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Foreword

Heterogeneity of angiogenesis in disease: need for diverse approaches to study
blood vessel growth and regression

The growth of new blood vessels from existing vessels, familiar to most as

angiogenesis or neovascularization, has acquired an importance that would have

been difficult to imagine a few years ago. The proven efficacy of recently approved

drugs that block angiogenesis in tumours and age-related macular degeneration has

heightened the visibility and relevance of research on blood vessel growth and

regression. The promise of factors that stimulate functional revascularization of

organs, starved of their blood supply by ischaemic vascular disease or other

conditions, is also increasing. Success in the clinic has shifted into high gear the

search for even more efficacious drugs. How can these agents be identified, screened

and tested? How can their mechanism of action be determined? The seemingly ideal

approach for evaluating agents would be through pre-clinical models of the targeted

diseases. However, few pre-clinical models faithfully mimic human disease. There-

fore, the search continues for faster, easier, more relevant ways of assessing agents

that stimulate or inhibit angiogenesis.

The use of ‘angiogenesis’ as a generic term to describe vascular proliferation

suggests a single process. Yet, angiogenesis occurs under many different condi-

tions. Blood vessel growth is driven by multiple factors and occurs in varied

settings. Are newly formed blood vessels the same regardless of the driving

stimulus and environmental conditions in which they grow? Does each condition

produce a homogeneous population of new blood vessels? Is angiogenesis in

tumours the same as in eye disease, inflammation, or wound healing?

The answer to these questions is clearly, no. Examples of the heterogeneity of

new blood vessels are accumulating at an increasing rate. The amount of

angiogenesis driven by vascular endothelial growth factor (VEGF) is dose-

dependent, and the phenotype of the new blood vessels is governed by local

concentration. Greater concentrations of VEGF produce more abundant blood

vessels and exaggerate vessel abnormalities. Lower concentrations of VEGF drive

less angiogenesis and promote a more normal vessel phenotype. Most blood

vessels in tumours have multiple, sometimes bizarre, abnormalities, and the types

and severity of the abnormalities vary within each tumour and among tumours of

different varieties. Blood vessels at sites of inflammation are leaky because tiny

gaps form reversibly between endothelial cells, just as they do after a mosquito

bite. In contrast, tumour vessels leak because of structural defects in the



endothelium, which may have multiple layers in some regions and an incomplete

monolayer in others. Unlike new or remodelled blood vessels at sites of

inflammation, which support high blood flow and robust influx of inflammatory

cells, tumour vessel abnormalities may impair blood flow and repel entry of

immune cells. When local blood flow in tumours is less than required for cell

viability, necrosis results. Loss of blood flow to necrotic regions of tumour may

redirect flow to adjacent viable regions that then grow even faster.

An important measure of blood vessel diversity stems from the chamaeleon-like

characteristics of endothelial cells and mural cells (pericytes or smooth muscle

cells), the two cell types that form the vasculature. In normal blood vessels, both

types of cells adapt structurally and functionally to their environment to provide

organ-specific features, such as impermeability of the blood–brain barrier, lym-

phocyte trafficking of high-endothelial venules, and efficient plasma filtration of

renal glomeruli. The same chamaeleon-like, adaptive properties of endothelial

cells and mural cells underlie the growth, remodelling, and heterogeneity of blood

vessels at sites of disease.

Blood vessels that grow or undergo remodelling in disease reflect the integrated

action of multiple angiogenic growth factors and inhibitors, substances that augment

or limit blood flow, changing composition of the extracellular matrix, and other

dynamic environmental conditions. Because of the diversity of conditions that

influence angiogenesis in health and disease, newly formed blood vessels are

heterogeneous. As a result, no single in vitro assay or in vivo model can simulate

all forms of angiogenesis. Only a broad range of experimental models can mimic

the spectrum of conditions that new blood vessels experience under different

pathological circumstances.

The 19 chapters of this book review the attributes and limitations of in vitro

assays, in vivo models and clinical settings for studying angiogenesis. Varied

approaches are used to observe, characterize, compare, stimulate or block

angiogenesis under different conditions. In vitro methods make it possible to

examine endothelial cell proliferation, migration and tube formation, as well as to

investigate effects of fluid shear stress and flow, membrane and intracellular

signalling events, and – in co-culture experiments – interactions of mural cells

with endothelial cells. Powerful in vivo models have been developed to study

angiogenesis in normal and disease settings. Models range from the chick

chorioallantoic membrane, mammalian cornea, implanted Matrigel plugs, sub-

cutaneous air sacs and transgenic mouse models of cancer to real-time viewing of

sprouting endothelial cells in transparent developing zebrafish or in tumours

growing in subcutaneous windowed chambers. In vivo models also provide

approaches for assessing the contribution of bone marrow-derived cells to growing

blood vessels. In concert with clues from pre-clinical models, clinical research is

searching for better ways to monitor the action of angiogenesis inhibitors or

promoters in patients.

Given the momentum of research on angiogenesis and the broad-based devel-

opment of agents to manipulate blood vessel growth, the future is exciting and

xii FOREWORD



promising. But in moving forward, an ongoing challenge is to determine how to

link properties of angiogenic blood vessels identified in pre-clinical assays to those

in human disease. VEGF and multiple other factors clearly stimulate angiogenesis

in the cornea and Matrigel plugs, but how do the new vessels compare with those

at sites of angiogenesis in human cancer? Which assays provide the most mean-

ingful information about angiogenesis in cancer, eye disease or inflammation?

Which assays give a reliable fingerprint of blood vessel growth and remodelling

driven in vivo by VEGF, PDGF, angiopoietins, ephrins, sphingolipids or chemo-

kines, alone or in various combinations? Can data from in vitro or in vivo assays

predict response to angiogenesis inhibitors in human disease? What biomarkers

identified in pre-clinical assays can serve as meaningful readouts for actions of

angiogenesis-related drugs in humans?

Better understanding of the process of angiogenesis and properties of newly

formed blood vessels will lead to even more informative assays and biomarkers.

These in turn will help in screening and evaluating of new, more efficacious drugs

and other novel tools in vascular biology. Together, these advances will further the

exploitation of vascular abnormalities as targets for drug delivery and the control

of blood vessel growth and regression in health and disease.

Donald M. McDonald
San Francisco, California, USA

4 May 2006
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Preface

Angiogenesis, the development of new blood vessels from the existing vascu-

lature, is essential in normal developmental processes and in numerous patholo-

gical conditions such as diabetic retinopathy, rheumatoid arthritis, psoriasis and

cancer. This process is a multi-factorial and highly structured sequence of cellular

events comprising vascular initiation, formation, maturation, remodelling and

regression which, under physiological conditions, are controlled and modulated to

meet the tissue requirements. However, under pathological conditions this tight

regulation is lost. As angiogenesis is a key player in over 70 different disease

states there is a need to study this process in great detail for the development of

future therapeutic strategies.

One of the most important technical challenges in studies of angiogenesis

is selection of the appropriate assay. The ideal angiogenesis assay would be

fast, easy, robust, with reliable readouts, automated computational analysis,

multi-parameter assessment, including positive and negative controls and

should relate directly to results seen in the clinic. Sadly, such a ’gold-standard’

angiogenesis assay has yet to be developed. Endothelial cells whose migration,

proliferation, differentiation and structural rearrangement is central to the

angiogenesis process are commonly studied in in vitro assays, but they are

not the only cell type involved in angiogenesis. Therefore the most translatable

assays would include the supporting cells (e.g. pericytes, smooth muscle cells

and fibroblasts), the extracellular matrix and/or basement membrane and the

circulating blood. However, no in vitro assays exist which fully model all the

components of this complex process. While in vivo assays have the components

present, these are limited by species used, organ sites and lack of quantitative

analysis.

Due to these technical challenges and the variety of assays being used

between different laboratories, there is a need to highlight the details and limita-

tions of each assay currently in use. In this book, therefore, we have invited

experts in the use of a diverse range of assays to outline the key components and

give a critical appraisal of the strengths and weaknesses of these assays. This

book aims to provide the information to enable researchers in this field to make

informed choices about the type of assays to use for their research and to recognise

the limitations of these assays. As anti-angiogenic agents are now in clinical

use a critical analysis of the biological end-points currently being used in clinical



trials to assess the efficacy of these drugs is included and the book finishes with a

discussion of the direction future studies may take.

Carolyn A. Staton
Claire Lewis
Roy Bicknell
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1
Endothelial cell biology

Femke Hillen, Veerle Melotte, Judy R. van Beijnum and Arjan W. Griffioen

Abstract

Vascular endothelial cells are organized as a thin layer on the interior surface of all

vessels and are known to function in a variety of important physiological processes.

The interactions of endothelial cells with other cells and with the extracellular matrix

are crucial in endothelial cell functions such as the initiation of coagulation,

leukocyte adhesion and the selection of a leukocyte infiltrate, the angiogenesis

cascade, and transport of molecules through the vessel wall by active or passive

mechanisms. This chapter highlights these processes and describes endothelial cells,

their heterogeneity, various isolation techniques and their use in in vitro models.

Keywords

endothelial cell morphology; endothelial cell functions; angiogenesis; isolation and

culture; heterogeneity

1.1 Introduction

In 1661, Marcello Malpighi described for the first time the existence of capillaries

in the mesenterium and the lung of a frog. The anatomical research of blood

vessels was greatly advanced and stimulated by contributions of the pioneers in the

development of microscopy, Antonie von Leeuwenhoek (1632–1723) and Jan

Swammerdam (1637–1680), who developed with Friedrich Ruysch (1638–1731)

the injection techniques for coloured solutions into the vessel lumen. Friedrich

Gustav Jacob Henle introduced the expression ‘epithelium’ in 1837. Between 1841

and 1859, Henle, von Koelliker and Frey showed that the capillaries have their

own wall, like a structureless skin with nuclei. A forceful discussion started about

the origin, development and functions of endothelial cells, lasting until around
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1930. For many years the endothelium was thought of as an inert single layer of

cells that passively allowed the passage of water and small molecules across the

vessel wall. In the 1920s and 1930s a new area began when Lewis and Shibuya

published their first results on cultivation of endothelial cells. Between 1884 and

1950, 135 papers were published dealing with various cultivation techniques for

endothelial cells (Thilo-Korner and Heinrich, 1983).

1.2 Morphology of the endothelium

As a monolayer lining the entire circulatory system, the endothelial cell surface

consists of about 1 to 6 � 1013 cells and weighs approximately 1 kg (Cines et al.,

1998; Sumpio et al., 2002). The whole circulatory system has a common basic

structure and consists of three different layers: the tunica intima constitutes

endothelium supported by a basement membrane and delicate collagenous tissue,

an intermediate muscular layer which is named the tunica media and an outer

supporting tissue layer called the tunica adventitia (Gallagher, 2005).

It is currently widely recognized that endothelial cells show a remarkable

heterogeneity along the vascular tree, as a biological adaptation to local needs.

This heterogeneity is most obvious at the morphological level. Based on the

endothelium, vessel phenotype can be classified as continuous, fenestrated or

discontinuous. These phenotypes relate to the differences in permeability displayed

by various vascular beds. In continuous capillaries endothelial cells line the

full surface of the vascular wall. This vessel type is found in most tissues. In

fenestrated capillaries the endothelial cells have small openings, called fenestrae,

about 80–100 nm in diameter. Their permeability is much greater than that of

continuous endothelium type capillaries and they are found in the small intestine,

endocrine glands and the kidney. Fenestrae are sheltered by a small, non-

membranous, permeable diaphragm, and allow the rapid passage of macromole-

cules. The basement membrane of endothelial cells in fenestrated vessels is

continuous over the fenestrae. Discontinuous capillaries, also called sinusoids,

have a large lumen, many fenestrations with no diaphragm and a discontinuous or

even absent basal lamina. Such vessels are found in the liver, spleen, lymph nodes,

bone marrow and some endocrine glands (Cleaver and Melton, 2003; Ghitescu and

Robert, 2002). Broad modulations even exist within each type of endothelium, for

example, within the continuous endothelium, the extremes are the brain capillaries

(with very few plasmalemmal vesicles) and the heart capillaries (rich in such

vesicles) (Renkin, 1988). Beside this traditional classification, other distinguishing

features are used, such as endothelial cell size or shape, orientation with respect

to the direction of blood flow, complexity of inter-endothelial junctions, presence or

absence of diaphragms on fenestrations and of plasmalemmal bodies, and composi-

tion of the vessel wall (Cleaver and Melton, 2003; Ghitescu and Robert, 2002).

In addition to morphological heterogeneity, there is also functional heterogeneity of

endothelial cells, including roles in control of vasoconstriction and vasodilatation,
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blood coagulation and anticoagulation, fibrinolysis, leukocyte homing, acute inflam-

mation and wound healing, atherogenesis, antigen presentation and catabolism of

lipoproteins.. Structural and functional diversity of endothelial cells is, as might be

expected, the result of molecular differences between endothelial cell populations.

These differences have been investigated between various populations of endothelial

cells, such as those of arteries and veins (Lawson et al., 2001; Wang et al., 1998;

Zhong et al., 2000), large and small vessels (Muller et al., 2002) and normal and

tumour vessels (Carson-Walter et al., 2001; St Croix et al., 2000).

In the mature vascular system, the endothelium is supported by mural cells that

express characteristics specific to their localization. The arteries and veins are

surrounded by single or multiple layers of vascular smooth muscle cells, whereas

the smallest capillaries are partially covered by solitary cells referred to as

pericytes (Gerhardt and Betsholtz, 2003). Smooth muscle cells maintain the

integrity of the vessel and provide support for the endothelium. They control

blood flow by contracting or dilating in response to specific stimuli.

Smooth muscle cells synthesize the connective tissue matrix of the vessel wall,

which is composed of elastin, collagen and proteoglycans. Like endothelial cells,

smooth muscle cells show a very low level of proliferation in the normal artery but

proliferate in response to vessel injury.

Pericytes are associated with capillaries and post-capillary venules. They provide

structural support to the endothelial cells and mediate endothelial cell function.

Pericytes constitute a heterogeneous population of cells and their ontogeny is not

well understood. Differences in pericyte morphology and distribution among

vascular beds suggest tissue-specific functions. The number of pericytes also varies

among different tissues and among vessels at different sites. Pericytes are plastic and

have the capacity to differentiate into other mesenchymal cell types, such as smooth

muscle cells, fibroblasts and osteoblasts (Jung et al., 2002).

Arteries and veins

A well-known anatomical and physiological distinction between vessels is that of

arteries and veins (Carmeliet, 2003). Arterial vessels carry afferent circulation and

are exposed to the highest pressure and flow and are characteristically surrounded

by a thick medial layer consisting mostly of vascular smooth muscle cells. In

contrast, venous vessels carry efferent circulation with low pressure, have less

surrounding smooth muscle, and possess specialized structures, such as valves, to

ensure blood flow in a single direction. Although differences in fluid dynamics

within the circulation play an important role in determining the characteristic

structure of an artery or vein, recent evidence suggests that the identity of

endothelial cells lining these vessels is established before the onset of circulation

by genetic mechanisms during embryonic development (Lawson et al., 2002;

Wang et al., 1998). Several breakthrough discoveries have led to our current

understanding of the molecular difference between arterial and venous endothelial
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cells. In 1998, the group of Anderson showed that EphrinB2 and EphB4 were

specific markers for arterial and venous endothelial cells, respectively (Sato,

2003), which showed for the first time that the arterial–venous distinction had a

genetic basis. Consequently, in the cardiovascular system, EphrinB2 expression is

restricted to the arteries, smooth muscle cells, pericytes and mesenchyme that

surround sites of vascular remodelling. EphB4 is expressed predominantly on

venous and lymphatic endothelial cells (Harvey and Oliver, 2004). The difference

between arteries and veins is also guided by gridlock (grl), an artery-restricted

gene that is expressed in the lateral posterior mesoderm and acts downstream of

the notch signalling pathway (see below). The gridlock gene was first described by

Weinstein and Fishman in 1995 (Weinstein et al., 1995; Zhong et al., 2000). In

2001, the same researchers observed that the Notch signalling pathway is regulated

by the earlier described gridlock gene. In mammals, four different Notch receptors

(Notch 1–4) have been cloned and characterized and these receptors bind to five

ligands (Jagged 1 and 2 and Delta-like 1, 3 and 4). The Notch pathway is activated

when endothelial cells adopt a venous phenotype but when this pathway is inhibited

by the gridlock gene, endothelial cells assume the arterial fate. Among the potential

molecules that may act upstream of the Notch pathway to induce arterial differ-

entiation is vascular endothelial growth factor (VEGF). Most recently, three

independent groups discovered that VEGF act as an inducer of the arterial fate of

endothelial cells (Harvey and Oliver, 2004). In zebrafish it was discovered that the

sonic Hedgehog pathway, which lies upstream of VEGF, also functions in regulating

the arterial fate of endothelial cells (Sato, 2003). Since their isolation in the early

1990s, members of the Hedgehog family of intercellular signalling proteins have

been recognized as key mediators of many fundamental processes of embryonic

development. Several studies suggest an important role for sonic Hedgehog, in

particular, during blood vessel development. Recent work has shown that sonic

Hedgehog can promote angiogenic blood vessel growth in part by inducing the

expression of vascular endothelium growth factor, and as well as angiopoietin-1 and

-2. These observations suggest that sonic Hedgehog may cooperate with vascular-

specific growth factors during the development of the embryonic vasculature.

1.3 Endothelial cell adhesion and interactions

Endothelial cells have an important function in the interaction with each other and

with a large variety of other cells, among which are pericytes, smooth muscle cells and

leukocytes, as well as with the extracellular matrix. To accomplish these functions

endothelial cells are equipped with a variety of different adhesion molecules.

Endothelial cell–cell interactions

Cell–cell-interactions are important for the regulation of tissue integrity, and the

generation of barriers between different tissues and body compartments. Individual

4 CH1 ENDOTHELIAL CELL BIOLOGY



cells are anchored together through adhesion junctions, organized in three

categories: tight junctions, adherens junctions and gap junctions (Bazzoni and

Dejana, 2004; Dejana, 2004). The adhesion molecules that function in these

structures as well as several other molecules important in cell–cell adhesion will be

discussed. The intercellular interactions, mediated by these adhesion receptors, are

important in the regulation of intracellular signalling.

Adherens and tight junctions both share the same binding feature. In both types of

junctions, adhesion is mediated by transmembrane proteins that promote homophilic

interactions and form a zipper-like structure along the cell border (Figure 1.1).

Tight junctions are responsible for regulating paracellular permeability and play

a role in maintaining cell polarity by subdividing the plasma membrane into an

Figure 1.1 Endothelial cell–cell junctions transmembrane adhesive proteins between
endothelial cells are organized in three classes. Members of the tight junctions are claudins,
occludin, junctional adhesion molecules (JAMs) and endothelial cell selective adhesion
molecule (ESAM). The adherens junctions are represented with adhesion molecules like vascular
endothelial cadherin (VE-cadherin), which, through its extracellular domain, is associated with
vascular endothelial protein tyrosine phosphatase (VE-PTP). Nectin has a role in the
organization of both tight junctions and adherens junctions. Outside these junctional zipper-
like molecules, platelet endothelial cell adhesion molecule (PECAM) participates to endothelial
cell–cell adhesion. In endothelial cells, neuronal cadherin (N-cadherin) is connecting
endothelial cells to pericytes and smooth muscle cells. Gap junctions are composed of arrays
of small channels that permit small molecules to shuttle from one cell to another and thus
directly link the interior of adjacent cells. Adapted from a figure by Dejana (2004). (A colour
reproduction of this figure can be viewed in the colour section towards the centre of the book).
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apical and a basolateral side. These structures are located at the boundary between

apical and basolateral domains. The main function of tight junctions is their barrier

function. The adhesion molecules that form these stuctures have a molecular

architecture that is highly complex. Zonula-occludens-1 (ZO-1) was first discovered

in 1986 and is perhaps the most extensively studied tight junction molecule (Dejana,

2004). Other important tight junction proteins are occludins, claudins (Schneeberger

and Lynch, 2004), junctional adhesion molecules (JAMs; Keiper et al., 2005) and

endothelial cell selective adhesion molecule (ESAM; Hirata et al., 2001).

Adherens junctions are important in the regulation of contact inhibition of cell

growth, transendothelial migration of leukocytes and solutes, and in the organiza-

tion of new vessels during angiogenesis (Bazzoni and Dejana, 2004). They are

distributed in all blood and lymphatic vessels. Endothelial cells express an

important key player in these structures, a member of the cadherin family, called

vascular endothelial cadherin (VE-cadherin; Vincent et al., 2004). VE-cadherin

forms dimers that then undertake a second head-to-head dimerization with another

VE-cadherin dimer on an adjacent cell. Through its extracellular domain, VE-

cadherin is associated with a vascular endothelial protein tyrosine phosphatase

(VE-PTP). The latter molecule binds through its cytoplasmatic tail to components

like b-catenin, plakoglobulin and P120, that through signalling mediate cell shape

and polarity. Nectin and its cytoplasmatic binding partner afadin are also present

on endothelium, but little is known about their specific function. They carry out a

role in both adherence and tight junctions (Takai and Nakanishi, 2003).

Gap junctions allow the passage of small molecular weight solutes and ions from

cell to cell. These intercellular junctions allow direct electrical and metabolic

communication between endothelial cells, between endothelial cells and smooth

muscle cells and between endothelial cells and lymphocytes or monocytes (Nilius

and Droogmans, 2001). Because ions can flow through them, gap junctions permit

changes in membrane potential to pass from cell to cell which are constructed as a

hexamer of transmembrane proteins called connexins. Through the variable use

of several isoforms of connexins, there is variability in functional cell–cell interactions.

Endothelial cells have also other cell-specific homophilic adhesion proteins at

the intercellular contacts. Two of the most studied are platelet endothelial cell

adhesion molecule-1 (PECAM-1) and S-endo-1, both members of the immuno-

globulin superfamily. The amino-terminal immunoglobulin-like domain of

PECAM-1 is involved in homophilic binding on adjacent cells. Other domains

of this molecule are involved in heterophilic adhesive interactions with several

ligands such as avb3, CD38 and several proteoglycans (Jackson, 2003). S-endo-1

(also termed CD146, Mel-CAM, MCAM, MUC18 or A32 antigen) is a membrane

glycoprotein involved in homophilic cell–cell interactions, but its binding partner

is still unknown (Bardin et al., 2001).

Another member of the cadherin family, N-cadherin, with the same type of

dimerization, can be found at comparable levels to VE-cadherin in most endothe-

lial cells. In contrast to VE-cadherin, N-cadherin is localized at the basal side of

endothelial cells and is in contact with pericytes or smooth muscle cells.
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Endothelial cell–matrix interactions

Maintenance of the integrity of the vessel wall is one of the most important functions

accomplished through interactions between the vascular endothelium and the sur-

rounding matrix. The sub-endothelium, a protein rich matrix underneath the endothe-

lial cells, is crucial in the preservation of optimal endothelial cell functioning. Specific

matrix ligands and receptors on the membrane contribute to the maintenance of an

intact endothelial cell layer. The extracellular matrix (ECM) is organized in two

layers, one of which is composed of a vascular basement membrane or basal lamina

and smooth muscle cells, and the other is composed of interstitial matrix. The

basement membrane consists of a network of molecules such as collagen IV, laminin,

heparin sulphate proteoglycans and nidogen/entactin (Kalluri, 2003), whereas typical

components of the interstitial matrix are fibrillar collagens and glycoproteins such as

fibronectin (Iivanainen et al., 2003). The extracellular matrix not only has a

mechanical role in supporting and maintaining tissue architecture but can also be

described as a dynamic structure that regulates migration, proliferation and differ-

entiation of endothelial cells. Under normal physiological conditions in resting tissues,

endothelial cells have a slow turnover and adhesive interactions with the extracellular

matrix are stable. When angiogenic stimuli are present, one of the first events to occur

is the production of specific proteases (matrix metalloproteinases) by endothelial cells

that are capable of degrading matrix components. This causes specific molecular

interactions between vascular endothelial cells and the surrounding microenvironment

to change, paving the way for the formation of new blood vessels.

These interactions with the extracellular matrix occur mainly through integrins

and heparan sulphate proteoglycans. Integrins are heterodimeric transmembrane

proteins that consist of an a and a b subunit. There are 18 known a and eight

known b subunits which form at least 24 different heterodimers in mammals.

These molecules recognize ECM components and are expressed by all adhesive

cells (Iivanainen et al., 2003). Integrin-mediated cellular adhesion to ECM leads to

intracellular signalling and modulates endothelial cell adhesion by targeting matrix

degrading enzymes to the site of sprouting. For example, integrin avb3, the integrin
that is the best characterized for its role in angiogenesis, interacts directly with

MMP-2 (Brooks et al., 1996). Another function of integrins is the regulation of the

activity of a number of angiogenic and antiangiogenic factors, for example, avb3
directly associates with, and regulates the signalling of, vascular endothelial

growth factor (VEGF) receptor 2. In addition, avb3 is induced in endothelial

cells by angiogenic growth factors such as VEGF and bFGF. Other antiangiogenic

molecules, such as endostatin, angiostatin and thrombospondin, that are natural

components of the ECM, can also bind to avb3 and disrupt the endothelial cell–

extracellular matrix interactions. Finally, it is known that many signalling path-

ways activated by integrins are also directly or indirectly activated by growth

factors (Li et al., 2003; Stupack and Cheresh, 2004).

A second group of endothelial receptors are the cell surface heparan sulphate

proteoglycans (HSPGs) (Iivanainen et al., 2003). Many matrix components have
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heparin binding motifs that mediate the interaction with cell surface HSPGs. This

group of cell surface adhesion molecules consist of a core protein that is covalently

linked to heparin sulphate-type glycosaminoglycan side-chains. There are two

main HSPG gene families that are present in the membrane of cells: the syndecans

and glypicans. Syndecans are transmembrane molecules that signal through

various pathways by their cytoplasmic tail. Glypicans do not have a hydrophobic

transmembrane or cytoplasmic domain and are anchored to the cell surface at the

extracellular site by a glycosyl-phosphatidyl-inositol (GPI) anchor. This anchor

gives glypicans the potential to participate in intracellular signalling. HSPGs can

also contribute to signalling by interaction with other matrix receptors that anchor

directly to the cytoskeleton and serve as an integrin co-receptor. Endothelial cells

express syndecan-1, syndecan-4, glypican-1 and glypican-4. Other membrane

glycoproteins, which carry heparan sulphate side-chains and are present on

endothelial cells, are betaglycan and CD44. Syndecan-1 and 4 are known to be

induced during neovascularization during wound repair (Gallo et al., 1996).

In normal physiological conditions endothelial cells are quiescent and bound to the

ECM. The structure of the ECM is complex and highly cross-linked, and only certain

domains of the matrix components can bind to endothelial cells. Due to an angiogenic

response, induced by VEGF, bFGF, PDGF and several chemokines, pericytes are

detached, endothelial cells are dislodged from the blood vessels by degrading and

invading through the ECM and detach from the adhesive components. The proteolytic

degradation of the ECM is mediated by matrix proteinases. Their role in physiological

and tumour-associated angiogenesis has been widely investigated. The best character-

ized enzymes, important in the degradation of both the vascular basement membrane

and the underlying ECM, are the matrix metalloproteinases (MMPs) (Iivanainen et al.,

2003). MMPs are a family consisting of 22 members of zinc-dependent endopeptidases

that can degrade ECM, cytokines, chemokines and their receptors. Based on their

structure and substrate specificity, they are classified into several subgroups: collage-

nases, stromelysins, matrilysins, gelatinases and membrane type MMPs. Most of them

are secreted as zymogens that will be activated by other MMPs or serine proteinases.

After detachment of endothelial cells, MMPs can promote migration and proliferation

of endothelial cells. In the initial step of angiogenesis a fibrin gel, a provisional matrix

generated from fibrinogen leakage, is polymerized and endothelial cells attach to these

provisional matrix components including fibrin, vitronectin, fibronectin, collagen I and

thrombin.

Pro-angiogenic factors like VEGF and bFGF, produced by macrophages

and tumour cells, are captured in the ECM and require matrix metalloproteinases

such as MMP2 and MMP9 for mobilization of the growth factors and the initiation

of angiogenesis. MMPs are predominantly secreted by stromal and immune

cells. MMP-mediated degradation can be a positive and negative regulator of

tumour angiogenensis (Sottile, 2004). At early degradation specific domains of

matrix components like collagen, laminin and fibronectin provide pro-angiogenic

signals. When degradation reaches completion, fragments like endostatin,

arrestin, canstatin, tumstatin and other collagen fragments exert anti-angiogenic

properties.
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