

The Art of Error Correcting Coding

The Art of Error Correcting Coding

Second Edition

Robert H. Morelos-Zaragoza
San Jose State University, USA

Copyright  2006 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except
under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the
Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in
writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John
Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to
permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names
and product names used in this book are trade names, service marks, trademarks or registered trademarks of
their respective owners. The Publisher is not associated with any product or vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the subject matter
covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If
professional advice or other expert assistance is required, the services of a competent professional should be
sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 6045 Freemont Blvd, Mississauga, ONT, L5R 4J3, Canada

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN-13: 978-0-470-01558-2 (HB)
ISBN-10: 0-470-01558-6 (HB)

Typeset in 10/12pt Times by Laserwords Private Limited, Chennai, India.
Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, England.
This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.

www.wiley.com

Contents

Preface ix

Foreword xi

The ECC web site xiii

1 Introduction 1
1.1 Error correcting coding: Basic concepts . 4

1.1.1 Block codes and convolutional codes 4
1.1.2 Hamming distance, Hamming spheres and error correcting capability 5

1.2 Linear block codes . 7
1.2.1 Generator and parity-check matrices 7
1.2.2 The weight is the distance . 8

1.3 Encoding and decoding of linear block codes 8
1.3.1 Encoding with G and H . 8
1.3.2 Standard array decoding . 10
1.3.3 Hamming spheres, decoding regions and the standard array 12

1.4 Weight distribution and error performance 13
1.4.1 Weight distribution and undetected error probability over a BSC . . 14
1.4.2 Performance bounds over BSC, AWGN and fading channels 15

1.5 General structure of a hard-decision decoder of linear codes 23
Problems . 23

2 Hamming, Golay and Reed–Muller codes 27
2.1 Hamming codes . 27

2.1.1 Encoding and decoding procedures 28
2.2 The binary Golay code . 29

2.2.1 Encoding . 29
2.2.2 Decoding . 30
2.2.3 Arithmetic decoding of the extended (24, 12, 8) Golay code 30

2.3 Binary Reed–Muller codes . 31
2.3.1 Boolean polynomials and RM codes 31
2.3.2 Finite geometries and majority-logic decoding 33

Problems . 37

vi CONTENTS

3 Binary cyclic codes and BCH codes 39
3.1 Binary cyclic codes . 39

3.1.1 Generator and parity-check polynomials 39
3.1.2 The generator polynomial . 40
3.1.3 Encoding and decoding of binary cyclic codes 41
3.1.4 The parity-check polynomial . 42
3.1.5 Shortened cyclic codes and CRC codes 44
3.1.6 Fire codes . 45

3.2 General decoding of cyclic codes . 46
3.2.1 GF(2m) arithmetic . 48

3.3 Binary BCH codes . 52
3.3.1 BCH bound . 53

3.4 Polynomial codes . 53
3.5 Decoding of binary BCH codes . 54

3.5.1 General decoding algorithm for BCH codes 56
3.5.2 The Berlekamp–Massey algorithm (BMA) 57
3.5.3 PGZ decoder . 60
3.5.4 Euclidean algorithm . 61
3.5.5 Chien search and error correction 63
3.5.6 Errors-and-erasures decoding . 63

3.6 Weight distribution and performance bounds 65
3.6.1 Error performance evaluation . 66

Problems . 69

4 Nonbinary BCH codes: Reed–Solomon codes 73
4.1 RS codes as polynomial codes . 73
4.2 From binary BCH to RS codes . 73
4.3 Decoding RS codes . 74

4.3.1 Remarks on decoding algorithms 79
4.3.2 Errors-and-erasures decoding . 79

4.4 Weight distribution . 84
Problems . 84

5 Binary convolutional codes 87
5.1 Basic structure . 87

5.1.1 Recursive systematic convolutional codes 92
5.1.2 Free distance . 94

5.2 Connections with block codes . 94
5.2.1 Zero-tail construction . 94
5.2.2 Direct-truncation construction . 95
5.2.3 Tail-biting construction . 95
5.2.4 Weight distributions . 95

5.3 Weight enumeration . 97
5.4 Performance bounds . 99
5.5 Decoding: Viterbi algorithm with Hamming metrics 101

5.5.1 Maximum-likelihood decoding and metrics 101

CONTENTS vii

5.5.2 The Viterbi algorithm . 102
5.5.3 Implementation issues . 104

5.6 Punctured convolutional codes . 112
5.6.1 Implementation issues related to punctured convolutional codes . . . 115
5.6.2 RCPC codes . 116

Problems . 116

6 Modifying and combining codes 119
6.1 Modifying codes . 119

6.1.1 Shortening . 119
6.1.2 Extending . 121
6.1.3 Puncturing . 122
6.1.4 Augmenting, expurgating and lengthening 122

6.2 Combining codes . 124
6.2.1 Time sharing of codes . 124
6.2.2 Direct sums of codes . 125
6.2.3 The |u|u + v|-construction and related techniques 126
6.2.4 Products of codes . 128
6.2.5 Concatenated codes . 134
6.2.6 Generalized concatenated codes . 136

Problems . 140

7 Soft-decision decoding 143
7.1 Binary transmission over AWGN channels 144
7.2 Viterbi algorithm with Euclidean metric . 145
7.3 Decoding binary linear block codes with a trellis 146
7.4 The Chase algorithm . 150
7.5 Ordered statistics decoding . 153
7.6 Generalized minimum distance decoding 156

7.6.1 Sufficient conditions for optimality 157
7.7 List decoding . 158
7.8 Soft-output algorithms . 158

7.8.1 Soft-output Viterbi algorithm . 158
7.8.2 Maximum-a posteriori (MAP) algorithm 161
7.8.3 Log-MAP algorithm . 163
7.8.4 Max-Log-MAP algorithm . 164
7.8.5 Soft-output OSD algorithm . 164

Problems . 165

8 Iteratively decodable codes 169
8.1 Iterative decoding . 172
8.2 Product codes . 174

8.2.1 Parallel concatenation: Turbo codes 174
8.2.2 Serial concatenation . 183
8.2.3 Block product codes . 185

8.3 Low-density parity-check codes . 190
8.3.1 Tanner graphs . 190

viii CONTENTS

8.3.2 Iterative hard-decision decoding: The bit-flip algorithm 192
8.3.3 Iterative probabilistic decoding: Belief propagation 196

Problems . 201

9 Combining codes and digital modulation 203
9.1 Motivation . 203

9.1.1 Examples of signal sets . 204
9.1.2 Coded modulation . 206
9.1.3 Distance considerations . 207

9.2 Trellis-coded modulation (TCM) . 208
9.2.1 Set partitioning and trellis mapping 209
9.2.2 Maximum-likelihood decoding . 211
9.2.3 Distance considerations and error performance 212
9.2.4 Pragmatic TCM and two-stage decoding 213

9.3 Multilevel coded modulation . 217
9.3.1 Constructions and multistage decoding 217
9.3.2 Unequal error protection with MCM 221

9.4 Bit-interleaved coded modulation . 225
9.4.1 Gray mapping . 226
9.4.2 Metric generation: De-mapping . 227
9.4.3 Interleaving . 227

9.5 Turbo trellis-coded modulation . 227
9.5.1 Pragmatic turbo TCM . 228
9.5.2 Turbo TCM with symbol interleaving 228
9.5.3 Turbo TCM with bit interleaving 229

Problems . 230

Appendix A Weight distributions of extended BCH codes 233
A.1 Length 8 . 233
A.2 Length 16 . 233
A.3 Length 32 . 234
A.4 Length 64 . 235
A.5 Length 128 . 238

Bibliography 247

Index 257

Preface

The first edition of this book was the result of hundreds of emails from all over the
world with questions on the theory and applications of error correcting coding (ECC),
from colleagues from both academia and industry. Most of the questions have been from
engineers and computer scientists needing to select, implement or simulate a particular
coding scheme. The questions were sparked by a popular web site1 initially set up at Imai
Laboratory at the Institute of Industrial Science, University of Tokyo, in early 1995. An
important aspect of this text is the absence of theorems and proofs. The approach is to
teach basic concepts using simple examples. References to theoretical developments are
made when needed. This book is intended to be a reference guide to error correcting
coding techniques for graduate students and professionals interested in learning the basic
techniques and applications of ECC. Computer programs that implement the basic encoding
and decoding algorithms of practical coding schemes are available on a companion web
site. This site is referred to as the “ECC web site” throughout the text and is located at:

http://the-art-of-ecc.com

This book is unique in that it introduces the basic concepts of error correcting codes with
simple illustrative examples. Computer programs written in C language and new Matlab2

scripts are available on the ECC web site and help illustrate the implementation of basic
encoding and decoding algorithms of important coding schemes, such as convolutional
codes, Hamming codes, BCH codes, Reed–Solomon codes and turbo codes, and their
application in digital communication systems. There is a rich theory of ECC that will be
touched upon, by referring to the appropriate material. There are many good books dealing
with the theory of ECC, for example, references (Lin and Costello 2005), (MacWilliams
and Sloane 1977), (Peterson and Weldon 1972), (Blahut 1984), (Bossert 1999), (Wicker
1995), just to cite a few. Readers may wish to consult them before, during or after going
through the material in this book. Each chapter describes, using simple and easy-to-follow
numerical examples, the basic concepts of a particular coding or decoding scheme, rather
than going into the detail of the theory behind it. Basic analysis tools are given to help in
the assessment of the error performance of a particular ECC scheme.

The book deals with the art of error correcting coding, in the sense that it addresses the
need for selecting, implementing and simulating algorithms for encoding and decoding of
codes for error correction and detection. New features of the second edition include addi-
tional in-text examples as well as new problems at the end of each chapter, intended for
use in a course on ECC. A comprehensive bibliography is included, for readers who wish

1http://www.eccpage.com
2Matlab is a registered trademark of The Mathworks, Inc.

x PREFACE

to learn more about the beautiful theory that makes it all work. The book is organized as
follows. In Chapter 1, the basic concepts of error correction and coding and decoding tech-
niques are introduced. Chapter 2 deals with important and simple-to-understand families of
codes, such as the Hamming, Golay and Reed–Muller codes. In Chapter 3, cyclic codes and
the important family of BCH codes are described. Finite-field arithmetic is introduced and
basic decoding algorithms, such as Berlekamp–Massey, Euclidean and PGZ, are described,
and easy to follow examples are given to understand their operation. Chapter 4 deals with
Reed–Solomon codes and errors-and-erasures decoding. A comprehensive treatment of the
available algorithms is given, along with examples of their operation. In Chapter 5, binary
convolutional codes are introduced. Focus in this chapter is on the understanding of the
basic structure of these codes, along with a basic explanation of the Viterbi algorithm with
Hamming metrics. Important implementation issues are discussed. In Chapter 6, several
techniques for modifying a single code or combining several codes are given and illus-
trated by simple examples. Chapter 7 deals with soft-decision decoding algorithms, some
of which have not yet received attention in the literature, such as a soft-output ordered-
statistics decoding algorithm. Moreover, Chapter 8 presents a unique treatment of turbo
codes, both parallel concatenated and serial concatenated, and block product codes, from
a coding theoretical perspective. In the same chapter, low-density parity-check codes are
examined. For all these classes of codes, basic decoding algorithms are described and sim-
ple examples are given. Finally, Chapter 9 deals with powerful techniques that combine
error correcting coding with digital modulation, and several clever decoding techniques are
described.

I would like to express my gratitude to the following persons for inspiring this work.
Professor Francisco Garcia Ugalde, Universidad Nacional Autónoma de México, for intro-
ducing me to the exciting world of error correcting codes. Parts of this book are based on my
Bachelor’s thesis under his direction. Professor Edward Bertram, University of Hawaii, for
teaching me the basics of abstract algebra. Professor David Muñoz, Instituto Technológico
y de Estudios Superiores de Monterrey, México, for his kindness and support. Professors
Tadao Kasami, Hiroshima City University, Toru Fujiwara, University of Osaka, and Hideki
Imai, University of Tokyo, for supporting my stay as a visiting academic researcher in
Japan. Dan Luthi and Advait Mogre, LSI Logic Corporation, for many stimulating dis-
cussions and the opportunity to experience the process of putting ideas into silicon. Marc
P. C. Fossorier of University of Hawaii for his kind help. My former colleague Dr. Misa
Mihaljević of Sony Computer Science Laboratories, for pointing out connections between
decoding and cryptoanalysis. I would also like to thank wholeheartedly Dr. Mario Tokoro,
President of Sony Computer Science Laboratories, and Professor Ryuji Kohno, Yokohama
National University, for making it possible for me to have a fine environment in which to
write the first edition of this book. In particular, I want to express my eternal gratitude to
Professor Shu Lin of University of California at Davis. I am also grateful to the graduate
students of San Jose State University who took my course and helped in designing and
testing some of the problems in the second edition.

I dedicate this book to Richard W. Hamming, Claude Shannon and Gustave Solomon,
three extraordinary gentlemen who greatly impacted the way people live and work today.

Robert H. Morelos-Zaragoza
San Jose, California, USA

Foreword

In modern digital communication and storage systems design, information theory is becom-
ing increasingly important. The best example of this is the appearance and quick adoption
of turbo and block product codes in many practical satellite and wireless communication
systems. I am pleased to recommend this new book, authored by Dr. Robert Morelos-
Zaragoza, to those who are interested in error correcting codes or have to apply them.
The book introduces key concepts of error correcting coding (ECC) in a manner that is
easy to understand. The material is logically well structured and presented using simple
illustrative examples. This, together with the computer programs available on the web site,
is a novel approach to teaching the basic techniques used in the design and application of
error correcting codes.

One of the best features of the book is that it provides a natural introduction to the prin-
ciples and decoding techniques of turbo codes, LDPC codes, and product codes, from an
algebraic channel coding perspective. In this context, turbo codes are viewed as punctured
product codes. With simple examples, the underlying ideas and structures used in the con-
struction and iterative decoding of product codes are presented in an unparalleled manner.
The detailed treatment of various algebraic decoding techniques for the correction of errors
and erasures using Reed–Solomon codes is also worth a mention. On the applications of
ECC in combined channel coding and digital modulation, or coded modulation, the author
does a good job in introducing the basic principles that are used in the construction of
several important classes of coded modulation systems.

I believe that practitioner engineers and computer scientists will find this book to be
both a good learning tool and a valuable reference. The companion ECC web site is a
unique feature that is not found anywhere else. Incidentally, this web site was born in my
laboratory at the University of Tokyo in 1995, where Dr. Morelos-Zaragoza worked until
June of 1997 and did a very good job as my associate researcher, writing many high-quality
papers. Robert is polite, modest and hard-working, and is always friendly. In summary, I
strongly recommend The Art of Error Correcting Coding as an excellent introductory and
reference book on the principles and applications of error correcting codes.

Professor Hideki Imai
The University of Tokyo

Tokyo, Japan

The ECC web site

A companion web site for the book The Art of Error Correcting Coding has been set up
and is located permanently at the following URL address:

http://the-art-of-ecc.com

The ECC web site contains computer programs written in both C and Matlab3 to
implement algorithms for encoding and decoding of important families of error correcting
codes. New scripts to analyze the performance of error correcting coding schemes have
been added. Also, an instructor’s solutions manual is now available containing the answers
to the problems at the end of each chapter. The web site is maintained by the author,
to ensure that the domain name remains unchanged. An important advantage of having a
companion web site is that it allows the author to post update notes, new computer programs
and simulation results relevant to the contents of the book.

The computer programs in the ECC web site are organized in two ways: by topic and
by function. In the topical organization of the programs, the logical structure of the book
is closely followed, going from simple syndrome-based decoding of linear block codes
to more elaborate algebraic decoding over finite fields of BCH and Reed-Solomon codes,
passing through Viterbi decoding of convolutional codes and decoding of combinations and
constructions of codes, to iterative decoding of turbo and product codes, belief-propagation
decoding of low-density parity-check codes and applications in coded modulation tech-
niques. The functional organization of the programs in the ECC web site is intended for
readers who already know exactly what they are looking for. In particular, this classification
of the programs is followed with respect to the decoding algorithms.

3Matlab is a registered trademark of The Mathworks, Inc.

1

Introduction

The history of error correcting coding (ECC) started with the introduction of the Hamming
codes (Hamming 1974), at or about the same time as the seminal work of Shannon (1948).
Shortly after, Golay codes were invented (Golay 1974). These two first classes of codes
are optimal, and will be defined in a subsequent section.

Figure 1.1 shows the block diagram of a canonical digital communications/storage
system. This is the famous Figure 1 in most books on the theory of ECC and digital
communications (Benedetto and Biglieri 1999). The information source and destination
will include any source coding scheme matched to the nature of the information. The ECC
encoder takes as input the information symbols from the source and adds redundant sym-
bols to it, so that most of the errors – introduced in the process of modulating a signal,
transmitting it over a noisy medium and demodulating it – can be corrected (Massey 1984;
McEliece 1977; Moon 2005).

Usually, the channel is assumed to be such that samples of an additive noise process
are added to the modulated symbols (in their equivalent complex baseband representation).
The noise samples are assumed to be independent from the source symbols. This model is
relatively easy to track mathematically and includes additive white Gaussian noise (AWGN)
channels, flat Rayleigh fading channels, and binary symmetric channels (BSC). The case of
frequency-selective channels can also be included, as techniques such as spread-spectrum
and multicarrier modulation (MCM) effectively transform them into either AWGN channels
or flat Rayleigh fading channels.

At the receiver end, the ECC decoder utilizes the redundant symbols and their rela-
tionship with the information symbols in order to correct channel errors. In the case of
error detection, the ECC decoder can be best thought of as a reencoder of the received
information, followed by a check that the redundant symbols generated are the same as
those received.

In classical ECC theory, the combination of modulation, noisy medium and demod-
ulation was modeled as a discrete memoryless channel with input v̄ and output r̄ .
An example of this is binary transmission over an AWGN channel, which is modeled
as a BSC. This is illustrated in Figure 1.2. The BSC has a probability of channel
error p – or transition probability – equal to the probability of a bit error for binary

The Art of Error Correcting Coding Second Edition Robert H. Morelos-Zaragoza
 2006 John Wiley & Sons, Ltd

2 INTRODUCTION

_

_

_

_

_

~

Encoder

Decoder Demodulation

Noisy

Medium

Information

Source

Destination

Information

u v x

yru

Modulation

Modulation
CodedECC

Figure 1.1 A canonical digital communications system.

Encoder
u

u r

v
Modulator

AWGN

channel

Decoder Demodulator

^

Binary Symmetric Channel

v(t)

r(t)

(a)

(b)

vi

i

i

i

= 0

v = 1

r = 0

r = 1

p

p

1−p

1−p

Figure 1.2 A binary communication system over an AWGN channel and corresponding
BSC.

INTRODUCTION 3

signaling over an AWGN channel,

p = Q

(√
2Eb

N0

)
, (1.1)

where Eb/N0 is the energy-per-bit-to-noise ratio – also referred to as the bit signal-to-noise
ratio (SNR) or SNR per bit – and

Q(x) = 1√
2π

∫ ∞

x

e−z2/2 dz, (1.2)

is the Gaussian Q-function. In terms of the complementary error function, the Q-function
can be written as

Q(x) = 1

2
erfc

(
x√
2

)
. (1.3)

Equation (1.2) is useful in analytical derivations and Equation (1.3) is used in the compu-
tation with C programs or Matlab scripts of performance bounds and approximations.

Massey (1974) suggested considering ECC and modulation as a single entity, known
in modern literature as coded modulation. This approach provides a higher efficiency and
coding gain1 rather than the serial concatenation of ECC and modulation, by joint design of
codes and signal constellations. Several methods of combining coding and modulation are
covered in this book, including the following: trellis-coded modulation (TCM) (Ungerboeck
1982) and multilevel coded modulation (MCM) (Imai and Hirakawa 1977). In a coded mod-
ulation system, the (soft-decision) channel outputs are directly processed by the decoder.
In contrast, in a classical ECC system, the hard-decision bits from the demodulator are fed
to a binary decoder.

Codes can be combined in several ways. An example of serial concatenation (that is,
concatenation in the classical sense) is the following. For years, the most popular con-
catenated ECC scheme has been the combination of an outer Reed–Solomon (RS) code,
through intermediate interleaving, and an inner binary convolutional code. This scheme has
been used in numerous applications, ranging from space communications to digital broad-
casting of high definition television. The basic idea is that the soft-decision decoder of the
convolutional code produces bursts of errors that can be broken into smaller pieces by the
deinterleaving process and handled effectively by the RS decoder. RS codes are nonbinary
codes that work with symbols composed of several bits, and can deal with multiple bursts
of errors. Serial concatenation has the advantage that it requires two separate decoders,
one for the inner code and one for the outer code, instead of a single but very complex
decoder for the overall code.

This book examines these types of ECC systems. First, basic code constructions and
their decoding algorithms, in the Hamming space (that is, dealing with bits), are presented.
In the second part of the book, important soft-decision decoding (SDD) algorithms for
binary transmission are introduced. These algorithms work over the Euclidean space and
achieve a reduction in the required transmitted power per bit of at least 2 dB, compared
with Hamming-space (hard-decision) decoders. Several kinds of soft-decision decoders are

1Coding gain is defined as the difference in SNR between the coded system and an uncoded system with the
same bit rate.

4 INTRODUCTION

considered, with attention given to their algorithmic aspects (the “how” they work), rather
than to their theoretical aspects (the ‘why’ they work). Finally, combinations of codes and
interleaving for iterative decoding and of coding and modulation for bandwidth-efficient
transmission are the topic of the last part of the book.

1.1 Error correcting coding: Basic concepts

All error correcting codes are based on the same basic principle: redundancy is added to
information in order to correct any errors that may occur in the process of transmission or
storage. In a basic (and practical) form, redundant symbols are appended to information
symbols to obtain a coded sequence or code word. For the purpose of illustration, a code
word obtained by encoding with a block code is shown in Figure 1.3. Such an encoding
is said to be systematic. Systematic encoding means that the information symbols always
appear in the first (leftmost) k positions of a code word. The remaining (rightmost) n − k

symbols in a code word are a function of the information symbols, and provide redun-
dancy that can be used for error correction and/or detection purposes2. The set of all code
sequences is called an error correcting code, and will henceforth be denoted by C.

1.1.1 Block codes and convolutional codes

According to the manner in which redundancy is added to messages, ECC can be divided
into two classes: block and convolutional. Both types of coding schemes have found practi-
cal applications. Historically, convolutional codes have been preferred, apparently because
of the availability of the soft-decision Viterbi decoding algorithm and the belief over many
years that block codes could not be efficiently decoded with soft-decisions. However, recent
developments in the theory and design of SDD algorithms for linear block codes have
helped to dispel this belief. Moreover, the best ECC known to date remain block codes
(long irregular low-density parity-check (LDPC) codes).

Block codes process the information on a block-by-block basis, treating each block of
information bits independently from others. In other words, block coding is a memoryless
operation, in the sense that code words are independent from each other. In contrast, the
output of a convolutional encoder depends not only on the current input information, but
also on previous inputs or outputs, either on a block-by-block or a bit-by-bit basis. For
simplicity of exposition, we begin with a study of the structural properties of block codes.
Many of these properties are common to both types of codes.

It should be noted that block codes have, in fact, memory, when encoding is thought of
as a bit-by-bit process and within a code word. Most recently, the difference between block

Information

k symbols

Redundancy

n-k symbols

n symbols

Figure 1.3 A systematic block encoding for error correction.

2Note: Without loss of generality, the order of the information and redundancy can be reversed (i.e., the first
n − k positions in a code word for redundant symbols and the remaining k positions for information symbols).

INTRODUCTION 5

and convolutional codes has become less and less well defined, especially after recent
advances in the understanding of the trellis structure of block codes, and the tail-biting
structure of some convolutional codes. Indeed, colleagues working on convolutional codes
sometimes refer to block codes as “codes with time-varying trellis structure.” Similarly,
researchers working with block codes may consider convolutional codes as “codes with a
regular trellis structure.”

1.1.2 Hamming distance, Hamming spheres and error
correcting capability

Consider an error correcting code C with binary elements. As mentioned above, block codes
are considered for simplicity of exposition. In order to achieve error correcting capabilities,
not all the 2n possible binary vectors of length n are allowed to be transmitted. Instead, C

is a subset of the n-dimensional binary vector space V2 = {0, 1}n, such that its elements
are as far apart as possible.

Consider two vectors x̄1 = (x1,0, x1,1, . . . , x1,n−1) and x̄2 = (x2,0, x2,1, . . . , x2,n−1) in
V2. Then the Hamming distance between x̄1 and x̄2, denoted dH (x̄1, x̄2), is defined as the
number of elements in which the vectors differ,

dH (x̄1, x̄2)
�= ∣∣ {i : x1,i �= x2,i , 0 ≤ i < n

} ∣∣ =
n−1∑
i=0

x1,i ⊕ x2,i , (1.4)

where |A| denotes the number of elements in (or the cardinality of) a set A and ⊕ denotes
addition modulo-2 (exclusive-OR).

Given a code C, its minimum Hamming distance, dmin, is defined as the minimum
Hamming distance among all possible distinct pairs of code words in C,

dmin = min
v̄1,v̄2∈C

{dH (v̄1, v̄2)|v̄1 �= v̄2} . (1.5)

Throughout the book, the array (n, k, dmin) is used to denote the parameters of a block
code of length n, that encodes messages of length k bits and has a minimum Hamming
distance dmin. The assumption is made that the size of the code is |C| = 2k .

Example 1.1.1 The simplest error correcting code is a binary repetition code of length 3.
It repeats each bit three times, so that a “0” is encoded onto the vector (000) and a “1”
onto the vector (111). Since the two code words differ in all three positions, the Hamming
distance between them is equal to three. Figure 1.4 is a pictorial representation of this
code. The three-dimensional binary space corresponds to the set of 23 = 8 vertices of the
three-dimensional unit-volume cube. The Hamming distance between code words (000) and
(111) equals the number of edges in a path between them. This is equivalent to the number
of coordinates that one needs to change to convert (000) into (111), or vice versa. Thus
dH ((000), (111)) = 3. There are only two code words in this case, as a result, dmin = 3.

The binary vector space V2 is also known as a Hamming space. Let v̄ denote a code
word of an error correcting code C. A Hamming sphere St (v̄), of radius t and centered
around v̄, is the set of vectors in V2 at a distance less than or equal to t from the center v̄,

St (v̄) = {x̄ ∈ V2|dH (x̄, v̄) ≤ t} . (1.6)

6 INTRODUCTION

x
x

x

0

1

2

Figure 1.4 A (3,1,3) repetition code in a three-dimensional binary vector space.

Note that the size of (or the number of code words in) St (v̄) is given by the following
expression ∣∣St (v̄)

∣∣ =
t∑

i=0

(
n

i

)
. (1.7)

Example 1.1.2 Figure 1.5 shows the Hamming spheres of radius t = 1 around the code
words of the (3, 1, 3) binary repetition code.

Note that the Hamming spheres for this code are disjoint, that is, there is no vector in
V2 (or vertex in the unit-volume three-dimensional cube) that belongs to both S1(000) and
S1(111). As a result, if there is a change in any one position of a code word v̄, then the
resulting vector will still lie inside a Hamming sphere centered at v̄. This concept is the
basis of understanding and defining the error correcting capability of a code C.

The error correcting capability, t , of a code C is the largest radius of Hamming spheres
St (v̄) around all the code words v̄ ∈ C, such that for all different pairs v̄i , v̄j ∈ C, the
corresponding Hamming spheres are disjoint, that is,

t = max
v̄i ,v̄j∈C

{
�|S�(v̄i) ∩ S�(v̄j) = ∅, v̄i �= v̄j

}
. (1.8)

In terms of the minimum distance of C, dmin, an equivalent and more common definition
is

t = 	(dmin − 1)/2
, (1.9)

where 	x
 denotes the largest integer less than or equal to x.

x
x

x

0

1

2

x
x

x

0

1

2

S1 (111)S1 (000)

Figure 1.5 Hamming spheres of radius t = 1 around the code words of the (3,1,3) binary
repetition code.

INTRODUCTION 7

Note that in order to compute the minimum distance dmin of a block code C, in accor-
dance with Equation (1.5), a total of 2k−1(2k − 1) distances between distinct pairs of code
words are needed. This is practically impossible even for codes of relatively modest size,
say, k = 50 (for which approximately 299 code word pairs need to be examined). One of
the advantages of linear block codes is that the computation of dmin requires to know the
Hamming weight of all 2k − 1 nonzero code words.

1.2 Linear block codes

As mentioned above, finding a good code means finding a subset of V2 with elements as
far apart as possible. This is very difficult. In addition, even when such a set is found, there
is still the problem of how to assign code words to information messages.

Linear codes are vector subspaces of V2. This means that encoding can be accomplished
by matrix multiplications. In terms of digital circuitry, simple encoders can be built using
exclusive-OR gates, AND gates and D flip-flops. In this chapter, the binary vector space
operations of sum and multiplication are meant to be the output of exclusive-OR (or modulo
2 addition) and AND gates, respectively. The tables of addition and multiplication for the
binary elements in {0, 1} are as follows:

a b a + b a · b

0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

which are seen to correspond to the outputs of a binary exclusive-OR gate and an AND
gate, respectively.

1.2.1 Generator and parity-check matrices

Let C denote a binary linear (n, k, dmin) code. Now, C is a k-dimensional vector subspace,
and therefore it has a basis, say {v̄0, v̄1, . . . , v̄k−1}, such that any code word v̄ ∈ C can be
represented as a linear combination of the elements on the basis of:

v̄ = u0v̄0 + u1v̄1 + · · · + uk−1v̄k−1, (1.10)

where ui ∈ {0, 1}, 1 ≤ i < k. Equation (1.10) can be written in terms of a generator matrix
G and a message vector, ū = (u0, u1, . . . , uk−1), as follows:

v̄ = ūG, (1.11)

where

G =




v̄0

v̄1
...

v̄k−1


 =




v0,0 v0,1 · · · v0,n−1

v1,0 v1,1 · · · v1,n−1
...

...
. . .

...

vk−1,0 vk−1,1 · · · vk−1,n−1


 . (1.12)

8 INTRODUCTION

Due to the fact that C is a k-dimensional vector space in V2, there is an (n − k)-dimensional
dual space C�, generated by the rows of a matrix H , called the parity-check matrix, such
that GH� = 0, where H� denotes the transpose of H . In particular, note that for any code
word v̄ ∈ C,

v̄H� = 0̄. (1.13)

Equation (1.13) is of fundamental importance in decoding of linear codes, as will be shown
in section 1.3.2.

A linear code C⊥ that is generated by H is a binary linear (n, n − k, d⊥
min) code, called

the dual code of C.

1.2.2 The weight is the distance

As mentioned in section 1.1.2, a nice feature of linear codes is that computing the minimum
distance of the code amounts to computing the minimum Hamming weight of its nonzero
code words. In this section, this fact is shown. The Hamming weight, wtH (x̄), of a vector
x̄ = (x0, x1, . . . , xn−1) ∈ V2 is defined as the number of nonzero elements in x̄, which can
be expressed as the sum

wtH (x̄) =
n−1∑
i=0

xi . (1.14)

From the definition of the Hamming distance, it is easy to see that wtH (x̄) = dH (x̄, 0̄). For
a binary linear code C, note that the distance

dH (v̄1, v̄2) = dH (v̄1 + v̄2, 0̄) = wtH (v̄1 + v̄2) = wtH (v̄3), (1.15)

where, by linearity, v̄1 + v̄2 = v̄3 ∈ C. As a consequence, the minimum distance of C can
be computed by finding the minimum Hamming weight among the 2k − 1 nonzero code
words. This is simpler than the brute force search among all the pairs of code words,
although still a considerable task even for codes of modest size (or dimension k).

1.3 Encoding and decoding of linear block codes

1.3.1 Encoding with G and H

Equation (1.11) gives an encoding rule for linear block codes that can be implemented in
a straightforward way. If encoding is to be systematic, then the generator matrix G of a
linear block (n, k, dmin) code C can be brought to a systematic form, Gsys, by elementary
row operations and/or column permutations. Gsys is composed of two submatrices: The
k-by-k identity matrix, denoted Ik , and a k-by-(n − k) parity submatrix P , such that

Gsys = (
Ik|P

)
, (1.16)

where

P =




p0,0 p0,1 · · · p0,n−k−1

p1,0 p1,1 · · · p1,n−k−1
...

...
. . .

...

pk−1,0 pk−1,1 · · · pk−1,n−k−1


 . (1.17)

INTRODUCTION 9

Since GH� = 0k,n−k, where 0k,n−k denotes the k-by-(n − k) all-zero matrix, it follows that
the systematic form, Hsys, of the parity-check matrix is

Hsys = (
P �|In−k

)
. (1.18)

Example 1.3.1 Consider a binary linear (4, 2, 2) code with generator matrix

G =
(

1 1 1 0
0 0 1 1

)
.

To bring G into systematic form, permute (exchange) the second and fourth columns and
obtain

Gsys =
(

1 0 1 1
0 1 1 0

)
.

Thus, the parity-check submatrix is given by

P =
(

1 1
1 0

)
.

It is interesting to note that in this case, the relation P = P � holds3. From (1.18) it follows
that the systematic form of the parity-check matrix is

Hsys =
(

1 1 1 0
1 0 0 1

)
.

In the following, let ū = (u0, u1, . . . , uk−1) denote an information message to be
encoded and v̄ = (v0, v1, . . . , vn−1) the corresponding code word in C.

If the parameters of C are such that k < (n − k), or equivalently the code rate
k/n < 1/2, then encoding with the generator matrix is the most economical. The cost
considered here is in terms of binary operations. In such a case

v̄ = ūGsys = (ū, v̄p), (1.19)

where v̄p = ūP = (vk, vk+1, . . . , vn−1) represents the parity-check (redundant) part of the
code word.

However, if k > (n − k), or k/n > 1/2, then alternative encoding with the parity-check
matrix H requires less number of computations. In this case, we have encoding based on
Equation (1.13), (ū, v̄p)H� = 0, such that the (n − k) parity-check positions vk, vk+1, . . .,
vn−1 are obtained as follows:

vj = u0p0,j + u1p1,j + · · · + uk−1pk−1,j , k ≤ j < n. (1.20)

Stated in other terms, the systematic form of a parity-check matrix of a linear code has
as entries of its rows the coefficients of the parity-check equations, from which the values
of the redundant positions are obtained. This fact will be used when LDPC codes are
presented, in Section 8.3.

3In this case, the code in question is referred to as a self-dual code. See also Section 2.2.3.

10 INTRODUCTION

Example 1.3.2 Consider the binary linear (4, 2, 2) code from Example 1.3.1. Let messages
and code words be denoted by ū = (u0, u1) and v̄ = (v0, v1, v2, v3), respectively. From
(1.20) it follows that

v2 = u0 + u1

v3 = u0

The correspondence between the 22 = 4 two-bit messages and code words is as follows:

(00)
→ (0000)

(01)
→ (0110)

(10)
→ (1011)

(11)
→ (1101) (1.21)

1.3.2 Standard array decoding

In this section, a decoding procedure is presented that finds the closest code word v̄ to
a received noisy word r̄ = v̄ + ē. The error vector ē ∈ {0, 1}n is produced by a BSC, as
depicted in Figure 1.6. It is assumed that the crossover probability (or BSC parameter) p

is such that p < 1/2.
As shown in Table 1.1 a standard array (Slepian 1956) for a binary linear (n, k, dmin)

code C is a table of all possible received vectors r̄ arranged in such a way that the
closest code word v̄ to r̄ can be read out. The standard array contains 2n−k rows and 2k + 1
columns. The entries of the rightmost 2k columns of the array contain all the vectors in
V2 = {0, 1}n.

In order to describe the decoding procedure, the concept of syndrome is needed. The
syndrome of a word in V2 is defined from Equation (1.13) as

s̄ = r̄H�, (1.22)

0

1

0

1

Sent Received

1-p

p

p

1-p

Figure 1.6 A binary symmetric channel model.

Table 1.1 The standard array of a binary linear block code.

s̄ ū0 = 0̄ ū2 · · · ūk−1

0̄ v̄0 = 0̄ v̄1 · · · v̄2k−1
s̄1 ē1 ē1 + v̄1 · · · ē1 + v̄2k−1
s̄2 ē2 ē2 + v̄1 · · · ē2 + v̄2k−1
...

...
...

. . .
...

s̄2n−k−1 ē2n−k−1 ē2n−k−1 + v̄1 · · · ē2n−k−1 + v̄2k−1

INTRODUCTION 11

where H is the parity-check matrix of C. That s̄ is indeed a set of symptoms that indicate
errors is shown as follows. Suppose that a code word v̄ ∈ C is transmitted over a BSC and
received as r̄ = v̄ + ē. The syndrome of r̄ is

s̄ = r̄H� = (v̄ + ē)H� = ēH�, (1.23)

where to obtain the last equality Equation (1.13) has been used. Therefore, the computation
of the syndrome can be thought of as a linear transformation of an error vector.

Standard array construction procedure

1. As the first row, in the positions corresponding to the 2k rightmost columns, enter all
the code words of C, beginning with the all-zero code word in the leftmost position.
In the position corresponding to the first column, enter the all-zero syndrome. Let
j = 0.

2. Let j = j + 1. Find the smallest Hamming weight word ēj in V2, not in C, and
not included in previous rows. The corresponding syndrome s̄j = ējH

� is the first
(rightmost) entry of the row. The 2k remaining entries in that row are obtained by
adding ēj to all the entries in the first row (the code words of C).

3. Repeat the previous step until all vectors in V2 are included in the array. Equivalently,
let j = j + 1. If j < 2n−k, then repeat previous step, otherwise stop.

Example 1.3.3 The standard array of the binary linear (4, 2, 2) code is the following:

s̄ 00 01 10 11

00 0000 0110 1011 1101
11 1000 1110 0011 0101
10 0100 0010 1111 1001
01 0001 0111 1010 1100

Decoding with the standard array proceeds as follows. Let r̄ = v̄ + ē be the received
word. Find the word in the array and output as decoded message ū the header of the column
in which r̄ lies. Conceptually, this process requires storing the entire array and matching
the received word to an entry in the array.

However, a simplified decoding procedure can be found by noticing that every row in
the array has the same syndrome. Each row of the array, denoted Rowi , with 0 ≤ i < 2n−k ,
a coset of C, is such that Rowi = {

ēi + v̄
∣∣v̄ ∈ C

}
. The vector ēi is known as the coset

leader.
The syndrome of the elements in the i-th row is given by

s̄i = (ēi + v̄)H� = ēiH
�, (1.24)

which is independent of the particular choice of v̄ ∈ C. The simplified decoding procedure
is: compute the syndrome of the received word r̄ = ēi′ + v̄,

s̄i′ = (ēi′ + v̄) H� = ēi′H
�,

12 INTRODUCTION

and find s̄i′ in the leftmost column of the standard array. Then read out the value of ēi′ ,
from the second column, and add it to the received word to obtain the closest code word
v̄′ ∈ C to r̄ . Therefore instead of n × 2n bits, standard array decoding can be implemented
with an array of n × 2n−k bits.

Example 1.3.4 Consider again the binary linear (4, 2, 2) code from Example 1.3.1. Suppose
that the code word v̄ = (0110) is transmitted and that r̄ = (0010) is received. Then the
syndrome is

s̄ = r̄H� = (0010)




1 1
1 0
1 0
0 1


 = (

1 0
)
.

From the standard array of the code, the corresponding coset leader ē′ = (0100) is found,
and therefore, the estimated code word is v̄′ = r̄ + ē′ = (0010) + (0100) = (0110). One
error has been corrected! This may sound strange, since the minimum distance of the code
is only two, and thus according to (1.9) single error, correction is impossible. However, this
can be explained by looking again at the standard array of this code (Example 1.3.3 above).
Note that the third row of the array contains two distinct binary vectors of weight one. This
means that only three out of a total of four single-error patterns can be corrected. The error
above is one of those correctable single-error patterns.

It turns out that this (4, 2, 2) code is the simplest instance of a linear Linear unequal
error protection (LUEP) code (van Gils 1983; Wolf and Viterbi 1996). This LUEP code has
a separation vector s̄ = (3, 2), which means that the minimum distance between any two
code words for which the first message bit differs is at least three, and that for the second
message bit is at least two.

If encoding is systematic, then the above procedure gives the estimated message ū′ in
the first k positions of v̄′. This is a plausible reason for having a systematic encoding.

1.3.3 Hamming spheres, decoding regions and the standard array

The standard array is also a convenient way of understanding the concept of Hamming
sphere and error correcting capability of a linear code C, introduced in Section 1.1.2.

By construction, note that the 2k rightmost columns of the standard array, denoted Colj ,
for 1 ≤ j ≤ 2k , contain a code word v̄j ∈ C and a set of 2n−k − 1 words at the smallest
Hamming distance from v̄j , that is,

Colj = {
v̄j + ēi

∣∣ēi ∈ Rowi , 0 ≤ i < 2n−k
}
. (1.25)

The sets Colj are known as the decoding regions, in the Hamming space, around each code
word v̄j ∈ C, for 0 ≤ j ≤ 2k − 1. This is to say that if code word v̄j ∈ C is transmitted
over a BSC and the received word r̄ lies in the set Colj , then it will be successfully decoded
into v̄j .

Hamming bound

The set Colj and the error correcting capability t of code C are related by the Hamming
sphere St (v̄j): A binary linear (n, k, dmin) code C has decoding regions Colj that properly
contain Hamming spheres St (v̄j), that is, St (v̄j) ⊆ Colj .

