

to make important societal decisions.

The fourteen guidelines presented in the book focus on practical application of

the methods and are organized into four categories: (1) model development guide-

lines, (2) model testing guidelines, (3) potential new data guidelines, and (4) predic-

tion uncertainty guidelines.

Most of the methods presented and referred to in the guidelines are based on

linear or nonlinear regression theory. While this body of knowledge has its limits,

it is very useful in many circumstances. The strengths and limitations of the methods

presented are discussed throughout the book. In practice, linear and nonlinear

regression are best thought of as imperfect, insightful tools. Whether regression

methods prove to be beneficial in a given situation depends on how they are used.

Here, the term beneficial refers to increasing the chance of achieving one or more

useful models given the available data and a reasonable model development

effort. The methods, guidelines, and related exercises presented in this book illus-

trate how to improve the chances of achieving useful models, and how to address

problems that commonly are encountered along the way.

Besides the methods and guidelines, the book emphasizes the importance of how

results are presented. To this end, the book can be thought of as emphasizing two

criteria: valid statistical concepts and effective communication with resource man-

agers. The most advanced, complex mathematics and statistics are worth very little

if they cannot be used to address the societal needs related to the modeling

objectives.

The methods and guidelines in this book have wide applicability for mathemat-

ical models of many types of systems and are presented in a general manner. The

expertise of the authors is in the simulation of groundwater systems, and most of

the examples are from this field. There are also some surface-water examples and

a few references to other fields such as geophysics and biology. The fundamental

aspects of systems most advantageously addressed by the methods and guidelines

presented in this work are those typical of groundwater systems and shared by

many other natural systems. Of relevance are that groundwater systems commonly

involve (1) solutions in up to three spatial dimensions and time, (2) system charac-

teristics that can vary dramatically in space and time, (3) knowledge about system

variability in addition to the data used directly in regression methods, (4) available

data sets that are typically sparse, and (5) nonlinearities that are often significant but

not extreme.

Four important additional aspects of the book are the exercises, answers, soft-

ware, and PowerPoint files available for teaching.

The exercises focus on a groundwater flow system and management problem to

which students apply all the methods presented in the book. The system is simple,

which allows basic principles to be clearly demonstrated, and is designed to have

aspects that are directly relevant to typical systems. The exercises can be conducted
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using the material provided in the book, or as hands-on computer exercises using

instructions and files available on the web site http://water.usgs.gov/lookup/
get?crresearch/hill_tiedeman_book.

The web site includes instructions for doing the exercises using files directly

and/or using public-domain interface and visualization capabilities. It may also

include instructions for using selected versions of commercial interfaces. The

instructions are designed so that students can maximize the time spent understanding

the ideas and the capabilities discussed in the book.

Answers to selected exercises are provided on the web site.

The software used for the exercises is freely available, open source, well docu-

mented, and widely used. The groundwater flow system is simulated using the

Ground-Water Flow Process of MODFLOW-2000 (Harbaugh et al., 2000; Hill

et al., 2000). The sensitivity analysis, calibration, and uncertainty aspects of the

exercises can be accomplished using MODFLOW-2000’s Observation, Sensitivity,

and Parameter-Estimation Processes or UCODE_2005 (Poeter et al., 2005). Most of

the sensitivity analysis, calibration, and uncertainty aspects of the exercises also can

be conducted using PEST (Doherty, 1994, 2005). Relevant capabilities of MOD-

FLOW-2000 and UCODE_2005 are noted as methods and guidelines are presented;

relevant capabilities of PEST are noted in some cases. The public-domain programs

for interface and visualization are MFI2K (Harbaugh, 2002), GWChart (Winston,

2000), and ModelViewer (Hsieh and Winston, 2002). The web sites from which

these programs can be downloaded are listed with the references and on the book

web site listed above.

The methods and guidelines presented in this book are broadly applicable.

Throughout the book they are presented in the context of the capabilities of the com-

puter codes mentioned above to provide concrete examples and encourage use.

PowerPoint files designed for teaching of the material in the book are provided on

the web site. The authors invite those who use the PowerPoint files to share their

additions and changes with others, in the same spirit with which we share these

files with you.

The use of trade, firm, or product names in this book is for descriptive purposes

only and does not imply endorsement by the U.S. Government.

The rest of this introductory chapter provides a brief overview of how regression

methods fit into model calibration (Section 1.2), some perspective of how the ideas

presented here relate to other ideas and past work (Section 1.3), some definitions

(Section 1.4), a description of expertise that would assist readers and how to obtain

that expertise (Section 1.5), and an overview of Chapters 2 through 15 (Section 1.6).

1.2 MODEL CALIBRATION WITH INVERSE MODELING

During calibration, model input such as system geometry and properties, initial and

boundary conditions, and stresses are changed so that the model output matches

related measured values. Many of the model inputs that are changed can be charac-

terized using what are called “parameters” in this work. The measured values related
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to model outputs often are called “observations” or “observed values,” which are

equivalent terms and are used interchangeably in this book.

The basic steps of model calibration are shown in Figure 1.1. In the context of the

entire modeling process, effectively using system information and observations to con-

strain the model is likely to produce a model that more accurately represents the simu-

lated system and produces more accurate predictions, compared to a modeling

procedure that uses these types of data less effectively. The ideas, methods, and guide-

lines presented in this book are aimed at helping to achieve more effective use of data.

The difficulties faced in simulating natural systems are demonstrated by the

complex variability shown in Figure 1.2 as discussed by Zhang et al. (2006).

Four issues fundamental to model calibration are discussed in the next four

sections. These include parameter definition or parameterization, which is the

mechanism used to obtain a tractable and hopefully meaningful representation of

FIGURE 1.1 Flowchart showing the major steps of calibrating a model and using it to make

predictions. Bold, italicized terms indicate the steps that are directly affected by nonlinear

regression, including the use of an objective function to quantify the comparison between

simulated and observed values. Predictions can be used during calibration as described in

Chapter 8. (Adapted from Herb Buxton, U.S. Geological Survey, written communication,

1990.)
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systems such as that shown in Figure 1.2; the objective function mentioned in

Figure 1.1; the utility of inverse modeling, which is also called parameter estimation

in this book; and using the model to quantitatively connect observations, parameters,

and predictions.

1.2.1 Parameterization

The model inputs that need to be estimated are often distributed spatially and/or
temporally, so that the number of parameter values could be infinite. The obser-

vations, however, generally are limited in number and support the estimation of rela-

tively few parameters. Addressing this discrepancy is one of the greatest challenges

faced by modelers in many fields. Typically, so-called parameterization is intro-

duced that allows a limited number of parameter values to define model inputs

throughout the spatial domain and time of interest. In this book, the term

“parameter” is reserved for the values used to define model inputs. Consider the

parameters defined in three groundwater model examples.

Example 1: One parameter represents the hydraulic conductivity of a hydro-

geologic unit that occupies a prescribed volume of the model domain and is

hydraulically distinctive and relatively uniform.

Example 2: One parameter represents a scalar multiplier of spatially varying

recharge rates initially specified by the modeler for a given geographic area

on the basis of precipitation, vegetation, elevation, and topography.

Example 3: One parameter represents the hydraulic head at a constant-head

boundary that is used to simulate the water level in a lake.

FIGURE 1.2 Experimental results from a subsiding tank, showing the kind of complexity

characteristic of deltaic deposits in a subsiding basin. (Reproduced with permission from

Paola et al. 2001.)
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This book focuses primarily on models for which a limited number of parameters

are defined. Alternative methods are discussed in Section 1.3.2.

Historically, observed and simulated values, such as hydraulic heads, flows, and

concentrations for groundwater systems, often were compared subjectively, so that it

was difficult to determine how well one model was calibrated relative to another. In

addition, in modeling of groundwater and other types of systems, adjustments of

parameter values and other model characteristics were accomplished mostly by

trial and error, which is time consuming, subjective, and inconclusive.

Formal methods have been developed that attempt to estimate parameter values

given a mathematical model of system processes and a set of relevant observations.

These are called inverse methods, and generally they are limited to the estimation of

parameters as defined above. Thus, the terms “inverse modeling” and “parameter

estimation” commonly are synonymous, as in this book. For some models, the

inverse problem is linear, in that the observed quantities are linear functions of

the parameters. In many circumstances of practical interest, however, the inverse

problem is nonlinear, and its solution is not as straightforward as for linear problems.

This book discusses methods for nonlinear inverse problems. One method of solving

such problems is nonlinear regression, which is the primary solution method

discussed in this book.

The complexity of many real systems and the scarcity of available data sets result

in inversions that are often plagued by problems of insensitivity, nonuniqueness, and

instability, regardless of how model calibration is achieved. Insensitivity occurs

when the observations do not contain enough information to support estimation of

the parameters. Nonuniqueness occurs when different combinations of parameter

values match the observations equally well. Instability occurs when slight changes

in, for example, parameter values or observations radically change simulated results.

All these problems are exacerbated when the system is nonlinear. These problems are

usually more easily detected when using formal inverse modeling and associated

methods than when using trial-and-error methods for calibration. Detecting these

problems is important to understanding the value of the resulting model.

1.2.2 Objective Function

In inverse modeling, the comparison of simulated and observed values is accom-

plished quantitatively using an objective function (Figure 1.1). The simulated and

observed values include system-dependent variables (e.g., hydraulic head for the

groundwater flow equation or concentration for the groundwater transport equation)

and other system characteristics as represented by prior information on parameters.

Parameter values that produce the “best fit” are defined as those that produce the

smallest value of the objective function.

1.2.3 Utility of Inverse Modeling and Associated Methods

Recent work has clearly demonstrated that inverse modeling and associated sensi-

tivity analysis, data needs assessment, and uncertainty evaluation methods provide
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capabilities that help modelers take greater advantage of their models and data, even

for simulated systems that are very complex (i.e., Poeter and Hill, 1997; Faunt et al.,

2004). The benefits include

1. Clear determination of parameter values that produce the best possible fit to

the available observations.

2. Graphical analyses and diagnostic statistics that quantify the quality of cali-

bration and data shortcomings and needs, including analyses of model fit,

model bias, parameter estimates, and model predictions.

3. Inferential statistics that quantify the reliability of parameter estimates and

predictions.

4. Other evaluations of uncertainty, including deterministic and Monte Carlo

methods.

5. Identification of issues that are easily overlooked when calibration is

conducted using trial and error methods alone.

Quantifying the quality of calibration, data shortcomings and needs, and uncer-

tainty of parameter estimates and predictions is important to model defensibility

and transparency and to communicating the results of modeling studies to managers,

regulators, lawyers, concerned citizens, and to the modelers themselves.

Despite its apparent utility, in many fields, such as groundwater hydrology, the

methods described in this book are not routinely used, and calibration using only

trial-and-error methods is more common. This, in part, is due to lack of familiarity

with the methods and the perception that they require more time than trial-

and-error methods. It is also because inverse modeling and related sensitivity

analysis methods clearly reveal problems such as insensitivity and nonuniqueness,

and thereby reveal inconvenient model weaknesses. Yet if they are revealed, such

weaknesses often can be reduced or eliminated. This occurs because knowledge

of the weaknesses can be used to determine data collection and model develop-

ment effort needed to strengthen the model. We hope this text will encourage

modelers to use, and resource managers to demand, the more transparent and

defensible models that result from using the types of methods and ideas described

in this book.

1.2.4 Using the Model to Quantitatively Connect Parameters,

Observations, and Predictions

The model quantitatively connects the system information and the observations to

the predictions and their uncertainty. The entities Parameters, Observations, and

Predictions are in bold type in Figure 1.1 because these entities are directly used

by or produced by the model, whereas the system information often is indirectly

used to create model input. Many of the methods presented in this book take advan-

tage of the quantitative links the model provides between what is referred to in this

book as the triad of the observations, parameters, and predictions.
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The depiction of model calibration shown in Figure 1.1 is unusual in that it

suggests simulating predictions and prediction uncertainty as model calibration pro-

ceeds. When execution times allow, it is often useful to include predictive analyses

during model calibration so that the dynamics affecting model predictions can be

better understood. Care must be taken, of course, not to use such simulations to

bias model predictions.

1.3 RELATION OF THIS BOOK TO OTHER IDEAS

AND PREVIOUS WORKS

This section relates the ideas of this book to predictive models and other literature.

1.3.1 Predictive Versus Calibrated Models

When simulating natural systems, the objective is often to produce a model that

can predict, accurately enough to be useful, for assessing the consequences of intro-

ducing something new in the system. In groundwater systems, this may entail new

pumpage or transport of recently introduced or potential contamination.

Ideally, model inputs would be determined accurately and completely enough

from directly related field data to produce useful model results. This is advantageous

because the resulting model is likely to be able to predict results in a wide range of

circumstances, and for this reason such models are called predictive models (e.g.,

see Wilcock and Iverson, 2003; National Research Council, 2002). However, com-

monly quantities simulated by the model can be more readily measured than model

inputs. The best possible determination of model inputs based on directly related

field data can produce model outputs that match the measured equivalents poorly.

If the fit is poor enough that the utility of model predictions is questionable, then

a decision needs to be made about how to proceed. The choices are to use the pre-

dictive model, which has been shown to perform poorly in the circumstances for

which testing is possible, or to modify the model so that, at the very least, it matches

the available measured equivalents of model results. A model modified in this way is

called a calibrated model.

There is significant and important debate about the utility of predictive and cali-

brated models, and it is our hope that the debate will lead to better methods of

measuring quantities directly related to model inputs. We would rejoice with all

others in the natural sciences to be able to always use predictive models. Until

then, however, it is our opinion that methods and guidelines that promote the best

possible use of models and data in the development of calibrated models are critical.

It is also our belief that such methods and guidelines can play a role in informing and

focusing the efforts of developing field methods that may ultimately allow predictive

models to be used in more circumstances.

1.3.2 Previous Work

For the most part, comments in this introductory chapter are limited to the history,

evolution, and status of nonlinear regression and modeling as related to groundwater

systems. Comments about how specific methods or ideas relate to previous
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publications appear elsewhere in the book. This section contains the broadest

discussion of parameterization methods presented in the book.

The topics covered by this book have been addressed by others using a variety of

different methods, and have been developed for and applied to many different fields

of science and engineering. We do not attempt to provide a full review of all work

on these topics. Selected textbooks are as follows. Parker (1994), Sun (1994),

Lebbe (1999), and Aster et al. (2005) discuss nonlinear regression in the field of geo-

physics. More general references for nonlinear regression and associated analyses

include Bard (1974), Beck and Arnold (1977), Belsley et al. (1980), Seber and

Wild (1989), Dennis and Schnabel (1996), and Tarantola (2005). Saltelli et al.

(2000, 2004) provide comprehensive overviews of sensitivity-analysis methods.

This book focuses on what Saltelli et al. describe as local sensitivity methods,

and includes new sensitivity-analysis methods not included in the previous books.

The pioneers of using regression methods in groundwater modeling were Cooley

(1977) and Yeh and Yoon (1981). Some of the material in this book was first

published in U.S. Geological Survey reports (Cooley and Naff, 1990; Hill, 1992;

Hill, 1994; Hill, 1998). Cooley and Naff (1990) presented a modified Gauss–

Newton method of nonlinear regression that with some modification is used in

Chapter 5, and residual analysis ideas derived from early editions of Draper and

Smith (1998) that are used in Chapter 6. Hill (1992) presents sensitivity-analysis

and residual-analysis methods used in Chapters 4 and 6. Cooley and Naff (1990),

and Hill (1992), and Hill (1994) present methods of residual analysis and linear

uncertainty analysis that are used in Chapters 6 and 8. Hill (1998) enhanced the

methods presented in the previous works and presents the first version of the guide-

lines that are described in Chapters 10 through 14. Various aspects of the guidelines

have a long history, and relevant references are cited in later chapters. To the

authors’ knowledge, these guidelines provide a more comprehensive foundation

for the calibration and use of models of complex systems than any similar set of

published guidelines. In general, the book expands the previously presented

material, presents some new methods, and includes an extensive set of exercises.

Achieving Tractable Problems Regression is a powerful tool for using data to test

hypothesized physical relations and to calibrate models in many fields (Seber and

Wild, 1989; Draper and Smith, 1998). Despite its introduction into the groundwater

literature in the 1970s (reviewed by McLaughlin and Townley, 1996), regression is

only starting to be used with any regularity to develop numerical models of compli-

cated groundwater systems. The scarcity of data, nonlinearity of the regression, and

complexity of the physical systems cause substantial difficulties. Obtaining tractable

models that represent the true system well enough to yield useful results is arguably

the most important problem in the field. The only options are (1) improving the data,

(2) ignoring the nonlinearity, and/or (3) carefully ignoring some of the system com-

plexity. Scarcity of data is a perpetual problem not likely to be alleviated at most

field sites despite recent impressive advances in geophysical data collection and

analysis (e.g., Eppstein and Dougherty, 1996; Hyndman and Gorelick, 1996;

Lebbe, 1999; Dam and Christensen, 2003). Methods that ignore nonlinearity are

presented by, for example, Kitanidis (1997) and Sun (1994, p. 182). The large
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changes in parameter values that occur in most nonlinear regressions of many

problems after the first iteration, however, indicate that linearized methods are

unlikely to produce satisfactory results in many circumstances. This leaves option

3, which is discussed in the following paragraphs.

Defining a tractable and useful level of parameterization for groundwater inverse

problems has been an intensely sought goal, focused mostly on the representation of

hydraulic conductivity or transmissivity. Suggested approaches vary considerably.

The most complex parameterizations are cell- or pixel-based methods in which

hydraulic conductivity or transmissivity parameters are defined for each model

cell, element, or other basic model entity, and prior information or regularization

is used to stabilize the solution (e.g., see Tikhonov and Arsenin, 1977; Clifton

and Neuman, 1982; Backus, 1988; McLaughlin and Townley, 1996). The simplest

parameterizations require homogeneity, such that, at the extreme, one parameter

specifies hydraulic conductivity throughout the model.

Asmore parameters are defined and the information contained in the observations is

overwhelmed, prior information on parameters and/or regularization on observations
and/or parameters become necessary to attain a tractable problem. In this book, we use

definitions of prior information and regularization derived from Backus (1988). When

applied to parameters, prior information and regularization produce similar penalty-

function terms in the objective function. For prior information, the weighting used

approximates the reliability of the prior information based on either classical or

Bayesian statistical arguments. Essentially, classical statistical arguments are based

on sampling methods; Bayesian statistical arguments are, at least in part, based on

belief (Bolstad, 2004). In contrast, for regularization the weighting generally is

determined as required to produce a tractable problem, as represented by a unique

set of estimated parameter values. The resulting weights generally are much larger

than can be justified based on what could possibly be known or theorized about the

parameter values and distribution. For both prior information and regularization,

the values used in the penalty function need to be unbiased (see the definition in

Section 1.4.2).

Between the two extreme parameterizations mentioned previously, there is a

wide array of designs ranging from interpolation methods such as pilot points

(RamaRoa et al., 1995; Doherty, 2003; Moore and Doherty, 2005, 2006) to zones

of constant value designed using geologic information (see Chapter 15 for

examples). For example, the Regularization Capability of the computer code

PEST (Doherty, 1994, 2005) typically allows many parameters to be estimated.

Indeed, the number of parameters may exceed the number of observations. Par-

ameter estimation is made possible by requiring that the parameter values satisfy

additional considerations. Most commonly, the parameter distribution is required

to be smooth. This and other considerations are discussed by Tikhonov and Arsenin

(1977) and Menke (1989). More recent approaches include the superparameters of

Tonkin and Doherty (2006) and the representer method of Valstar et al. (2004). The

former uses singular value decomposition to identify a few major eigenvectors from

sensitivity matrices; only the “superparameters” defined by the eigenvectors are

estimated by regression.
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