# **Physical Chemistry**

# Understanding our Chemical World

Paul Monk

Manchester Metropolitan University, UK



John Wiley & Sons, Ltd

# **Physical Chemistry**

Understanding our Chemical World

# **Physical Chemistry**

# Understanding our Chemical World

Paul Monk

Manchester Metropolitan University, UK



John Wiley & Sons, Ltd

Copyright © 2004 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

#### Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

#### Library of Congress Cataloging-in-Publication Data

Monk, Paul M. S.
Physical chemistry : understanding our chemical world / Paul Monk.
p. cm.
Includes bibliographical references and index.
ISBN 0-471-49180-2 (acid-free paper) – ISBN 0-471-49181-0 (pbk. : acid-free paper)
1. Chemistry, Physical and theoretical. I. Title.
QD453.3.M66 2004
541 – dc22
2004004224

#### British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0-471-49180-2 hardback 0-471-49181-0 paperback

Typeset in 10.5/12.5pt Times by Laserwords Private Limited, Chennai, India Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two trees are planted for each one used for paper production.

# Contents

| Preface                                                                   | XV     |
|---------------------------------------------------------------------------|--------|
| Etymological introduction                                                 |        |
| List of symbols                                                           |        |
| Powers of ten: standard prefixes                                          | xxviii |
| 1 Introduction to physical chemistry                                      | 1      |
| 1.1 What is physical chemistry: variables, relationships and laws         | 1      |
| Why do we warm ourselves by a radiator?                                   | 1      |
| Why does water get hot in a kettle?                                       | 2      |
| Are these two colours complementary?                                      | 2      |
| Does my radio get louder if I vary the volume control?                    | 3      |
| Why does the mercury in a barometer go up when the air pressure           |        |
| increases?                                                                | 5      |
| Why does a radiator feel hot to the touch when 'on', and cold when 'off'? | 7      |
| 1.2 The practice of thermodynamic measurement                             | 9      |
| What is temperature?                                                      | 9      |
| How long is a piece of string?                                            | 14     |
| How fast is 'greased lightning'?                                          | 15     |
| Why is the SI unit of mass the kilogram?                                  | 17     |
| Why is 'the material of action so variable'?                              | 18     |
| 1.3 Properties of gases and the gas laws                                  | 20     |
| Why do we see eddy patterns above a radiator?                             | 20     |
| Why does a hot-air balloon float?                                         | 20     |
| How was the absolute zero of temperature determined?                      | 21     |
| Why pressurize the contents of a gas canister?                            | 23     |
| Why does thunder accompany lightning?                                     | 25     |
| How does a bubble-jet printer work?                                       | 26     |

|   | What causes pressure?                                                                                     | 30       |
|---|-----------------------------------------------------------------------------------------------------------|----------|
|   | Why is it unwise to incinerate an empty can of air freshener?                                             | 32       |
|   | 1.4 Further thoughts on energy                                                                            | 33       |
|   | Why is the room warm?                                                                                     | 33       |
|   | What do we mean by 'room temperature'?                                                                    | 34       |
|   | Why do we get warmed-through in front of a fire, rather than just our                                     |          |
|   | skins?                                                                                                    | 35       |
| 2 | ntroducing interactions and bonds                                                                         | 37       |
|   | 2.1 Physical and molecular interactions                                                                   | 37       |
|   | What is 'dry ice'?                                                                                        | 37       |
|   | How is ammonia liquefied?                                                                                 | 38       |
|   | Why does steam condense in a cold bathroom?                                                               | 39       |
|   | How does a liquid-crystal display work?                                                                   | 40       |
|   | Why does dew form on a cool morning?                                                                      | 42       |
|   | How is the three-dimensional structure maintained within the DNA double                                   |          |
|   | helix?                                                                                                    | 44       |
|   | How do we make liquid nitrogen?                                                                           | 47       |
|   | Why is petrol a liquid at room temperature but butane is a gas?                                           | 49       |
|   | 2.2 Quantifying the interactions and their influence                                                      | 50       |
|   | How does mist form?                                                                                       | 50       |
|   | How do we liquefy petroleum gas?                                                                          | 52       |
|   | Why is the molar volume of a gas not zero at 0 K?                                                         | 54       |
|   | 2.3 Creating formal chemical bonds                                                                        | 59       |
|   | Why is chlorine gas lethal yet sodium chloride is vital for life?                                         | 59       |
|   | Why does a bicycle tyre get hot when inflated?                                                            | 59       |
|   | How does a fridge cooler work?                                                                            | 60       |
|   | Why does steam warm up a cappuccino coffee?                                                               | 61       |
|   | Why does land become more fertile after a thunderstorm?                                                   | 63       |
|   | Why does a satellite need an inert coating?                                                               | 64       |
|   | Why does water have the formula $H_2O$ ?                                                                  | 66       |
|   | Why is petroleum gel so soft?                                                                             | 67<br>69 |
|   | Why does salt form when sodium and chlorine react?<br>Why heat a neon lamp before it will generate light? | 69<br>69 |
|   | Why does lightning conduct through air?                                                                   | 72       |
|   | Why is argon gas inert?                                                                                   | 74       |
|   | Why is silver iodide yellow?                                                                              | 75       |
|   | wity is silver founde yellow.                                                                             | 15       |
| 3 | Energy and the first law of thermodynamics                                                                | 77       |
|   | 3.1 Introduction to thermodynamics: internal energy                                                       | 77       |
|   | Why does the mouth get cold when eating ice cream?                                                        | 77       |
|   | Why is skin scalded by steam?                                                                             | 79       |
|   | Why do we sweat?                                                                                          | 81       |
|   | Why do we still feel hot while sweating on a humid beach?                                                 | 83       |

| Why is the water at the top of a waterfall cooler than the water at its base? | 85  |
|-------------------------------------------------------------------------------|-----|
| Why is it such hard work pumping up a bicycle tyre?                           | 86  |
| Why does a sausage become warm when placed in an oven?                        | 87  |
| Why, when letting down a bicycle tyre, is the expelled air so cold?           | 88  |
| Why does a tyre get hot during inflation?                                     | 89  |
| Can a tyre be inflated without a rise in temperature?                         | 89  |
| How fast does the air in an oven warm up?                                     | 90  |
| Why does water boil more quickly in a kettle than in a pan on a stove?        | 91  |
| Why does a match emit heat when lit?                                          | 94  |
| Why does it always take 4 min to boil an egg properly?                        | 95  |
| Why does a watched pot always take so long to boil?                           | 98  |
| 3.2 Enthalpy                                                                  | 99  |
| How does a whistling kettle work?                                             | 99  |
| How much energy do we require during a distillation?                          | 102 |
| Why does the enthalpy of melting ice decrease as the temperature              |     |
| decreases?                                                                    | 104 |
| Why does water take longer to heat in a pressure cooker than in an open       |     |
| pan?                                                                          | 106 |
| Why does the temperature change during a reaction?                            | 107 |
| Are diamonds forever?                                                         | 109 |
| Why do we burn fuel when cold?                                                | 111 |
| Why does butane burn with a hotter flame than methane?                        | 114 |
| 3.3 Indirect measurement of enthalpy                                          | 118 |
| How do we make 'industrial alcohol'?                                          | 118 |
| How does an 'anti-smoking pipe' work?                                         | 120 |
| Why does dissolving a salt in water liberate heat?                            | 123 |
| Why does our mouth feel cold after eating peppermint?                         | 125 |
| How does a camper's 'emergency heat stick' work?                              | 127 |
| Reaction spontaneity and the direction of thermodynamic change                | 129 |
| 4.1 The direction of physicochemical change: entropy                          | 129 |
| Why does the colour spread when placing a drop of dye in a saucer of          |     |
| clean water?                                                                  | 129 |
| When we spill a bowl of sugar, why do the grains go everywhere and            |     |
| cause such a mess?                                                            | 130 |
| Why, when one end of the bath is hot and the other cold, do the               |     |
| temperatures equalize?                                                        | 131 |
| Why does a room containing oranges acquire their aroma?                       | 133 |
| Why do damp clothes become dry when hung outside?                             | 134 |
| Why does crystallization of a solute occur?                                   | 137 |
| 4.2 The temperature dependence of entropy                                     | 139 |
| Why do dust particles move more quickly by Brownian motion in warm            |     |
| water?                                                                        | 139 |
| Why does the jam of a jam tart burn more than does the pastry?                | 139 |

4

|   | 4.3 | Introducing the Gibbs function                                          | 144 |
|---|-----|-------------------------------------------------------------------------|-----|
|   |     | Why is burning hydrogen gas in air (to form liquid water) a spontaneous |     |
|   |     | reaction?                                                               | 144 |
|   |     | How does a reflux condenser work?                                       | 144 |
|   | 4.4 | The effect of pressure on thermodynamic variables                       | 148 |
|   |     | How much energy is needed?                                              | 148 |
|   |     | Why does a vacuum 'suck'?                                               | 151 |
|   |     | Why do we sneeze?                                                       | 152 |
|   |     | How does a laboratory water pump work?                                  | 153 |
|   | 4.5 | Thermodynamics and the extent of reaction                               | 156 |
|   |     | Why is a 'weak' acid weak?                                              | 156 |
|   |     | Why does the pH of the weak acid remain constant?                       | 158 |
|   |     | Why does the voltage of a battery decrease to zero?                     | 159 |
|   |     | Why does the concentration of product stop changing?                    | 162 |
|   |     | Why do chicken eggs have thinner shells in the summer?                  | 165 |
|   | 4.6 | The effect of temperature on thermodynamic variables                    | 166 |
|   |     | Why does egg white denature when cooked but remain liquid at room       |     |
|   |     | temperature?                                                            | 166 |
|   |     | At what temperature will the egg start to denature?                     | 170 |
|   |     | Why does recrystallization work?                                        | 171 |
| 5 | Pha | se equilibria                                                           | 177 |
|   |     | Energetic introduction to phase equilibria                              | 177 |
|   |     | Why does an ice cube melt in the mouth?                                 | 177 |
|   |     | Why does water placed in a freezer become ice?                          | 181 |
|   |     | Why was Napoleon's Russian campaign such a disaster?                    | 182 |

|     | why was Napoleon's Russian campaign such a disaster?                   | 162 |
|-----|------------------------------------------------------------------------|-----|
| 5.2 | Pressure and temperature changes with a single-component system:       |     |
|     | qualitative discussion                                                 | 184 |
|     | How is the 'Smoke' in horror films made?                               | 184 |
|     | How does freeze-drying work?                                           | 185 |
|     | How does a rotary evaporator work?                                     | 188 |
|     | How is coffee decaffeinated?                                           | 189 |
| 5.3 | Quantitative effects of pressure and temperature change for a          |     |
|     | single-component system                                                | 192 |
|     | Why is ice so slippery?                                                | 192 |
|     | What is 'black ice'?                                                   | 193 |
|     | Why does deflating the tyres on a car improve its road-holding on ice? | 198 |
|     | Why does a pressure cooker work?                                       | 199 |
| 5.4 | Phase equilibria involving two-component systems: partition            | 205 |
|     | Why does a fizzy drink lose its fizz and go flat?                      | 205 |
|     | How does a separating funnel work?                                     | 207 |
|     | Why is an ice cube only misty at its centre?                           | 208 |
|     | How does recrystallization work?                                       | 209 |
|     | Why are some eggshells brown and some white?                           | 211 |

| 5.5 Phase equilibria and colligative properties                   | 212 |
|-------------------------------------------------------------------|-----|
| Why does a mixed-melting-point determination work?                | 212 |
| How did the Victorians make ice cream?                            | 216 |
| Why boil vegetables in salted water?                              | 217 |
| Why does the ice on a path melt when sprinkled with salt?         | 218 |
| 5.6 Phase equilibria involving vapour pressure                    | 221 |
| Why does petrol sometimes have a strong smell and sometimes not?  | 221 |
| How do anaesthetics work?                                         | 222 |
| How do carbon monoxide sensors work?                              | 224 |
| Why does green petrol smell different from leaded petrol?         | 224 |
| Why do some brands of 'green' petrol smell different from others? | 225 |
| Why does a cup of hot coffee yield more steam than above a cup of |     |
| boiling water at the same temperature?                            | 229 |
| How are essential oils for aromatherapy extracted from plants?    | 229 |

| 6 | Acids and Bases                                                              | 233 |
|---|------------------------------------------------------------------------------|-----|
|   | 6.1 Properties of Lowry-Brønsted acids and bases                             | 233 |
|   | Why does vinegar taste sour?                                                 | 233 |
|   | Why is it dangerous to allow water near an electrical appliance, if water is |     |
|   | an insulator?                                                                | 235 |
|   | Why is bottled water 'neutral'?                                              | 236 |
|   | What is 'acid rain'?                                                         | 237 |
|   | Why does cutting an onion make us cry?                                       | 239 |
|   | Why does splashing the hands with sodium hydroxide solution make them        |     |
|   | feel 'soapy'?                                                                | 239 |
|   | Why is aqueous ammonia alkaline?                                             | 240 |
|   | Why is there no vinegar in crisps of salt and vinegar flavour?               | 241 |
|   | How did soldiers avoid chlorine gas poisoning at the Second Battle of        |     |
|   | Ypres?                                                                       | 242 |
|   | How is sherbet made?                                                         | 244 |
|   | Why do steps made of limestone sometimes feel slippery?                      | 244 |
|   | Why is the acid in a car battery more corrosive than vinegar?                | 245 |
|   | Why do equimolar solutions of sulphuric acid and nitric acid have            |     |
|   | different pHs?                                                               | 250 |
|   | What is the pH of a 'neutral' solution?                                      | 251 |
|   | What do we mean when we say blood plasma has a 'pH of 7.4'?                  | 251 |
|   | 6.2 'Strong' and 'weak' acids and bases                                      | 253 |
|   | Why is a nettle sting more painful than a burn from ethanoic acid?           | 253 |
|   | Why is 'carbolic acid' not in fact an acid?                                  | 254 |
|   | Why does carbonic acid behave as a mono-protic acid?                         | 259 |
|   | Why is an organic acid such as trichloroethanoic acid so strong?             | 260 |
|   | 6.3 Titration analyses                                                       | 261 |
|   | Why does a dock leaf bring relief after a nettle sting?                      | 261 |
|   | How do indigestion tablets work?                                             | 262 |
|   |                                                                              |     |

#### **x** CONTENTS

| 6.4 pH buffers                                                                 | 267       |
|--------------------------------------------------------------------------------|-----------|
| Why does the pH of blood not alter after eating pickle?                        | 267       |
| Why are some lakes more acidic than others?                                    | 267       |
| How do we make a 'constant-pH solution'?                                       | 270       |
| 6.5 Acid-base indicators                                                       | 273       |
| What is 'the litmus test'?                                                     | 273       |
| Why do some hydrangea bushes look red and others blue?                         | 274       |
| Why does phenolphthalein indicator not turn red until pH 8.2?                  | 276       |
| 7 Electrochemistry                                                             | 279       |
| 7.1 Introduction to cells: terminology and background                          | 279       |
| Why does putting aluminium foil in the mouth cause pain?                       | 279       |
| Why does an electric cattle prod cause pain?                                   | 281       |
| What is the simplest way to clean a tarnished silver spoon?                    | 282       |
| How does 'electrolysis' stop hair growth?                                      | 282       |
| Why power a car with a heavy-duty battery yet use a small battery in           |           |
| watch?                                                                         | 283       |
| How is coloured ('anodized') aluminium produced?                               | 285       |
| How do we prevent the corrosion of an oil rig?                                 | 286       |
| What is a battery?                                                             | 288       |
| Why do hydrogen fuel cells sometimes 'dry up'?                                 | 289       |
| Why bother to draw cells?                                                      | 291       |
| Why do digital watches lose time in the winter?                                | 293       |
| Why is a battery's potential not constant?                                     | 294       |
| What is a 'standard cell'?                                                     | 295       |
| Why aren't electrodes made from wood?                                          | 300       |
| Why is electricity more dangerous in wet weather?                              | 302       |
| 7.2 Introducing half-cells and electrode potentials                            | 303       |
| Why are the voltages of watch and car batteries different?                     | 303       |
| How do 'electrochromic' car mirrors work?                                      | 305       |
| Why does a potential form at an electrode?                                     | 306       |
| 7.3 Activity                                                                   | 308       |
| Why does the smell of brandy decrease after dissolving table salt in           | it? 308   |
| Why does the smell of gravy become less intense after adding salt to           | o it? 308 |
| Why add alcohol to eau de Cologne?                                             | 309       |
| Why does the cell <i>emf</i> alter after adding LiCl?                          | 312       |
| Why does adding NaCl to a cell alter the emf, but adding tonic water           |           |
| doesn't?                                                                       | 314       |
| Why does MgCl <sub>2</sub> cause a greater decrease in perceived concentration |           |
| KCl?                                                                           | 315       |
| Why is calcium better than table salt at stopping soap lathering?              | 316       |
| Why does the solubility of AgCl change after adding MgSO <sub>4</sub> ?        | 318       |
| 7.4 Half-cells and the Nernst equation                                         | 321       |
| Why does sodium react with water yet copper doesn't?                           | 321       |

|     | Why does a torch battery eventually 'go flat'?                                      | 325 |
|-----|-------------------------------------------------------------------------------------|-----|
|     | Why does E <sub>AgCl,Ag</sub> change after immersing an SSCE in a solution of salt? | 326 |
|     | Why 'earth' a plug?                                                                 | 328 |
| 7.5 | Concentration cells                                                                 | 333 |
|     | Why does steel rust fast while iron is more passive?                                | 333 |
|     | How do pH electrodes work?                                                          | 336 |
| 7.6 | Transport phenomena                                                                 | 339 |
|     | How do nerve cells work?                                                            | 339 |
|     | What is a 'salt bridge'?                                                            | 342 |
| 7.7 | Batteries                                                                           | 343 |
|     | How does an electric eel produce a current?                                         | 343 |
|     | What is the earliest known battery?                                                 | 345 |

| 8 | Che | mical kinetics                                                            | 349 |
|---|-----|---------------------------------------------------------------------------|-----|
|   | 8.1 | Kinetic definitions                                                       | 349 |
|   |     | Why does a 'strong' bleach clean faster than a weaker one does?           | 349 |
|   |     | Why does the bleaching reaction eventually stop?                          | 351 |
|   |     | Why does bleach work faster on some greases than on others?               | 354 |
|   |     | Why do copper ions amminate so slowly?                                    | 356 |
|   |     | How fast is the reaction that depletes the ozone layer?                   | 358 |
|   |     | Why is it more difficult to breathe when up a mountain than at ground     |     |
|   |     | level?                                                                    | 359 |
|   | 8.2 | Qualitative discussion of concentration changes                           | 361 |
|   |     | Why does a full tank of petrol allow a car to travel over a constant      |     |
|   |     | distance?                                                                 | 361 |
|   |     | Why do we add a drop of bromine water to a solution of an alkene?         | 362 |
|   |     | When magnesium dissolves in aqueous acid, why does the amount of          |     |
|   |     | fizzing decrease with time?                                               | 364 |
|   | 8.3 | Quantitative concentration changes: integrated rate equations             | 368 |
|   |     | Why do some photographs develop so slowly?                                | 368 |
|   |     | Why do we often refer to a 'half-life' when speaking about radioactivity? | 378 |
|   |     | How was the Turin Shroud 'carbon dated'?                                  | 382 |
|   |     | How old is Ötzi the iceman?                                               | 385 |
|   |     | Why does the metabolism of a hormone not cause a large chemical change    |     |
|   |     | in the body?                                                              | 387 |
|   |     | Why do we not see radicals forming in the skin while sunbathing?          | 388 |
|   | 8.4 | Kinetic treatment of complicated reactions                                | 393 |
|   |     | Why is arsenic poisonous?                                                 | 393 |
|   |     | Why is the extent of Walden inversion smaller when a secondary alkyl      |     |
|   |     | halide reacts than with a primary halide?                                 | 394 |
|   |     | Why does 'standing' a bottle of wine cause it to smell and taste better?  | 397 |
|   |     | Why fit a catalytic converter to a car exhaust?                           | 399 |
|   |     | Why do some people not burn when sunbathing?                              | 400 |
|   |     | How do Reactolite <sup>®</sup> sunglasses work?                           | 403 |

#### xii CONTENTS

| 8.5 Thermodynamic considerations: activation energy, absolut | e reaction rates |
|--------------------------------------------------------------|------------------|
| and catalysis                                                | 408              |
| Why prepare a cup of tea with boiling water?                 | 408              |
| Why store food in a fridge?                                  | 408              |
| Why do the chemical reactions involved in cooking requir     | re heating? 409  |
| Why does a reaction speed up at higher temperature?          | 411              |
| Why does the body become hotter when ill, and get 'a ten     | nperature'? 415  |
| Why are the rates of some reactions insensitive to tempera   | ature? 416       |
| What are catalytic converters?                               | 420              |
| 9 Physical chemistry involving light: spectroscopy and       |                  |
| photochemistry                                               | 423              |
| 9.1 Introduction to photochemistry                           | 423              |
| Why is ink coloured?                                         | 423              |
| Why do neon streetlights glow?                               | 424              |
| Why do we get hot when lying in the sun?                     | 425              |
| Why is red wine so red?                                      | 426              |
| Why are some paints red, some blue and others black?         | 427              |
| Why can't we see infrared light with our eyes?               | 429              |
| How does a dimmer switch work?                               | 433              |
| Why does UV-b cause sunburn yet UV-a does not?               | 434              |
| How does a suntan protect against sunlight?                  | 436              |
| How does sun cream block sunlight?                           | 439              |
| Why does tea have a darker colour if brewed for longer?      | 442              |
| Why does a glass of apple juice appear darker when view      |                  |
| white card?                                                  | 442              |
| Why are some paints darker than others?                      | 444              |
| What is ink?                                                 | 445              |
| 9.2 Photon absorptions and the effect of wavelength          | 446              |
| Why do radical reactions usually require UV light?           | 446              |
| Why does photolysis require a powerful lamp?                 | 452              |
| Why are spectroscopic bands not sharp?                       | 453              |
| Why does hydrogen look pink in a glow discharge?             | 455              |
| Why do surfaces exposed to the sun get so dusty?             | 457              |
| Why is microwave radiation invisible to the eye?             | 458              |
| 9.3 Photochemical and spectroscopic selection rules          | 459              |
| Why is the permanganate ion so intensely coloured?           | 459              |
| Why is chlorophyll green?                                    | 461              |
| Why does adding salt remove a blood stain?                   | 462              |
| What is gold-free gold paint made of?                        | 462              |
| What causes the blue colour of sapphire?                     | 463              |
| Why do we get hot while lying in the sun?                    | 464              |
| What is an infrared spectrum?                                | 467              |
| Why does food get hot in a microwave oven?                   | 469              |
| Are mobile phones a risk to health?                          | 471              |

| 9.4 Photophysics: emission and loss processes | 472 |
|-----------------------------------------------|-----|
| How are X-rays made?                          | 472 |
| Why does metal glow when hot?                 | 473 |
| How does a light bulb work?                   | 474 |
| Why is a quartz-halogen bulb so bright?       | 474 |
| What is 'limelight'?                          | 476 |
| Why do TV screens emit light?                 | 476 |
| Why do some rotting fish glow in the dark?    | 478 |
| How do 'see in the dark' watch hands work?    | 479 |
| How do neon lights work?                      | 480 |
| How does a sodium lamp work?                  | 481 |
| How do 'fluorescent strip lights' work?       | 482 |
| 9.5 Other optical effects                     | 483 |
| Why is the mediterranean sea blue?            | 483 |
| Do old-master paintings have a 'fingerprint'? | 485 |
|                                               |     |

| 10 | Adsorption and surfaces, colloids and micelles                           | <b>487</b> |
|----|--------------------------------------------------------------------------|------------|
|    | 10.1 Adsorption and definitions                                          | 487        |
|    | Why is steam formed when ironing a line-dried shirt?                     | 487        |
|    | Why does the intensity of a curry stain vary so much?                    | 489        |
|    | Why is it difficult to remove a curry stain?                             | 492        |
|    | Why is <i>iron</i> the catalyst in the Haber process?                    | 494        |
|    | Why is it easier to remove a layer of curry sauce than to remove a curry |            |
|    | stain?                                                                   | 496        |
|    | How does water condense onto glass?                                      | 497        |
|    | How does bleach remove a dye stain?                                      | 498        |
|    | How much beetroot juice does the stain on the plate contain?             | 499        |
|    | Why do we see a 'cloud' of steam when ironing a shirt?                   | 503        |
|    | 10.2 Colloids and interfacial science                                    | 504        |
|    | Why is milk cloudy?                                                      | 504        |
|    | What is an 'aerosol' spray?                                              | 505        |
|    | What is 'emulsion paint'?                                                | 506        |
|    | Why does oil not mix with water?                                         | 508        |
|    | 10.3 Colloid stability                                                   | 509        |
|    | How are cream and butter made?                                           | 509        |
|    | How is chicken soup 'clarified' by adding eggshells?                     | 510        |
|    | How is 'clarified butter' made?                                          | 510        |
|    | Why does hand cream lose its milky appearance during hand rubbing?       | 511        |
|    | Why does orange juice cause milk to curdle?                              | 512        |
|    | How are colloidal particles removed from waste water?                    | 513        |
|    | 10.4 Association colloids: micelles                                      | 514        |
|    | Why does soapy water sometimes look milky?                               | 514        |
|    | What is soap?                                                            | 517        |
|    | Why do soaps dissolve grease?                                            | 518        |

| Why is old washing-up water oily when cold but not when hot? | 519 |
|--------------------------------------------------------------|-----|
| Why does soap generate bubbles?                              | 521 |
| Why does detergent form bubbles?                             | 522 |
| Answers to SAQs                                              | 525 |
| Bibliography                                                 |     |
| Index                                                        | 565 |

# Preface

#### This book

Some people make physical chemistry sound more confusing than it really is. One of their best tricks is to define it inaccurately, saying it is 'the physics of chemicals'. This definition is sometimes quite good, since it suggests we look at a chemical system and ascertain how it follows the laws of nature. This is true, but it suggests that chemistry is merely a sub-branch of physics; and the notoriously mathematical nature of physics impels us to avoid this otherwise useful way of looking at physical chemistry.

An alternative and more user-friendly definition tells us that physical chemistry supplies 'the laws of chemistry', and is an addition to the *making* of chemicals. This is a superior lens through which to view our topic because we avoid the bitter aftertaste of pure physics, and start to look more closely at physical chemistry as an *applied* science: we do not look at the topic merely for the sake of looking, but because there are real-life situations requiring a scientific explanation. Nevertheless, most practitioners adopting this approach are still overly mathematical in their treatments, and can make it sound as though the science is fascinating in its own right, but will sometimes condescend to suggest an application of the theory they so clearly relish.

But the definition we will employ here is altogether simpler, and also broader: we merely ask 'why does it happen?' as we focus on the behaviour of each chemical system. Every example we encounter in our everyday walk can be whittled down into small segments of thought, each so simple that a small child can understand. As a famous mystic of the 14th century once said, 'I

Now published as *Revelations of Divine Love*, by Mother Julian of Norwich.

saw a small hazelnut and I marvelled that everything that exists could be contained within it'. And in a sense she was right: a hazelnut looks brown because of the way light interacts with its outer shell – the topic of spectroscopy (Chapter 9); the hazelnut is hard and solid – the topic of bonding theory (Chapter 2) and phase equilibria (Chapter 5); and the nut is good to eat – we say it is readily metabolized, so we think

of kinetics (Chapter 8); and the energetics of chemical reactions (Chapters 2-4). The sensations of taste and sight are ultimately detected within the brain as electrical impulses, which we explain from within the rapidly growing field of electrochemistry (Chapter 7). Even the way a nut sticks to our teeth is readily explained by adsorption science (Chapter 10). Truly, the whole of physical chemistry can be encompassed within a few everyday examples.

So the approach taken here is the opposite to that in most other books of physical chemistry: each small section starts with an example from everyday life, i.e. both the world around us and also those elementary observations that a chemist can be certain to have pondered upon while attending a laboratory class. We then work backwards from the experiences of our hands and eyes toward the cause of why our world is the way it is.

Nevertheless, we need to be aware that physical chemistry is not a closed book in the same way of perhaps classical Latin or Greek. Physical chemistry is a growing discipline, and new experimental techniques and ideas are continually improving the data and theories with which our understanding must ultimately derive.

Inevitably, some of the explanations here have been over-simplified because physical chemistry is growing at an alarming rate, and additional sophistications in theory and experiment have yet to be devised. But a more profound reason for caution is in ourselves: it is all too easy, as scientists, to say 'Now I understand!' when in fact we mean that all the facts before us can be answered by the theory. Nevertheless, if the facts were to alter slightly – perhaps we look at another kind of nut – the theory, as far as we presently understand it, would need to change ever so slightly. Our understanding can never be complete.

So, we need a word about humility. It is said, probably too often, that science is not an emotional discipline, nor is there a place for any kind of reflection on the human side of its application. This view is deeply mistaken, because scientists limit themselves if they blind themselves to any contradictory evidence when sure they are right. The laws of physical chemistry can only grow when we have the humility to acknowledge how incomplete is our knowledge, and that our explanation might need to change. For this reason, a simple argument is not necessary the right one; but neither is a complicated one. The examples in this book were chosen to show how the world around us manifests Physical Chemistry. The explanation of a seemingly simple observation may be fiendishly complicated, but it may be beautifully simple. It must be admitted that the chemical examples are occasionally artificial. The concept of activity, for example, is widely misunderstood, probably because it presupposes knowledge from so many overlapping branches of physical chemistry. The examples chosen to explain it may be quite absurd to many experienced teachers, but, as an aid to simplification, they can be made to work. Occasionally the science has been simplified to the point where some experienced teachers will maintain that it is technically wrong. But we must start from the beginning if we are to be wise, and only then can we progress via the middle ... and physical chemistry is still a rapidly growing subject, so we don't yet know where it will end.

While this book could be read as an almanac of explanations, it provides students in further and higher education with a *unified* approach to physical chemistry. As a

teacher of physical chemistry, I have found the approaches and examples here to be effective with students of HND and the early years of BSc and MChem courses. It has been written for students having the basic chemical and mathematical skills generally expected of university entrants, such as rearrangement of elementary algebra and a little calculus. It will augment the skills of other, more advanced, students.

To reiterate, this book supplies no more than an introduction to physical chemistry, and is not an attempt to cover the whole topic. Those students who have learned some physical chemistry are invited to expand their vision by reading more specialized works. The inconsistencies and simplifications wrought by lack of space and style in this text will be readily overcome by copious background reading. A comprehensive bibliography is therefore included at the end of the book. Copies of the figures and bibliography, as well as live links can be found on the book's website at http://www.wileyeurope.com/go/monkphysical.

#### Acknowledgements

One of the more pleasing aspects of writing a text such as this is the opportunity to thank so many people for their help. It is a genuine pleasure to thank Professor Séamus Higson of Cranfield University, Dr Roger Mortimer of Loughborough University, and Dr Michele Edge, Dr David Johnson, Dr Chris Rego and Dr Brian Wardle from my own department, each of whom read all or part of the manuscript, and whose comments have been so helpful.

A particular 'thank you' to Mrs Eleanor Riches, formerly a high-school teacher, who read the entire manuscript and made many perceptive and helpful comments.

I would like to thank the many students from my department who not only saw much of this material, originally in the form of handouts, but whose comments helped shape the material into its present form.

Please allow me to thank Michael Kaufman of *The Campaign for a Hydrogen Economy* (formerly the *Hydrogen Association of UK and Ireland*) for helpful discussions to clarify the arguments in Chapter 7, and the *Tin Research Council* for their help in constructing some of the arguments early in Chapter 5.

Concerning permission to reproduce figures, I am indebted to *The Royal Society of Chemistry* for Figures 1.8 and 8.26, the *Open University Press* for Figure 7.10, *Elsevier Science* for Figures 4.7 and 10.3, and *John Wiley & Sons* for Figures 7.19, 10.11 and 10.14. Professor Robin Clarke FRs of University College London has graciously allowed the reproduction of Figure 9.28.

Finally, please allow me to thank Dr Andy Slade, Commissioning Editor of Wiley, and the copy and production editors Rachael Ballard and Robert Hambrook. A special thank you, too, to Pete Lewis.

Paul Monk Department of Chemistry & Materials Manchester Metropolitan University Manchester

# Etymological introduction

The hero in *The Name of the Rose* is a medieval English monk. He acts as sleuth, and is heard to note at one point in the story how, 'The study of words is the

whole of knowledge'. While we might wish he had gone a little further to mention chemicals, we would have to agree that many of our technical words can be traced back to Latin or Greek roots. The remainder of them originate from the principal scientists who pioneered a particular field of study, known as etymology.

"Etymology" means the derivation of a word's meaning.

*Etymology* is our name for the science of *words*, and describes the sometimestortuous route by which we inherit them from our ancestors. In fact, most words change and shift their meaning with the years. A classic example describes how King George III, when first he saw the rebuilt St Paul's Cathedral in London, described it as 'amusing, artificial and awful', by which he meant, respectively, it 'pleased him', was 'an artifice' (i.e. grand) and was 'awesome' (i.e. breathtaking).

Any reader will soon discover the way this text has an unusual etymological emphasis: the etymologies are included in the belief that taking a word apart actually helps us to understand it and related concepts. For example, as soon as we know the Greek for 'green' is *chloros*, we understand better the meanings of the proper nouns *chlorophyll* and *chlor*ine, both of which are green. Incidentally, *phyll* comes from the Greek for 'leaf', and *ine* indicates a substance.

Again, the etymology of the word *oxygen* incorporates much historical information: *oxys* is the Greek for 'sharp', in the sense of an extreme sensory experience, such as the taste of acidic vinegar, and the ending *gen* comes from *gignesthaw* (pronounced 'gin-es-thaw'), meaning 'to be produced'. The classical roots of 'oxygen' reveal how the French scientists who first made the gas thought they had isolated the distinguishing chemical component of acids.

The following tables are meant to indicate the power of this approach. There are several dozen further examples in the text. The bibliography on p. 533 will enable the interested reader to find more examples.

| Words derive                         | Words derived from a scientist's name | ame               |                                                                |                                                                                                                   |
|--------------------------------------|---------------------------------------|-------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Scientist                            | Field of study                        |                   | Present meaning(s)                                             | Derived words <sup>a</sup>                                                                                        |
| Ampère, André                        | é current, electricity                |                   | current                                                        | amp (unit of current); amperometry;                                                                               |
| Coulomb, Charles<br>Faraday, Michael | 2                                     | ochemistry        | charge passed<br>electricity                                   | <i>coulomb</i> (unit of charge); <i>coulomb</i> ic<br><i>faraday</i> (molar electronic charge); <i>farada</i> ic; |
| Voltaire, Allesandro                 | andro electricity, potential          |                   | potential                                                      | <i>jaraa</i> (unit of capacitance)<br><i>volt</i> (unit of potential); <i>volt</i> aic; <i>volt</i> ammetry       |
| Words and ro                         | Words and roots from Latin            | 4                 |                                                                |                                                                                                                   |
| Word or root                         | Original Latin meaning                | ng Modern meaning | Modern examples                                                | s Scientific examples                                                                                             |
| Centi(n)s<br>Decie(n)s               | hundred times<br>ten times            | hundred<br>ten    | century, cent (= \$/100)<br>decimate (i.e. to kill 1<br>in 10) | \$/100) centi (symbol c) = factor of 10 <sup>2</sup><br>kill 1 deci (symbol d) factor of 10                       |
| Giga(n)s                             | giant                                 | very large        | decimal<br>gigantic                                            | decimetre (= metre $\div$ 10)<br>giga (symbol G) = factor of 10 <sup>9</sup><br>                                  |

milli (symbol m) = factor of  $10^{-3}$ 

substrate (chemistry and physics)

strata of rock (in geology)

millipede, millennium stratify (many layered)

thousand, thousandth something beneath

thousand, thousands bed, couch, coverlet

Stratum

Milli

substrate (i.e. underlying strata)

subterfuge, subterranean

below, less than

superscript (in typesetting)

sub-standard, subset superstar, superlative

above, bigger than

under, beneath, directly under above, on, over, on

Super

Sub

top of

subscript (in typesetting)

| Word or root                                                 | Original Greek meaning | Modern meaning        | Modern examples                                                    | Scientific examples                                                    |
|--------------------------------------------------------------|------------------------|-----------------------|--------------------------------------------------------------------|------------------------------------------------------------------------|
| Anode $(\alpha \nu o \delta o \zeta)$                        | ascent                 | positive electrode    | anode                                                              | anode, anodic, anodize                                                 |
| Baro $(\beta \alpha \rho o \zeta)$                           | weigh down, heaviness  | to do with atmosphere | barometer, barometric                                              | barometer, isobar, bar (unit of pressure)                              |
| Cathode $(\kappa\alpha\theta o\delta o\varsigma)$            | descent                | negative electrode    | cathode                                                            | cathode, cathodic, cathodize                                           |
| Cyclo (κυκλος)                                               | circle, circular       | cycle, circle         | bicycle, cylinder, cyclone                                         | cyclotron, cyclization                                                 |
| Di (δις)                                                     | two, twice             | to do with two        | dihedral                                                           | to do with two (coordination chemistry)                                |
|                                                              |                        |                       | dilemma (two options)                                              | dimer, di-stereoisomer (i.e. one of two images)                        |
| Iso (ισ ο)                                                   | level, equality        | same                  | Isomer                                                             | e.g. isobutane, isomer                                                 |
| Kilo $(\kappa\iota\lambda\sigma\varsigma)$                   | lots of, many          | factor of a thousand  | Kilometre                                                          | kilo (symbol k) = factor of $10^3$                                     |
| Mega ( $\mu \varepsilon \gamma \alpha$ -)                    | great, large           | very large            | megabyte                                                           | mega (symbol M) = factor of $10^6$                                     |
| Mesos ( $\mu \varepsilon \sigma \sigma \varsigma$ )          | middle, mid            | mid, intermediate     | mezzanine (mid floor)                                              | mesophase (i.e. phase between two extremes)                            |
| Meta ( $\mu \varepsilon \tau \alpha$ -)                      | afterwards             | after, beyond         | metaphor (i.e. beyond the real meaning)                            | position beyond ortho on a ring<br>metathesis (i.e. product of mixing) |
| Meter $(\mu \varepsilon \tau \rho \eta \tau \eta \varsigma)$ | meter                  | a meter, to meter     | gas meter, metrical                                                | barometer (i.e. measures pressure)                                     |
| Micro $(\mu\iota\chi\rho\sigma\varsigma)$                    | small                  | tiny, small           | microscope, micrometer                                             | micro (symbol $\mu$ ) = factor of 10 <sup>-6</sup>                     |
| Mono (μονος)                                                 | one                    | one, alone            | monorail, monologue<br>monotonous (i.e. on one note)               | monomer, e.g. mono-substituted                                         |
| Ortho (opθog)                                                | straight               | straight, right       | orthodox (i.e. to the standard)<br>othopædic (straightening bones) | adjacent position on a ring                                            |
| Para ( $\pi \alpha \rho \alpha$ -)                           | near, beyond, contrary | opposite              | paranormal (beyond normal)<br>paradox (contrary to standard)       | position opposite the primary carbon                                   |
| Tetra (τετταρεος)                                            | four, four times       | to do with four       | tetrahedron                                                        | to do with four (in coodination chemistry)                             |
| Thermo $(\theta \varepsilon \rho \mu o)$                     | energy, temperature    | Heat                  | thermos, thermometer                                               | thermos, thermometer                                                   |

# Words and roots from Greek

# **List of Symbols**

#### Symbols for variables

| а                | Activity                                |
|------------------|-----------------------------------------|
| a                | van der Waals constant                  |
| Α                | optical absorbance                      |
| Α                | Area                                    |
| b                | van der Waals constant                  |
| B'               | virial coefficient                      |
| С                | concentration                           |
| С                | the intercept on the y-axis of a graph  |
| С                | constant of proportionality             |
| С                | virial coefficient                      |
| С                | heat capacity                           |
| $C_p$            | heat capacity determined at constant    |
|                  | pressure                                |
| $C_V$            | heat capacity determined at constant    |
|                  | volume                                  |
| Ε                | energy                                  |
| Ε                | potential                               |
| $E_{a}$          | activation energy                       |
| $E_{(ea)}$       | electron affinity                       |
| $E_{\mathrm{j}}$ | junction potential                      |
| $E_{(load)}$     | potential of a battery or cell when     |
|                  | passing a current                       |
| emf              | potential of a cell, determined at zero |
|                  | current                                 |

| $E_{O,R}$           | electrode potential for the couple        |
|---------------------|-------------------------------------------|
|                     | $\mathbf{O} + n\mathbf{e}^- = \mathbf{R}$ |
| $E_{O,R}^{\Theta}$  | standard electrode potential for the      |
| - /                 | couple $O + ne^- = R$                     |
| $E_{(LHS)}$         | electrode potential of the negative       |
|                     | electrode in a cell                       |
| $E_{(\rm RHS)}$     | electrode potential of the positive       |
|                     | electrode in a cell                       |
| f                   | fugacity                                  |
| f                   | frequency                                 |
| F                   | force                                     |
| G                   | Gibbs function                            |
| $\Delta G$          | change in Gibbs function                  |
| $G^{\Theta}$        | standard Gibbs function                   |
| $G^{\ddagger}$      | Gibbs function of activation              |
| h                   | height                                    |
| Η                   | enthalpy                                  |
| $\Delta H$          | change in enthalpy                        |
| H <sub>(ads)</sub>  | enthalpy of adsorption                    |
| $H^{\Theta}$        | standard enthalpy                         |
| $\Delta H_{\rm BE}$ | bond enthalpy                             |
| $\Delta H_{\rm c}$  | enthalpy of combustion                    |
| $\Delta H_{ m f}$   | enthalpy of formation                     |
| $H^{\ddagger}$      | enthalpy of activation                    |
| Ι                   | electrical current                        |
| Ι                   | intensity of light following absorption   |

#### xxiv LIST OF SYMBOLS

| Io               | intensity of incident light beam                                   | т                  | mass                                    |
|------------------|--------------------------------------------------------------------|--------------------|-----------------------------------------|
| Ĩ                | ionic strength                                                     | М                  | relative molar mass                     |
| Ι                | ionization energy                                                  | n                  | number of moles                         |
| J                | rotational quantum number; rotational quantum number of an excited | п                  | number of electrons in a redox reaction |
|                  | state                                                              | n <sub>m</sub>     | amount of material in an adsorbed       |
| J'               | rotational quantum number of ground                                |                    | monolayer                               |
| -                | state                                                              | Ν                  | number                                  |
| k                | force constant of a bond                                           | р                  | pressure                                |
| k                | proportionality constant                                           | $p_{(i)}$          | partial pressure of component <i>i</i>  |
| k                | rate constant                                                      | $p_{(i)}^{\Theta}$ | vapour pressure of pure <i>i</i>        |
| k'               | pseudo rate constant                                               | $p^{\Theta}$       | standard pressure of 10 <sup>5</sup> Pa |
| $k_n$            | rate constant of an <i>n</i> th-order reaction                     | q                  | heat energy                             |
| $k_{-n}$         | rate constant for the back reaction of                             | Q                  | charge                                  |
|                  | an <i>n</i> th-order reaction                                      | Q                  | reaction quotient                       |
| $k_{(n)}$        | rate constant of the <i>n</i> th process in a                      | r                  | separation between ions                 |
| (11)             | multi-step reaction                                                | r                  | radius of a circle or sphere            |
| $k_{\mathrm{a}}$ | rate constant of adsorption                                        | r                  | bond length                             |
| $k_{\rm d}$      | rate constant of desorption                                        | r'                 | bond length in an optically excited     |
| $k_{\rm H}$      | Henry's law constant                                               |                    | species                                 |
| K                | equilibrium constant                                               | r <sub>o</sub>     | equilibrium bond length                 |
| Κ                | correction constant of an ion-selective                            | R                  | electrical resistance                   |
|                  | electrode                                                          | S                  | solubility                              |
| Ka               | acidity constant ('acid dissociation'                              | S                  | stoichiometric ratio                    |
| -                | constant)                                                          | S                  | entropy                                 |
| $K_{a(n)}$       | acidity constant for the <i>n</i> th                               | $\Delta S$         | change in entropy                       |
| u(1)             | dissociation reaction                                              | $S^{\oplus}$       | standard entropy                        |
| K <sub>b</sub>   | basicity constant                                                  | $S^{\ddagger}$     | entropy of activation                   |
| K <sub>c</sub>   | equilibrium constant formulated in                                 | t                  | time                                    |
|                  | terms of concentration                                             | $t_{\frac{1}{2}}$  | half life                               |
| Kp               | equilibrium constant formulated in                                 | $\stackrel{2}{T}$  | temperature                             |
|                  | terms of pressure                                                  | Т                  | optical transmittance                   |
| Ks               | equilibrium constant of solubility                                 | To                 | optical transmittance without a sample  |
|                  | (sometimes called 'solubility                                      | $T_{\rm K}$        | Krafft temperature                      |
|                  | product' or 'solubility constant')                                 | U                  | internal energy                         |
| $K_{ m w}$       | autoprotolysis constant of water                                   | $\Delta U$         | change in internal energy, e.g. during  |
| $K^{\ddagger}$   | equilibrium constant of forming a                                  |                    | reaction                                |
|                  | transition state 'complex'                                         | v                  | quantum-number of vibration             |
| l                | length                                                             | v'                 | quantum-number of vibration in an       |
| т                | gradient of a graph                                                |                    | excited-state species                   |

| v''                                                                                                                                                                                                                       | quantum-number of vibration in                                                                                                                                                                                                                                                                                                                                                                                                           | ν                                                                           | velocity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| U                                                                                                                                                                                                                         | a ground-state species                                                                                                                                                                                                                                                                                                                                                                                                                   | v                                                                           | frequency (the reciprocal of the period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| V                                                                                                                                                                                                                         | volume                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                             | of an event)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| V                                                                                                                                                                                                                         | voltage, e.g. of a power pack                                                                                                                                                                                                                                                                                                                                                                                                            | $\nu_{0}$                                                                   | frequency following transmission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| V                                                                                                                                                                                                                         | Coulomb potential energy                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                           | (in Raman spectroscopy)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Vm                                                                                                                                                                                                                        | molar volume                                                                                                                                                                                                                                                                                                                                                                                                                             | ξ                                                                           | extent of reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| w                                                                                                                                                                                                                         | work                                                                                                                                                                                                                                                                                                                                                                                                                                     | ρ                                                                           | density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| x                                                                                                                                                                                                                         | controlled variable on the horizontal                                                                                                                                                                                                                                                                                                                                                                                                    | σ                                                                           | electrical conductivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                           | axis of a graph                                                                                                                                                                                                                                                                                                                                                                                                                          | σ                                                                           | standard deviation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| x                                                                                                                                                                                                                         | deviation of a bond from its                                                                                                                                                                                                                                                                                                                                                                                                             | $\phi$                                                                      | electric field strength (electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                           | equilibrium length                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                             | interaction)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $x_i$                                                                                                                                                                                                                     | mole fraction of <i>i</i>                                                                                                                                                                                                                                                                                                                                                                                                                | $\phi$                                                                      | work function of a metal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| у                                                                                                                                                                                                                         | observed variable on the vertical                                                                                                                                                                                                                                                                                                                                                                                                        | $\phi$                                                                      | primary quantum yield                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                           | of a graph                                                                                                                                                                                                                                                                                                                                                                                                                               | $\Phi$                                                                      | quantum yield of a reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| z                                                                                                                                                                                                                         | charge on ion (so $z^+$ for a cation                                                                                                                                                                                                                                                                                                                                                                                                     | χ                                                                           | electronegativity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                           | and $z^-$ for an anion)                                                                                                                                                                                                                                                                                                                                                                                                                  | ω                                                                           | wavenumber of a vibration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Ζ                                                                                                                                                                                                                         | compressibility                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                             | (determined as $\omega = \lambda \div c$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| γ                                                                                                                                                                                                                         | activity coefficient                                                                                                                                                                                                                                                                                                                                                                                                                     | Svn                                                                         | nbols for constants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\gamma_{\pm}$                                                                                                                                                                                                            | mean ionic activity coefficient                                                                                                                                                                                                                                                                                                                                                                                                          | Syn                                                                         | ibols for constants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Υ±                                                                                                                                                                                                                        | mean forme activity coefficient                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\gamma_{\pm}$<br>$\gamma$                                                                                                                                                                                                | fugacity coefficient                                                                                                                                                                                                                                                                                                                                                                                                                     | A                                                                           | Debye–Hückel 'A' factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| •                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                        | A<br>c                                                                      | Debye–Hückel ' <i>A</i> ' factor<br>the speed of light <i>in vacuo</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| γ                                                                                                                                                                                                                         | fugacity coefficient                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| γ<br>γ                                                                                                                                                                                                                    | fugacity coefficient<br>surface tension                                                                                                                                                                                                                                                                                                                                                                                                  | С                                                                           | the speed of light in vacuo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| γ<br>γ<br>δ                                                                                                                                                                                                               | fugacity coefficient<br>surface tension<br>small increment                                                                                                                                                                                                                                                                                                                                                                               | c<br>$c^{\ominus}$                                                          | the speed of light <i>in vacuo</i> standard concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| γ<br>γ<br>δ<br>∂                                                                                                                                                                                                          | fugacity coefficient<br>surface tension<br>small increment<br>partial differential                                                                                                                                                                                                                                                                                                                                                       | c<br>$c^{\ominus}$                                                          | the speed of light <i>in vacuo</i><br>standard concentration<br>charge on an electron, of value                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| γ<br>γ<br>δ<br>∂                                                                                                                                                                                                          | fugacity coefficient<br>surface tension<br>small increment<br>partial differential<br>change in a variable (so                                                                                                                                                                                                                                                                                                                           | с<br>с <sup>ө</sup><br>е                                                    | the speed of light <i>in vacuo</i><br>standard concentration<br>charge on an electron, of value<br>$1.6 \times 10^{-19}$ C                                                                                                                                                                                                                                                                                                                                                                                                                    |
| γ<br>γ<br>δ<br>∂<br>Δ                                                                                                                                                                                                     | fugacity coefficient<br>surface tension<br>small increment<br>partial differential<br>change in a variable (so<br>$\Delta X = X_{\text{(final form)}} - X_{\text{(initial form)}}$ )                                                                                                                                                                                                                                                     | $c \\ c^{\Theta} \\ e \\ f$                                                 | the speed of light <i>in vacuo</i><br>standard concentration<br>charge on an electron, of value<br>$1.6 \times 10^{-19}$ C<br>mathematical operator ('function of')                                                                                                                                                                                                                                                                                                                                                                           |
| γ<br>γ<br>δ<br>∂<br>Δ                                                                                                                                                                                                     | fugacity coefficient<br>surface tension<br>small increment<br>partial differential<br>change in a variable (so<br>$\Delta X = X_{(\text{final form})} - X_{(\text{initial form})})$<br>extinction coefficient ('molar decadic<br>absorptivity')<br>relative permittivity                                                                                                                                                                 | $c \\ c^{\Theta} \\ e \\ f$                                                 | the speed of light <i>in vacuo</i><br>standard concentration<br>charge on an electron, of value<br>$1.6 \times 10^{-19}$ C<br>mathematical operator ('function of')<br>Faraday constant, of value                                                                                                                                                                                                                                                                                                                                             |
| γ<br>γ<br>δ<br>∂<br>Δ                                                                                                                                                                                                     | fugacity coefficient<br>surface tension<br>small increment<br>partial differential<br>change in a variable (so<br>$\Delta X = X_{\text{(final form)}} - X_{\text{(initial form)}})$<br>extinction coefficient ('molar decadic<br>absorptivity')<br>relative permittivity<br>permittivity of free space                                                                                                                                   | $c \\ c^{\Theta} \\ e \\ f \\ F$                                            | the speed of light <i>in vacuo</i><br>standard concentration<br>charge on an electron, of value<br>$1.6 \times 10^{-19}$ C<br>mathematical operator ('function of')<br>Faraday constant, of value<br>96 485 C mol <sup>-1</sup>                                                                                                                                                                                                                                                                                                               |
| $\gamma$<br>$\gamma$<br>$\delta$<br>$\partial$<br>$\Delta$<br>$\varepsilon$<br>$\varepsilon_{\rm r}$                                                                                                                      | fugacity coefficient<br>surface tension<br>small increment<br>partial differential<br>change in a variable (so<br>$\Delta X = X_{(\text{final form})} - X_{(\text{initial form})})$<br>extinction coefficient ('molar decadic<br>absorptivity')<br>relative permittivity<br>permittivity of free space<br>adsorption isotherm                                                                                                            | $c \\ c^{\Theta} \\ e \\ f \\ F$                                            | the speed of light <i>in vacuo</i><br>standard concentration<br>charge on an electron, of value<br>$1.6 \times 10^{-19}$ C<br>mathematical operator ('function of')<br>Faraday constant, of value<br>96485 C mol <sup>-1</sup><br>Boltzmann constant, of value<br>$1.38 \times 10^{-23}$<br>Avogadro constant, of value                                                                                                                                                                                                                       |
| $ \begin{array}{c} \gamma \\ \gamma \\ \gamma \\ \delta \\ \partial \\ \Delta \\ \varepsilon \\ \varepsilon_{\rm r} \\ \varepsilon_{\rm o} \end{array} $                                                                  | fugacity coefficient<br>surface tension<br>small increment<br>partial differential<br>change in a variable (so<br>$\Delta X = X_{(\text{final form})} - X_{(\text{initial form})})$<br>extinction coefficient ('molar decadic<br>absorptivity')<br>relative permittivity<br>permittivity of free space<br>adsorption isotherm<br>angle                                                                                                   | c<br>$c^{\Theta}$<br>e<br>f<br>F<br>$k_{\rm B}$                             | the speed of light <i>in vacuo</i><br>standard concentration<br>charge on an electron, of value<br>$1.6 \times 10^{-19}$ C<br>mathematical operator ('function of')<br>Faraday constant, of value<br>96485 C mol <sup>-1</sup><br>Boltzmann constant, of value<br>$1.38 \times 10^{-23}$                                                                                                                                                                                                                                                      |
| $ \begin{array}{c} \gamma \\ \gamma \\ \gamma \\ \delta \\ \partial \\ \Delta \\ \varepsilon \\ \varepsilon_{r} \\ \varepsilon_{o} \\ \theta \end{array} $                                                                | fugacity coefficient<br>surface tension<br>small increment<br>partial differential<br>change in a variable (so<br>$\Delta X = X_{(\text{final form})} - X_{(\text{initial form})})$<br>extinction coefficient ('molar decadic<br>absorptivity')<br>relative permittivity<br>permittivity of free space<br>adsorption isotherm<br>angle<br>ionic conductivity                                                                             | c<br>$c^{\Theta}$<br>e<br>f<br>F<br>$k_{\rm B}$                             | the speed of light <i>in vacuo</i><br>standard concentration<br>charge on an electron, of value<br>$1.6 \times 10^{-19}$ C<br>mathematical operator ('function of')<br>Faraday constant, of value<br>96 485 C mol <sup>-1</sup><br>Boltzmann constant, of value<br>$1.38 \times 10^{-23}$<br>Avogadro constant, of value<br>$6.022 \times 10^{23}$ mol <sup>-1</sup><br>Avogadro number, of value                                                                                                                                             |
| $ \begin{array}{l} \gamma \\ \gamma \\ \gamma \\ \delta \\ \partial \\ \Delta \\ \varepsilon \\ \varepsilon_{r} \\ \varepsilon_{o} \\ \theta \\ \theta \\ \kappa \\ \lambda \end{array} $                                 | fugacity coefficient<br>surface tension<br>small increment<br>partial differential<br>change in a variable (so<br>$\Delta X = X_{(\text{final form})} - X_{(\text{initial form})}$ )<br>extinction coefficient ('molar decadic<br>absorptivity')<br>relative permittivity<br>permittivity of free space<br>adsorption isotherm<br>angle<br>ionic conductivity<br>wavelength                                                              | c<br>c⇔<br>e<br>f<br>F<br>k <sub>B</sub><br>L                               | the speed of light <i>in vacuo</i><br>standard concentration<br>charge on an electron, of value<br>$1.6 \times 10^{-19}$ C<br>mathematical operator ('function of')<br>Faraday constant, of value<br>96 485 C mol <sup>-1</sup><br>Boltzmann constant, of value<br>$1.38 \times 10^{-23}$<br>Avogadro constant, of value<br>$6.022 \times 10^{23}$ mol <sup>-1</sup><br>Avogadro number, of value<br>$6.022 \times 10^{23}$ mol <sup>-1</sup>                                                                                                 |
| $\begin{array}{l} \gamma \\ \gamma \\ \gamma \\ \delta \\ \partial \\ \Delta \\ \varepsilon \\ \varepsilon \\ \varepsilon_{r} \\ \varepsilon_{o} \\ \theta \\ \theta \\ \kappa \\ \kappa \end{array}$                     | fugacity coefficient<br>surface tension<br>small increment<br>partial differential<br>change in a variable (so<br>$\Delta X = X_{(\text{final form})} - X_{(\text{initial form})})$<br>extinction coefficient ('molar decadic<br>absorptivity')<br>relative permittivity<br>permittivity of free space<br>adsorption isotherm<br>angle<br>ionic conductivity                                                                             | c<br>c⇔<br>e<br>f<br>F<br>k <sub>B</sub><br>L                               | the speed of light <i>in vacuo</i><br>standard concentration<br>charge on an electron, of value<br>$1.6 \times 10^{-19}$ C<br>mathematical operator ('function of')<br>Faraday constant, of value<br>96 485 C mol <sup>-1</sup><br>Boltzmann constant, of value<br>$1.38 \times 10^{-23}$<br>Avogadro constant, of value<br>$6.022 \times 10^{23}$ mol <sup>-1</sup><br>Avogadro number, of value                                                                                                                                             |
| $ \begin{array}{l} \gamma \\ \gamma \\ \gamma \\ \delta \\ \partial \\ \Delta \\ \varepsilon \\ \varepsilon_{r} \\ \varepsilon_{o} \\ \theta \\ \theta \\ \kappa \\ \lambda \end{array} $                                 | fugacity coefficient<br>surface tension<br>small increment<br>partial differential<br>change in a variable (so<br>$\Delta X = X_{(\text{final form})} - X_{(\text{initial form})})$<br>extinction coefficient ('molar decadic<br>absorptivity')<br>relative permittivity<br>permittivity of free space<br>adsorption isotherm<br>angle<br>ionic conductivity<br>wavelength<br>the wavelength of a peak in a                              | c<br>c <sup>e</sup><br>f<br>F<br>k <sub>B</sub><br>L<br>N <sub>A</sub>      | the speed of light <i>in vacuo</i><br>standard concentration<br>charge on an electron, of value<br>$1.6 \times 10^{-19}$ C<br>mathematical operator ('function of')<br>Faraday constant, of value<br>96 485 C mol <sup>-1</sup><br>Boltzmann constant, of value<br>$1.38 \times 10^{-23}$<br>Avogadro constant, of value<br>$6.022 \times 10^{23}$ mol <sup>-1</sup><br>Avogadro number, of value<br>$6.022 \times 10^{23}$ mol <sup>-1</sup><br>acceleration due to gravity, of value                                                        |
| $\begin{array}{l} \gamma \\ \gamma \\ \gamma \\ \delta \\ \partial \\ \Delta \\ \varepsilon \\ \varepsilon \\ \varepsilon_{r} \\ \varepsilon_{o} \\ \theta \\ \theta \\ \kappa \\ \lambda \\ \lambda_{(max)} \end{array}$ | fugacity coefficient<br>surface tension<br>small increment<br>partial differential<br>change in a variable (so<br>$\Delta X = X_{(\text{final form})} - X_{(\text{initial form})}$ )<br>extinction coefficient ('molar decadic<br>absorptivity')<br>relative permittivity<br>permittivity of free space<br>adsorption isotherm<br>angle<br>ionic conductivity<br>wavelength<br>the wavelength of a peak in a<br>spectrum                 | c<br>c <sup>⊕</sup><br>f<br>F<br>k <sub>B</sub><br>L<br>N <sub>A</sub><br>g | the speed of light <i>in vacuo</i><br>standard concentration<br>charge on an electron, of value<br>$1.6 \times 10^{-19}$ C<br>mathematical operator ('function of')<br>Faraday constant, of value<br>96 485 C mol <sup>-1</sup><br>Boltzmann constant, of value<br>$1.38 \times 10^{-23}$<br>Avogadro constant, of value<br>$6.022 \times 10^{23}$ mol <sup>-1</sup><br>Avogadro number, of value<br>$6.022 \times 10^{23}$ mol <sup>-1</sup><br>acceleration due to gravity, of value<br>9.81 m s <sup>-2</sup>                              |
| $\gamma$<br>$\gamma$<br>$\gamma$<br>$\delta$<br>$\partial$<br>$\Delta$<br>$\varepsilon$<br>$\varepsilon_{r}$<br>$\varepsilon_{o}$<br>$\theta$<br>$\theta$<br>$\kappa$<br>$\lambda$<br>$\lambda_{(max)}$<br>$\mu$          | fugacity coefficient<br>surface tension<br>small increment<br>partial differential<br>change in a variable (so<br>$\Delta X = X_{(\text{final form})} - X_{(\text{initial form})}$ )<br>extinction coefficient ('molar decadic<br>absorptivity')<br>relative permittivity<br>permittivity of free space<br>adsorption isotherm<br>angle<br>ionic conductivity<br>wavelength<br>the wavelength of a peak in a<br>spectrum<br>reduced mass | c<br>c <sup>⊕</sup><br>f<br>F<br>k <sub>B</sub><br>L<br>N <sub>A</sub><br>g | the speed of light <i>in vacuo</i><br>standard concentration<br>charge on an electron, of value<br>$1.6 \times 10^{-19}$ C<br>mathematical operator ('function of')<br>Faraday constant, of value<br>96 485 C mol <sup>-1</sup><br>Boltzmann constant, of value<br>$1.38 \times 10^{-23}$<br>Avogadro constant, of value<br>$6.022 \times 10^{23}$ mol <sup>-1</sup><br>Avogadro number, of value<br>$6.022 \times 10^{23}$ mol <sup>-1</sup><br>acceleration due to gravity, of value<br>9.81 m s <sup>-2</sup><br>Planck constant, of value |

## Symbols for units

| А    | ampère                                  |
|------|-----------------------------------------|
| Å    | ångström, length of value $10^{-10}$ m  |
|      | (non-IUPAC)                             |
| bar  | standard pressure of 10 <sup>5</sup> Pa |
|      | (non-SI unit)                           |
| С    | coulomb                                 |
| °C   | centigrade (non-SI)                     |
| g    | gram                                    |
| Hz   | hertz                                   |
| J    | joule                                   |
| Κ    | kelvin                                  |
| kg   | kilogram                                |
| m    | metre                                   |
| mmHg | millimetre of mercury (non-SI unit      |
|      | of pressure)                            |
| mol  | mole                                    |
| Ν    | newton                                  |
| Ра   | pascal                                  |
| S    | second (SI unit)                        |
| S    | siemen                                  |
| V    | volt                                    |
| W    | watt                                    |
| yr   | year                                    |
| Ω    | ohm                                     |
|      |                                         |

### Acronyms and abbreviations

| СТ    | charge transfer                    |
|-------|------------------------------------|
| d     | differential operator (which never |
|       | appears on its own)                |
| HOMO  | highest occupied molecular orbital |
| IQ    | intelligence quotient              |
| IR    | infrared                           |
| IUPAC | International Union of Pure and    |
|       | Applied Chemistry                  |

| IVF     | in vitro fertilization                        |
|---------|-----------------------------------------------|
| LCD     | liquid crystal display                        |
| LHS     | left-hand side                                |
| LUMO    | lowest unoccupied molecular                   |
|         | orbital                                       |
| MLCT    | metal-to-ligand charge transfer               |
| MRI     | magnetic resonance imaging                    |
| NIR     | near-infra red                                |
| NMR     | nuclear magnetic resonance                    |
| 0       | general oxidized form of a redox              |
|         | couple                                        |
| р       | mathematical operator,                        |
|         | $-\log_{10}$ [variable], so                   |
|         | $pH = -\log_{10}[H^+]$                        |
| PEM     | proton exchange membrane                      |
| R       | general reduced form of a redox               |
|         | couple                                        |
| RHS     | right-hand side                               |
| s.t.p.  | standard temperature and                      |
|         | pressure                                      |
| SAQ     | self-assessment question                      |
| SCE     | saturated calomel electrode                   |
| SCUBA   | self-contained underwater breathing           |
|         | apparatus                                     |
| SHE     | standard hydrogen electrode                   |
| SHM     | simple harmonic motion                        |
| SI      | Système Internationale                        |
| $S_N 1$ | unimolecular nucleophilic substitution        |
|         | process                                       |
| $S_N 2$ | bimolecular nucleophilic substitution process |
| SSCE    | silver-silver chloride electrode              |
| TS      | transition state                              |
| TV      | television                                    |
| UPS     | UV-photoelectron spectroscopy                 |
| UV      | ultraviolet                                   |
|         | ultraviolet and visible                       |
| XPS     | X-ray photoelectron spectroscopy              |
| -       | , i rr.                                       |

#### Standard subscripts (other than those where a word or phrase is spelt in full)

| ads      | adsorption; adsorbed                  |
|----------|---------------------------------------|
| aq       | aqueous                               |
| c        | combustion                            |
| eq       | at equilibrium                        |
| f        | formation                             |
| g        | gas                                   |
| 1        | liquid                                |
| LHS      | left-hand side of a cell              |
| m        | molar                                 |
| р        | at constant pressure                  |
| Pt       | platinum (usually, as an electrode)   |
| r        | reaction                              |
| RHS      | right-hand side of cell               |
| S        | solid                                 |
| sat'd    | saturated                             |
| t        | at time $t$ (i.e. after a reaction or |
|          | process has commenced)                |
| V        | at constant volume                    |
| 0        | initially (i.e. at time $t = 0$ )     |
| $\infty$ | measurement taken after an infinite   |
|          | length of time                        |
|          |                                       |

#### Standard superscripts (other than those where a word or phrase is spelt in full)

| ‡ | activated quantity |
|---|--------------------|
| _ | anion              |
| + | cation             |
| * | excited state      |

• radical

+• radical cation

#### Chemicals and materials

| А              | general anion                       |
|----------------|-------------------------------------|
| Bu             | butyl                               |
| CFC            | chlorofluorocarbon                  |
| DMF            | N,N-dimethylformamide               |
| DMSO           | dimethylsulphoxide                  |
| DNA            | deoxyribonucleic acid               |
| e <sup>-</sup> | electron                            |
| EDTA           | ethylenediamine tetra-acetic acid   |
| HA             | general Lowry-Brønsted acid         |
| LPG            | liquid petroleum gas                |
| М              | general cation                      |
| MB             | methylene blue                      |
| MV             | methyl viologen                     |
|                | (1,1'-dimethyl-4,4'-bipyridilium)   |
| 0              | general oxidized form of a redox    |
|                | couple                              |
| PC             | propylene carbonate                 |
| Ph             | phenyl substituent                  |
| R              | general alkyl substituent           |
| R              | general reduced form of a redox     |
|                | couple                              |
| SDS            | sodium dodecyl sulphate             |
| TFA            | tetrafluoroacetic acid              |
| α              | particle emitted during radioactive |
|                | disintegration of nucleus           |
| $\beta$        | particle emitted during radioactive |
|                | disintegration of nucleus           |
| γ              | high-energy photon (gamma ray)      |
|                |                                     |