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Preface

This book

Some people make physical chemistry sound more confusing than it really is. One of
their best tricks is to define it inaccurately, saying it is ‘the physics of chemicals’. This
definition is sometimes quite good, since it suggests we look at a chemical system and
ascertain how it follows the laws of nature. This is true, but it suggests that chemistry
is merely a sub-branch of physics; and the notoriously mathematical nature of physics
impels us to avoid this otherwise useful way of looking at physical chemistry.

An alternative and more user-friendly definition tells us that physical chemistry
supplies ‘the laws of chemistry’, and is an addition to the making of chemicals. This
is a superior lens through which to view our topic because we avoid the bitter aftertaste
of pure physics, and start to look more closely at physical chemistry as an applied
science: we do not look at the topic merely for the sake of looking, but because
there are real-life situations requiring a scientific explanation. Nevertheless, most
practitioners adopting this approach are still overly mathematical in their treatments,
and can make it sound as though the science is fascinating in its own right, but will
sometimes condescend to suggest an application of the theory they so clearly relish.

But the definition we will employ here is altogether simpler,
Now published as Rev-
elations of Divine Love,
by Mother Julian of
Norwich.

and also broader: we merely ask ‘why does it happen?’ as we
focus on the behaviour of each chemical system. Every example
we encounter in our everyday walk can be whittled down into
small segments of thought, each so simple that a small child can
understand. As a famous mystic of the 14th century once said, ‘I
saw a small hazelnut and I marvelled that everything that exists could be contained
within it’. And in a sense she was right: a hazelnut looks brown because of the way
light interacts with its outer shell – the topic of spectroscopy (Chapter 9); the hazelnut
is hard and solid – the topic of bonding theory (Chapter 2) and phase equilibria
(Chapter 5); and the nut is good to eat – we say it is readily metabolized, so we think
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of kinetics (Chapter 8); and the energetics of chemical reactions (Chapters 2–4). The
sensations of taste and sight are ultimately detected within the brain as electrical
impulses, which we explain from within the rapidly growing field of electrochemistry
(Chapter 7). Even the way a nut sticks to our teeth is readily explained by adsorption
science (Chapter 10). Truly, the whole of physical chemistry can be encompassed
within a few everyday examples.

So the approach taken here is the opposite to that in most other books of physical
chemistry: each small section starts with an example from everyday life, i.e. both the
world around us and also those elementary observations that a chemist can be certain
to have pondered upon while attending a laboratory class. We then work backwards
from the experiences of our hands and eyes toward the cause of why our world is
the way it is.

Nevertheless, we need to be aware that physical chemistry is not a closed book in
the same way of perhaps classical Latin or Greek. Physical chemistry is a growing
discipline, and new experimental techniques and ideas are continually improving the
data and theories with which our understanding must ultimately derive.

Inevitably, some of the explanations here have been over-simplified because phys-
ical chemistry is growing at an alarming rate, and additional sophistications in theory
and experiment have yet to be devised. But a more profound reason for caution is
in ourselves: it is all too easy, as scientists, to say ‘Now I understand!’ when in fact
we mean that all the facts before us can be answered by the theory. Nevertheless, if
the facts were to alter slightly – perhaps we look at another kind of nut – the theory,
as far as we presently understand it, would need to change ever so slightly. Our
understanding can never be complete.

So, we need a word about humility. It is said, probably too often, that science is
not an emotional discipline, nor is there a place for any kind of reflection on the
human side of its application. This view is deeply mistaken, because scientists limit
themselves if they blind themselves to any contradictory evidence when sure they
are right. The laws of physical chemistry can only grow when we have the humility
to acknowledge how incomplete is our knowledge, and that our explanation might
need to change. For this reason, a simple argument is not necessary the right one; but
neither is a complicated one. The examples in this book were chosen to show how
the world around us manifests Physical Chemistry. The explanation of a seemingly
simple observation may be fiendishly complicated, but it may be beautifully simple. It
must be admitted that the chemical examples are occasionally artificial. The concept
of activity, for example, is widely misunderstood, probably because it presupposes
knowledge from so many overlapping branches of physical chemistry. The examples
chosen to explain it may be quite absurd to many experienced teachers, but, as
an aid to simplification, they can be made to work. Occasionally the science has
been simplified to the point where some experienced teachers will maintain that it is
technically wrong. But we must start from the beginning if we are to be wise, and
only then can we progress via the middle . . . and physical chemistry is still a rapidly
growing subject, so we don’t yet know where it will end.

While this book could be read as an almanac of explanations, it provides students
in further and higher education with a unified approach to physical chemistry. As a
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teacher of physical chemistry, I have found the approaches and examples here to be
effective with students of HND and the early years of BSc and MChem courses. It has
been written for students having the basic chemical and mathematical skills generally
expected of university entrants, such as rearrangement of elementary algebra and a
little calculus. It will augment the skills of other, more advanced, students.

To reiterate, this book supplies no more than an introduction to physical chemistry,
and is not an attempt to cover the whole topic. Those students who have learned
some physical chemistry are invited to expand their vision by reading more special-
ized works. The inconsistencies and simplifications wrought by lack of space and
style in this text will be readily overcome by copious background reading. A com-
prehensive bibliography is therefore included at the end of the book. Copies of the
figures and bibliography, as well as live links can be found on the book’s website at
http://www.wileyeurope.com/go/monkphysical.
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Etymological
introduction

The hero in The Name of the Rose is a medieval English monk. He acts as sleuth,

‘‘Etymology’’ means
the derivation of a
word’s meaning.

and is heard to note at one point in the story how, ‘The study of words is the
whole of knowledge’. While we might wish he had gone a little
further to mention chemicals, we would have to agree that many
of our technical words can be traced back to Latin or Greek roots.
The remainder of them originate from the principal scientists who
pioneered a particular field of study, known as etymology.

Etymology is our name for the science of words, and describes the sometimes-
tortuous route by which we inherit them from our ancestors. In fact, most words
change and shift their meaning with the years. A classic example describes how King
George III, when first he saw the rebuilt St Paul’s Cathedral in London, described it
as ‘amusing, artificial and awful’, by which he meant, respectively, it ‘pleased him’,
was ‘an artifice’ (i.e. grand) and was ‘awesome’ (i.e. breathtaking).

Any reader will soon discover the way this text has an unusual etymological empha-
sis: the etymologies are included in the belief that taking a word apart actually helps us
to understand it and related concepts. For example, as soon as we know the Greek for
‘green’ is chloros, we understand better the meanings of the proper nouns chlorophyll
and chlorine, both of which are green. Incidentally, phyll comes from the Greek for
‘leaf’, and ine indicates a substance.

Again, the etymology of the word oxygen incorporates much historical informa-
tion: oxys is the Greek for ‘sharp’, in the sense of an extreme sensory experience,
such as the taste of acidic vinegar, and the ending gen comes from gignesthaw (pro-
nounced ‘gin-es-thaw’), meaning ‘to be produced’. The classical roots of ‘oxygen’
reveal how the French scientists who first made the gas thought they had isolated the
distinguishing chemical component of acids.

The following tables are meant to indicate the power of this approach. There are
several dozen further examples in the text. The bibliography on p. 533 will enable
the interested reader to find more examples.
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List of Symbols

Symbols for variables

a Activity
a van der Waals constant
A optical absorbance
A Area
b van der Waals constant
B ′ virial coefficient
c concentration
c the intercept on the y-axis of a graph
c constant of proportionality
C virial coefficient
C heat capacity
Cp heat capacity determined at constant

pressure
CV heat capacity determined at constant

volume
E energy
E potential
Ea activation energy
E(ea) electron affinity
Ej junction potential
E(load) potential of a battery or cell when

passing a current
emf potential of a cell, determined at zero

current

EO,R electrode potential for the couple
O + ne− = R

E
O

O,R standard electrode potential for the
couple O + ne− = R

E(LHS) electrode potential of the negative
electrode in a cell

E(RHS) electrode potential of the positive
electrode in a cell

f fugacity
f frequency
F force
G Gibbs function
�G change in Gibbs function
GO standard Gibbs function
G‡ Gibbs function of activation
h height
H enthalpy
�H change in enthalpy
H(ads) enthalpy of adsorption
H O standard enthalpy
�HBE bond enthalpy
�Hc enthalpy of combustion
�Hf enthalpy of formation
H ‡ enthalpy of activation
I electrical current
I intensity of light following absorption



xxiv LIST OF SYMBOLS

Io intensity of incident light beam
I ionic strength
I ionization energy
J rotational quantum number; rotational

quantum number of an excited
state

J ′ rotational quantum number of ground
state

k force constant of a bond
k proportionality constant
k rate constant
k′ pseudo rate constant
kn rate constant of an nth-order reaction
k−n rate constant for the back reaction of

an nth-order reaction
k(n) rate constant of the nth process in a

multi-step reaction
ka rate constant of adsorption
kd rate constant of desorption
kH Henry’s law constant
K equilibrium constant
K correction constant of an ion-selective

electrode
Ka acidity constant (‘acid dissociation’

constant)
Ka(n) acidity constant for the nth

dissociation reaction
Kb basicity constant
Kc equilibrium constant formulated in

terms of concentration
Kp equilibrium constant formulated in

terms of pressure
Ks equilibrium constant of solubility

(sometimes called ‘solubility
product’ or ‘solubility constant’)

Kw autoprotolysis constant of water

K‡ equilibrium constant of forming a
transition state ‘complex’

l length

m gradient of a graph

m mass
M relative molar mass
n number of moles
n number of electrons in a redox

reaction
nm amount of material in an adsorbed

monolayer
N number
p pressure
p(i) partial pressure of component i

p
O

(i) vapour pressure of pure i

p O standard pressure of 105 Pa
q heat energy
Q charge
Q reaction quotient
r separation between ions
r radius of a circle or sphere
r bond length
r ′ bond length in an optically excited

species
ro equilibrium bond length
R electrical resistance
s solubility
s stoichiometric ratio
S entropy
�S change in entropy
S O standard entropy
S‡ entropy of activation
t time
t 1

2
half life

T temperature
T optical transmittance
To optical transmittance without a sample
TK Krafft temperature
U internal energy
�U change in internal energy, e.g. during

reaction
v quantum-number of vibration
v′ quantum-number of vibration in an

excited-state species



LIST OF SYMBOLS xxv

v′′ quantum-number of vibration in
a ground-state species

V volume
V voltage, e.g. of a power pack
V Coulomb potential energy
Vm molar volume
w work
x controlled variable on the horizontal

axis of a graph
x deviation of a bond from its

equilibrium length
xi mole fraction of i

y observed variable on the vertical
of a graph

z charge on ion (so z+ for a cation
and z− for an anion)

Z compressibility

γ activity coefficient
γ± mean ionic activity coefficient
γ fugacity coefficient
γ surface tension
δ small increment
∂ partial differential
� change in a variable (so

�X = X(final form) − X(initial form))
ε extinction coefficient (‘molar decadic

absorptivity’)
εr relative permittivity
εo permittivity of free space
θ adsorption isotherm
θ angle
κ ionic conductivity
λ wavelength
λ(max) the wavelength of a peak in a

spectrum
µ reduced mass
µi chemical potential of i

µ
O

i standard chemical potential of i

ν stoichiometric constant

ν velocity
ν frequency (the reciprocal of the period

of an event)
νo frequency following transmission

(in Raman spectroscopy)
ξ extent of reaction
ρ density
σ electrical conductivity
σ standard deviation
φ electric field strength (electrostatic

interaction)
φ work function of a metal
φ primary quantum yield
Φ quantum yield of a reaction
χ electronegativity
ω wavenumber of a vibration

(determined as ω = λ ÷ c)

Symbols for constants

A Debye–Hückel ‘A’ factor
c the speed of light in vacuo
c O standard concentration
e charge on an electron, of value

1.6 × 10−19 C
f mathematical operator (‘function of’)
F Faraday constant, of value

96 485 C mol−1

kB Boltzmann constant, of value
1.38 × 10−23

L Avogadro constant, of value
6.022 × 1023 mol−1

NA Avogadro number, of value
6.022 × 1023 mol−1

g acceleration due to gravity, of value
9.81 m s−2

h Planck constant, of value
6.626 × 10−34 J s

R gas constant, of value
8.314 J K−1 mol−1



xxvi LIST OF SYMBOLS

Symbols for units

A ampère
Å ångström, length of value 10−10 m

(non-IUPAC)
bar standard pressure of 105 Pa

(non-SI unit)
C coulomb
◦C centigrade (non-SI)
g gram
Hz hertz
J joule
K kelvin
kg kilogram
m metre
mmHg millimetre of mercury (non-SI unit

of pressure)
mol mole
N newton
Pa pascal
s second (SI unit)
S siemen
V volt
W watt
yr year
� ohm

Acronyms and abbreviations

CT charge transfer
d differential operator (which never

appears on its own)
HOMO highest occupied molecular orbital
IQ intelligence quotient
IR infrared
IUPAC International Union of Pure and

Applied Chemistry

IVF in vitro fertilization
LCD liquid crystal display
LHS left-hand side
LUMO lowest unoccupied molecular

orbital
MLCT metal-to-ligand charge transfer
MRI magnetic resonance imaging
NIR near-infra red
NMR nuclear magnetic resonance
O general oxidized form of a redox

couple
p mathematical operator,

− log10[variable], so
pH = − log10[H+]

PEM proton exchange membrane
R general reduced form of a redox

couple
RHS right-hand side
s.t.p. standard temperature and

pressure
SAQ self-assessment question
SCE saturated calomel electrode
SCUBA self-contained underwater breathing

apparatus
SHE standard hydrogen electrode
SHM simple harmonic motion
SI Système Internationale
SN1 unimolecular nucleophilic substitution

process
SN2 bimolecular nucleophilic substitution

process
SSCE silver–silver chloride electrode
TS transition state
TV television
UPS UV-photoelectron spectroscopy
UV ultraviolet
UV–vis ultraviolet and visible
XPS X-ray photoelectron spectroscopy



LIST OF SYMBOLS xxvii

Standard subscripts (other
than those where a word or
phrase is spelt in full)

ads adsorption; adsorbed
aq aqueous
c combustion
eq at equilibrium
f formation
g gas
l liquid
LHS left-hand side of a cell
m molar
p at constant pressure
Pt platinum (usually, as an electrode)
r reaction
RHS right-hand side of cell
s solid
sat’d saturated
t at time t (i.e. after a reaction or

process has commenced)
V at constant volume
0 initially (i.e. at time t = 0)
∞ measurement taken after an infinite

length of time

Standard superscripts (other
than those where a word or
phrase is spelt in full)

‡ activated quantity
− anion
+ cation
* excited state

• radical
+• radical cation
O standard state

Chemicals and materials

A general anion
Bu butyl
CFC chlorofluorocarbon
DMF N,N-dimethylformamide
DMSO dimethylsulphoxide
DNA deoxyribonucleic acid
e− electron
EDTA ethylenediamine tetra-acetic acid
HA general Lowry–Brønsted acid
LPG liquid petroleum gas
M general cation
MB methylene blue
MV methyl viologen

(1,1′-dimethyl-4,4′-bipyridilium)
O general oxidized form of a redox

couple
PC propylene carbonate
Ph phenyl substituent
R general alkyl substituent
R general reduced form of a redox

couple
SDS sodium dodecyl sulphate
TFA tetrafluoroacetic acid
α particle emitted during radioactive

disintegration of nucleus
β particle emitted during radioactive

disintegration of nucleus
γ high-energy photon (gamma ray)




