
WEAR – MATERIALS, MECHANISMS AND PRACTICE

Edited by

Gwidon W. Stachowiak

WEAR – MATERIALS, MECHANISMS AND PRACTICE

Editors: M.J. Neale, T.A. Polak and M. Priest

Guide to Wear Problems and Testing for Industry M.J. Neale and M. Gee

Handbook of Surface Treatment and Coatings M. Neale, T.A. Polak, and M. Priest (Eds)

Lubrication and Lubricant Selection – A Practical Guide, 3rd Edition A.R. Lansdown

Rolling Contacts T.A. Stolarski and S. Tobe

Total Tribology – Towards an integrated approach **I. Sherrington, B. Rowe and R. Wood (Eds)**

Tribology – Lubrication, Friction and Wear I.V. Kragelsky, V.V. Alisin, N.K. Myshkin and M.I. Petrokovets

Wear – Materials, Mechanisms and Practice G. Stachowiak (Ed.)

WEAR – MATERIALS, MECHANISMS AND PRACTICE

Edited by

Gwidon W. Stachowiak

Copyright © 2005	John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
	West Sussex PO19 8SQ, England
	Telephone (+44) 1243 779777

Chapter 1 Copyright © I.M. Hutchings

Email (for orders and customer service enquiries): cs-books@wiley.co.uk Visit our Home Page on www.wiley.com

Reprinted with corrections May 2006

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Library of Congress Cataloging in Publication Data

Wear - materials, mechanisms and practice/editor Gwidon W. Stachowiak.

p. cm.
Includes bibliographical references and index.
ISBN-13: 978-0-470-01628-2 (cloth : alk. paper)
ISBN-10: 0-470-01628-0 (cloth : alk. paper)
1. Mechanical wear. I. Stachowiak, G.W. (Gwidon W.)
TA418.4.W415 2005
620.1'1292—dc22
2005006833

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN-13: 978-0-470-01628-2 (HB) ISBN-10: 0-470-01628-0 (HB)

Typeset in 10/12pt Times by Integra Software Services Pvt. Ltd, Pondicherry, India Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two trees are planted for each one used for paper production.

Contents

List of Contributors Series Editors' Foreword Preface		xiii xvii xix
1	The Challenge of Wear I.M. Hutchings	1
	Abstract	1
	1.1 Introduction	1
	1.2 Definitions and Development of Wear Studies	1
	1.3 Scope and Challenges	2
	1.4 Conclusions	6
	References	6
2	Classification of Wear Mechanisms/Models K. Kato	9
	Abstract	9
	2.1 Introduction	9
	2.2 Classification of Wear Mechanisms and Wear Modes	10
	2.2.1 Mechanical, Chemical and Thermal Wear	10
	2.2.2 Wear Modes: Abrasive, Adhesive, Flow and Fatigue Wear	11
	2.2.3 Corrosive Wear	14
	2.2.4 Melt and Diffusive Wear	15
	2.3 General Discussion of Wear Mechanisms and Their Models	15
	2.3.1 Material Dependence	15
	2.3.2 Wear Maps	16
	2.3.3 Wear Mode Transition	17
	2.3.4 Erosion	17
	2.4 Conclusion	18
	Acknowledgements	18
	References	18
3	Wear of Metals: A Material Approach S.K. Biswas	21
	Abstract	21
	3.1 Introduction	21

	3.2 Mild Wear and Transition to Severe Wear	22
	3.2.1 Mild Wear	22
	3.2.2 Transition to Severe Wear	23
	3.3 Strain Rate Estimates and Bulk Surface Temperature	27
	3.3.1 Strain Rate Response Maps	28
	3.3.2 Bulk Surface Temperature	30
	3.3.3 The Phenomenological Argument	30
	3.3.4 Micrographic Observations	31
	3.4 Summary	34
	3.4.1 Homogeneous Deformation – Severe Wear	34
	3.4.2 Homogeneous Deformation – Mild Wear	35
	3.4.3 Inhomogeneous Deformation – Severe Wear	35
	Acknowledgements	35
	References	35
		~=
4	Boundary Lubricated Wear	37
	S.M. Hsu, R.G. Munro, M.C. Shen,	
	and R.S. Gates	
	Abstract	37
	4.1 Introduction	37
	4.2 Lubricated Wear Classification	38
	4.3 Lubricated Wear Versus "Dry" Wear	38
	4.4 Wear Measurement in Well-Lubricated Systems	42
	4.5 Measurement Procedures	44
	4.5.1 Run-In Process	46
	4.5.2 General Performance Wear Test (GPT)	49
	4.5.3 Enhanced Oxidation Wear Test (EOT)	52
	4.5.4 Boundary Film Persistence Test (BFPT)	53
	4.5.5 Case Study with GPT and BFPT	55
	4.5.6 Boundary Film Failure Test (BFFT)	57
	4.6 Wear Mechanisms Under Lubricated Conditions	61
	4.7 Modeling of Lubricated Wear	65
	4.7.1 Wear	65
	4.7.2 Contact Area	65
	4.7.3 Rheology	66
	4.7.4 Film Thickness	67
	4.7.5 Contact Stress	67
	4.7.6 Flash Temperatures	67
	4.8 Summary	68
	Acknowledgments	69
	References	69
5	Wear and Chemistry of Lubricants	71
Ľ	A. Neville and A. Morina	,1
	5.1 Encountering Wear in Tribological Contacts	71
	5.2 Lubricant Formulations – Drivers for Change	73
	5.3 Tribochemistry and Wear	76
	5.4 Antiwear Additive Technologies	77
	5.4.1 Antiwear Technologies	77
	5.4.2 ZDDP – Antiwear Mechanism	78

	5.4.3 Interaction of ZDDP with Other Additives	83
	5.4.4 New Antiwear Additive Technologies	87
	5.5 Extreme Pressure Additives	88
	5.6 Lubricating Non-Fe Materials	89
	References	90
6	Surface Chemistry in Tribology	95
	A.J. Gellman and N.D. Spencer	
	Abstract	95
	6.1 Introduction	95
	6.2 Boundary Lubrication and Oiliness Additives	95
	6.2.1 Introduction	95
	6.2.2 Monolayers, Multilayers and Soaps	96 102
	6.2.3 Viscous Near-Surface Layers	102
	6.2.4 Boundary Lubrication in Natural Joints 6.2.5 Summary	102
	6.3 Zinc Dialkyldithiophosphate	103
	6.3.1 Background	103
	6.3.2 Analytical Approaches	105
	6.3.3 Summary of Film-Formation Mechanism	104
	6.3.4 Studies of Film Structure, Composition, and Thickness	105
	6.4 Hard Disk Lubrication	109
	6.5 Vapor-Phase Lubrication	112
	6.6 Tribology of Quasicrystals	115
	6.7 Conclusions	118
	Acknowledgments	118
	References	118
7	Tribology of Engineered Surfaces	123
	K. Holmberg and A. Matthews	
	Abstract	123
	7.1 Introduction	123
	7.2 Definition of an Engineered Surface	125
	7.3 Tribomechanisms of Coated Surfaces	125
	7.3.1 Scales of Tribology	125
	7.3.2 Macromechanical Friction and Wear	126
	7.3.3 Micromechanical Mechanisms	131
	7.3.4 Modelling Stresses and Strains in a Coated Microcontact	132
	7.3.5 Tribochemical Mechanisms	133
	7.3.6 Nanoscale Mechanisms	135
	7.3.7 Debris Generation and Transfer Layers	136
	7.4 Contact Types	139
	7.4.1 Sliding	139
	7.4.2 Abrasion	141
	7.4.3 Impact	141
	7.4.4 Surface Fatigue	141
	7.4.5 Fretting	142
	7.4.6 Chemical Dissolution	143
	7.4.7 Lubricated	143

	7.5 Advanced Centing Types	144
	7.5 Advanced Coating Types	
	7.5.1 Hard Binary Compound Coatings	145
	7.5.2 Multilayer Coatings	146
	7.5.3 Nanocomposite Coatings	149
	7.5.4 Hybrid and Duplex Coatings	151
	7.6 Applications	152
	7.7 Conclusions	154
	References	155
8	Wear of Ceramics: Wear Transitions and Tribochemical Reactions S. Jahanmir	167
	Abstract	167
	8.1 Introduction	168
	8.2 Structure and Properties of Ceramics	168
	8.2.1 Alumina Ceramics	168
	8.2.2 Silicon Nitride Ceramics	169
	8.2.3 Silicon Carbide Ceramics	170
	8.3 Wear Transitions	170
	8.3.1 Alumina	171
	8.3.2 Silicon Nitride	174
	8.3.3 Silicon Carbide	175
	8.4 Damage Formation in Hertzian Contacts	177
	8.4.1 Brittle Behavior	177
	8.4.2 Quasi-Plastic Behavior	177
	8.4.3 Brittleness Index	180
	8.5 Transition Loads in Sliding Contacts	181
	8.5.1 Quasi-Plastic Behavior	181
	8.5.2 Brittle Behavior	183
	8.5.3 Transition from Brittle Fracture to Quasi-Plasticity	184
	8.6 Ceramics in Tribological Applications	185
	Acknowledgments References	187 187
	References	187
9	Tribology of Diamond and Diamond-Like Carbon Films: An Overview	191
	A. Erdemir and Ch. Donnet	
	Abstract	191
	9.1 General Overview	192
	9.2 Diamond Films	194
	9.2.1 Deposition and Film Microstructure	194
	9.2.2 Tribology of Diamond Films	195 204
	9.2.3 Practical Applications 9.3 Diamond-like Carbon Films	204 207
	9.3.1 Structure and Composition	207
	9.3.2 Tribology of DLC Films	207
	9.3.2 Synthesis of Carbon Films with Superlow-Friction and -Wear Properties	209
	9.3.4 Practical Applications	213
	9.4 Summary and Future Direction	217
	Acknowledgments	219
	References	220

10	Tribology of Polymeric Solids and Their Composites B.J. Briscoe and S.K. Sinha	223
	Abstract	223
	10.1 Introduction	224
	10.2 The Mechanisms of Polymer Friction	225
	10.2.1 The Ploughing Term – Brief Summary	225
	10.2.2 The Adhesion Term – Brief Summary	227
	10.3 Wear	228
	10.3.1 Semantics and Rationalizations	228
	10.3.2 Wear Classification Based on Generic Scaling Responses	230
	10.3.3 Phenomenological Classification of Wear Damages	232
	10.3.4 Wear Classification Based on Polymeric Responses	240
	10.4 Tribology of Polymer Composites	249
	10.4.1 'Soft and Lubricating' Phases in a Harder Matrix	249
	10.4.2 'Hard and Strong' Phases in a 'Soft' Matrix	250
	10.4.3 Hybrid Polymer Composites	253
	10.5 Environmental and Lubrication Effects	254
	10.6 A Case Study: Polymers in Hip and Knee Prosthetic Applications -	
	Ultrahigh-Molecular-Weight Poly(ethylene) (UHMWPE)	256
	10.7 Concluding Remarks	260
	Acknowledgements	261
	References	261
11	Wear of Polymer Composites	269
	K. Friedrich, Z. Zhang and P. Klein	
	Abstract	269
	11.1 Introduction	269
	11.2 Sliding Wear of Filler Reinforced Polymer Composites	270
	11.2.1 Short Fibres and Internal Lubricants	270
	11.2.2 PTFE Matrix Composites	272
	11.2.3 Micro- and Nanoparticle Reinforcements	275
	11.2.4 Integration of Traditional Fillers with Inorganic Nanoparticles	277
	11.2.5 Functionally Graded Tribo-Materials	279
	11.3 Artificial Neural Networks Approach for Wear Prediction	280
	11.4 Fibre Orientation, Wear Mechanisms and Stress Conditions in Continuous Fibre	
	Reinforced Composites	282
	11.5 Conclusions	286
	Acknowledgements	286
	References	287
12	Third-Body Reality – Consequences and Use of the Third-Body Concept to Solve Friction and Wear Problems Y. Berthier	291
		201
	Abstract	291
	12.1 Introduction	292
	12.2 Relationship Between the Third Body and Friction	292
	12.2.1 Boundary Conditions	292
	12.2.2 Friction Analysis	292
	12.3 Relationship Between the Third Body and Wear	293

12.3.1 Wear Laws	293
12.3.2 Material Hardness and Wear	294
12.4 What Methods Exist for Studying Friction and Wear?	294
12.4.1 The Scientific Context Surrounding Tribology	294
12.4.2 Physical Difficulties Related to Studying Contacts	295
12.4.3 So Where to from Here?	297
12.5 The Third-Body Concept	298
12.5.1 Artificial and Natural Third Bodies	298
12.5.2 Contact Without the Third Body	299
12.5.3 Types of "Solid" Third Body from the Mechanical Viewpor	
12.5.4 "Action Heights" of Third Bodies	300
12.6 Functions and Behaviour of the Third Body	300
12.6.1 Functions of the Third Body	300
12.6.2 Operation of Solid Third Bodies	301
12.6.3 Tribological Circuit of Third-Body Flows	302
12.6.4 Rheology of the Third Body	ical Circuit 303
12.6.5 Scientific and Technological Consequences of the Tribolog12.7 Roles of the Materials in a Tribological Contact	304 303
12.7 Roles of the Materials in a Thoological Contact 12.7.1 Indirect Role of the Materials – Scale of the Actual Mecha	
Mechanical Device	304
12.7.2 Direct Role of the Materials – Scale of First Bodies	304
12.7.2 Direct Role of the Material's Scale of This Boards 12.7.3 Optimal Direct Response of Material to the Tribological C	
12.7.4 Consequences on the Approach Used for Solving Technolo	
12.8 Taking into Account the Effects of the Mechanism	306 306
12.8.1 Choosing the Conditions to be Modelled	306
12.8.2 Technological Consequences of the Effects of the Mechanis	
12.9 Taking into Account the Effect of the First Bodies	307
12.9.1 Local Contact Dynamics	307
12.9.2 Technological Consequences of the Effects of the First Boa	lies 307
12.10 "Solid" Natural Third-Body Modelling	308
12.10.1 Reconstruction of the Tribological Circuit	308
12.10.2 Technological Consequences of the Third Body	309
12.11 Correspondence of the Strategy Proposed to Reality	310
12.12 Control of Input Conditions	310
12.12.1 Objectives	310
12.12.2 Procedure	311
12.12.3 Precautions	311
12.13 Performing Experiments	312
12.13.1 Initial Conditions	312
12.13.2 Exterior of the Contact	313
12.13.3 Interior of the Contact	313
12.14 Conclusions	314
Acknowledgements References	314
References	315
Basic Principles of Fretting	317
P. Kapsa, S. Fouvry and L. Vincent	
Abstract	317
13.1 Introduction	317
13.2 Wear	319

13

	13.3 Industrial Needs	320
	13.4 Fretting in Assemblies	321
	13.5 Fretting Processes	322
	13.6 Fretting Parameters	330
	13.6.1 Nature of Loading	330
	13.6.2 Nature of the First Bodies	331
	13.6.3 Coatings	332
	13.6.4 Environment	334
	13.6.5 Frequency	335
	13.6.6 Temperature	335
	13.7 Conclusions	336
	References	337
14	Characterization and Classification of Abrasive Particles and Surfaces <i>G.W. Stachowiak, G.B. Stachowiak, D. De Pellegrin and P. Podsiadlo</i>	339
	Abstract	339
	14.1 Introduction	340
	14.2 General Descriptors of Particle Shape	340
	14.3 Particle Angularity Parameters	341
	14.3.1 Angularity Parameters SP and SPQ and Their Relation to Abrasive and	
	Erosive Wear	342
	14.3.2 Cone-Fit Analysis (CFA)	344
	14.3.3 Sharpness Analysis	349
	14.4 Particle Size Effect in Abrasive Wear	353
	14.5 Sharpness of Surfaces	356
	14.5.1 Characterization of Surface Sharpness by the Modified SPQ Method	356
	14.5.2 Characterization of Surface Sharpness by SA 14.6 Classification of Abrasive Surfaces	358 359
		364
	14.7 Summary Acknowledgements	365
	References	365
	References	505
15	Wear Mapping of Materials S.M. Hsu and M.C. Shen	369
	15.1 Introduction	369
	15.1.1 Wear – A System Perspective	370
	15.1.2 Historical Material Selection Guide	370
	15.2 Basic Definition of Wear	372
	15.2.1 Nature of Wear	372
	15.2.2 Wear Characterization	372
	15.3 Wear as a System Function	375
	15.4 Wear Maps as a Classification Tool to Define the System	376
	15.5 Wear as an "Intrinsic" Material Property as Defined by Wear Maps	377
	15.6 Different Kinds of Wear Maps	378
	15.7 Application of Wear Maps	380
	15.7.1 Material Comparison Based on Wear Maps	381
	15.7.2 Wear Transition Diagrams	385
	15.7.3 Material Selection Guided by Wear Maps	389
	15.7.4 Wear Mechanism Identification	391

		15.7.5 Wear Modeling Guide Based on Wear Maps	396
		15.7.6 Wear Prediction Based on Wear Maps	405
	15.8	Construction Techniques of Wear Maps	411
		15.8.1 Conducting Wear Experiments	411
		15.8.2 Wear Data	412
		15.8.3 Data Trend Analysis	413
		15.8.4 Wear Mapping	414
		15.8.5 Selection of Parameters for Mapping	416
		15.8.6 Assumptions in the Step-Loading Test Procedure	418
	15.9	Application Map Concept and Examples	420
	15.10	Future Wear Map Research	421
	Refer	ences	422
16	Macl	ine Failure and Its Avoidance – Tribology's Contribution to Effective	
		tenance of Critical Machinery	425
		Roylance	105
	Abstr		425
	16.1		425
	16.2	Maintenance Practice and Tribological Principles	426
		16.2.1 Maintenance Practice – A Brief Historical Overview	426
		16.2.2 Tribological Principles	427
	16.0	16.2.3 Tribology and Maintenance	431
	16.3	Failure Diagnoses	432
		16.3.1 Failure Morphology and Analysis	432
		16.3.2 Dealing with Failure – Two Short Case Studies	434
	16.4	16.3.3 Comment	436
		Condition-Based Maintenance	436
	16.5	Wear and Wear Debris Analysis	440
		16.5.1 Wear Modes and Associated Debris Characteristics – Some Experimental Begulte and Their Application to BAE Early Early Detection Control	112
		Results and Their Application to RAF Early Failure Detection Centres	443 445
		16.5.2 Summary of Laboratory Test Results	445 446
	16.6	16.5.3 Wear Particle Classification and Application	440
	10.0	Predicting the Remaining Useful Life and Evaluating the Cost Benefits 16.6.1 Remaining Useful Life Predictions	448
			448
	167	16.6.2 Evaluating the Cost Benefits Closure	449
			450 450
		owledgements ences	450 451
	Kelei	ciics	431

Index

List of Contributors

Yves Berthier LaMCoS UMR5514, INSA Lyon Bat Jean D'Alembert, France

Sanjay K. Biswas Department of Mechanical Engineering Indian Institute of Science Bangalore, Karnataka, India

Brian J. Briscoe Imperial College of Science and Technology and Medicine Department of Chemical Engineering and Technology London, UK

Christophe Donnet Université Jean Monnet de Saint-Etienne Laboratoire Traitement du Signal et Instrumentation, France

Ali Erdemir Energy Technology Division Argonne National Laboratory, Argonne, USA

Siegfried Fouvry Laboratory of Tribology and Systems Dynamics Ecole Centrale de Lyon, France

Klaus Friedrich Universitat Kaiserslautern Institut fur Verbundwerkstoffe GmbH, Germany

Richard S. Gates National Institute of Standards and Technology Gaithersburg, MD, USA

Andrew J. Gellman

Department of Chemical Engineering Carnegie Mellon University Pittsburg, PA, USA

Kenneth Holmberg

VTT Manufacturing Technology, Finland

Stephen Hsu

National Institute of Standards and Technology Gaithersburg, MD, USA

Ian Hutchings

University of Cambridge Institute for Manufacturing Department of Engineering Mill Lane, Cambridge, UK

Said Jahanmir

MiTi Heart Corporation Gaithersburg, MD, USA

Philippe Kapsa

Laboratory of Tribology and Systems Dynamics Ecole Centrale de Lyon, France

Koji Kato

Tribology Laboratory School of Mechanical Engineering Tohoku University, Sendai, Japan

Patrick Klein

Application Engineer Stationary Hydraulics Busak+Shamban Deutschland GmbH Handwerkstr. 5–7 70565 Shettgart, Germany

Allan Matthews

Department of Engineering Materials Sheffield University Sir Robert Hadfield Building Mappin Street, Sheffield, UK

Ardian Morina

School of Mechanical Engineering University of Leeds, UK

Ronald G. Munro

National Institute of Standards and Technology Gaithersburg, MD, USA

Anne Neville

School of Mechanical Engineering University of Leeds, UK

Dennis V. De Pellegrin

School of Mechanical Engineering University of Western Australia Crawley, Western Australia

Pawel Podsiadlo

School of Mechanical Engineering University of Western Australia Crawley, Western Australia

Brian J. Roylance

Tribology and Condition Monitoring Group Department of Mechanical Engineering University of Wales, Swansea, UK

Ming C. Shen

Zimmer, Austin, TX, USA

Sujeet K. Sinha

Department of Mechanical Engineering National University of Singapore, Singapore

Nicholas D. Spencer

Laboratory for Surface Science and Technology Swiss Federal Institute of Technology Zurich, Switzerland

Gwidon W. Stachowiak

School of Mechanical Engineering University of Western Australia Crawley, Western Australia

Grazyna B. Stachowiak

School of Mechanical Engineering University of Western Australia Crawley, Western Australia

Leo Vincent

Laboratory of Tribology and Systems Dynamics Ecole Centrale de Lyon, France

Zhong Zhang

National Center for Nanoscience and Technology, China No.2 1st North Road, Zhong-Guan-Cum 100080 Beijing, China

Series Editors' Foreword

Tribology is concerned with understanding the behaviour and performance of the components of machines and equipment, with surfaces that are subject to relative motion, either from other components or from loose materials. It therefore has a wide range of applications across many industries, and also in medicine in understanding the mechanism of operation of the joints between bones. The *Tribology in Practice Series* of books aims to make an understanding of tribology readily accessible and relevant to industry, so that it can be brought to bear on engineering problems.

This latest book in the series, *Wear – Mechanisms, Materials and Practice*, edited by Gwidon Stachowiak provides a comprehensive review of the current understanding of the wear of all kinds of materials, and how it can be controlled and reduced. The authors of the individual sections of the book are world experts in the various subject areas. They are therefore able to summarize the currently available knowledge and the ways in which it can be used to solve practical problems. The book will therefore provide a valuable reference work for engineers in industry, as well as being useful for research workers in the field by providing a summary of previous work.

As a Series, the *Tribology in Practice Series* is particularly concerned with design, failure investigation, and the application of tribological understanding to the products of various industries and to medicine. The scope of the series is as wide as the subject and applications of tribology. Wherever there is wear, rubbing, friction, or the need for lubrication, then there is scope for the introduction of practical, interpretative material. The Series Editors and the publishers would welcome suggestions and proposals for future titles in the Series.

M.J. Neale Neale Consulting Engineers, UK T.A. Polak Neale Consulting Engineers, UK M. Priest University of Leeds, UK

Preface

Wear is the process occurring at the interfaces between interacting bodies and is usually hidden from investigators by the wearing components. However, this obstacle has been gradually overcome by scientists, revealing an intricate world of various wear modes and mechanisms. Since the early wear experiments our knowledge about wear has increased considerably and a significant progress in the description of wear mechanisms has been made. Over the past decades our views and understanding of wear have changed, including the classification of wear mechanisms. Concepts such as abrasion, adhesion and fatigue, originally used in the classification of wear mechanisms, are, now, insufficient. New materials and surface coatings wear in a specific manner. Complex reactions and transitions often take place on the wearing surfaces and our understanding of wear mechanisms occurring is critical to the effective utilization of these materials. Furthermore, if we understand how a material resists wear and friction, then it should be much easier to improve that material.

It is now clear that all known forms of friction and wear are controlled by thin films of material present between the interacting surfaces. It has been recognized since ancient times that supplying liquid or grease to a contact offers a lower friction and wear. If such a film is merely generated by wear of the bodies sliding in dry contact, the wear and friction are usually much higher. In general terms, this film formation controls wear to a large extent and is usually beneficial since it lowers friction and wear. However, there are also instances when film formation raises wear and friction.

In May 2000 Chris Taylor, the editor of the Journal of Engineering Tribology, had asked me to guest-edit a special issue of the *Journal of Engineering Tribology* on the topic of 'Wear/Lubricated Wear'. I found this to be a very good idea and agreed. The special issue was published almost two years later in 2002. The issue contained nine excellent papers covering a broad range of topics representing our state of knowledge on recent developments in the area of wear/lubricated wear. World-leading researchers in the area of wear and wear control, such as Koji Kato, Sanjay Biswas, Stephen Hsu, Ronald Munro, Ming Shen, Richard Gates, Andrew Gellman, Nic Spencer, Said Jahanmir, Ali Erdemir, Christophe Donnet, Brian Briscoe, Sujeet Sinha, Klaus Friedrich, Zhong Zhang, Patrick Klein and Gwidon Stachowiak, contributed papers on various topics to this issue. On completion of this work it became apparent that many researchers and engineers throughout the world would benefit from an expanded version in a book form. So I had presented the idea of publishing this special issue in a more expanded form to the Professional Engineering Publishers Ltd. The publisher was very supportive of the idea. In addition, the Editorial Board of the PEP book series made many valuable suggestions regarding the book content. As a result several additional experts, such as Ian Hutchings, Anne Neville, Ardian Morina, Kenneth Holmberg, Alan Matthews, Yves Berthier, Philippe Kapsa, Siegfried Fouvry, Leo Vincent and Brian Roylance, were invited to contribute chapters in specific areas of wear and wear control. Altogether, six additional chapters were invited and, as a result, a unique piece of work has emerged.

The resulting book represents the current state of art in the area of wear, wear mechanisms and materials. The chapters discuss the latest concepts in wear mechanism classification, wear of metals, wear of polymer and polymer composites, fretting wear, wear mapping of materials, friction and wear of diamond and diamond-like carbon films, wear of ceramics, concept of a third body in wear and friction problems and the tribology of engineered surfaces. Wear in boundary lubrication, effects of lubricant chemistry on wear, effects of surface chemistry in tribology, characterization and classification of particles and surfaces, and machine failure and its avoidance are also discussed. The strength of this book is in its current knowledge of topic and its frequent references to engineering practice. However, this book is not limited to presenting what is already known about wear. It also attempts to present the myriad of new emerging problems and the possible ways of solving them. It shows us that, although we already know a lot about wear, there are still some aspects of it to be yet uncovered and thoroughly investigated. It shows us that new ways and approaches to wear control are still being discovered and implemented in practice. The book also demonstrates what type of new problems we are most likely to be dealing with in the future.

I am very grateful to the authors for sharing with us their knowledge and for their hard work. In particular, I appreciate the time they dedicated to the meticulous preparation of their manuscripts. After all, it is not easy to put an extra task on top of the many other duties and commitments one already has. I am sure this book will provide a valuable reference for people with interest in wear and wear control.

Gwidon Stachowiak

1

The Challenge of Wear

I.M. Hutchings

Abstract

While accurate predictive models for wear rate are still an elusive goal, it is clear that significant recent progress has been made in our understanding of many aspects of wear mechanisms and that advances in materials, surface engineering and lubricants, as well as in design methods and condition monitoring, have led to major improvements in the efficiency, lifetime cost and performance of many engineering systems. There is still much potential for future development, and challenges in tribology, especially in the vital field of wear, remain.

1.1 Introduction

To understand the degradation processes known as wear, to predict the rate of wear and to reduce it still form some of the most problematic challenges facing the engineer. The understanding of wear often involves a detailed knowledge of mechanics, physics, chemistry and material science, while its quantitative prediction, even to within an order of magnitude, remains in many cases a distant goal. Although wear can often be reduced by lubrication, the extent of that reduction can almost never be predicted accurately. The following chapters focus on particular aspects of wear and review the current state of our knowledge on this vitally important topic.

1.2 Definitions and Development of Wear Studies

The widest definition of wear, which has been recognized for at least 50 years, includes the loss of material from a surface, transfer of material from one surface to another or movement of material within a single surface [1]. Although a narrower definition of wear has been proposed as 'progressive loss of substance from the operating surface of a body occurring as a result of relative motion at the surface' [2], the wide range of engineering applications of concern to

Wear - Materials, Mechanisms and Practice I.M. Hutchings

^{© 2005} John Wiley & Sons, Ltd

the tribologist is served better by a broader definition. A simple and useful statement is that wear is 'damage to a solid surface, generally involving progressive loss of material, due to relative motion between that surface and a contacting substance or substances' [3]. This includes (1) degradation by the displacement of material within the surface (leading to changes in surface topography without loss of material), as well as the more usual case of material removal; (2) the wear processes common in machines in which one surface slides or rolls against another, either with or without the presence of a deliberately applied lubricant; and (3) the more specialized types of wear which occur when the surface is abraded by hard particles moving across it, or is eroded by solid particles or liquid drops striking it or by the collapse of cavitation bubbles in a liquid. This definition, quite deliberately, tells us nothing about the mechanisms by which the degradation takes place. These may be purely mechanical, for example involving plastic deformation or brittle fracture, or they may involve significant chemical aspects, for example oxidation of a metal or hydration of a ceramic; in many practical cases, both chemical and mechanical processes play a role [4].

The study of tribology has a long history, extending for several centuries before the word itself was coined in 1965. Early studies of friction were performed by Leonardo da Vinci in the late sixteenth century, and the first quantitative understanding of fluid film lubrication originated with Beauchamp Tower in the late nineteenth century. Wear has entered the scientific arena rather more recently. The design and construction of early machines involved large clearances and rather slow speeds of operation, with the result that, provided gross adhesion or excessive friction could be avoided, changes in dimensions of sliding parts due to wear could often be tolerated with little adverse effect on performance. It was the development of the high-speed internal combustion engine in the early part of the twentieth century that provided the initial driving force for the study of wear which has grown in importance to the present day. Our understanding of wear mechanisms has developed most rapidly with the widespread use of electron microscopy and instrumental methods of microanalysis over the past 30 years. There are now many examples of advanced engineering products, some involving high-speed sliding or rolling and others small dimensions or hostile environments, whose development and successful use are possible only through the understanding and successful limitation of wear processes. These include gas turbine engines, artificial human joints, automotive engines and transmissions, tyres and brakes, hard disk drives for data storage and an increasing number of electromechanical devices for domestic and industrial use. Wear is, however, not always to be avoided: there are many manufacturing processes involving abrasive processing, for example, in which wear is used productively to form and shape surfaces [5].

1.3 Scope and Challenges

In some applications such as bearings, wear (and friction) is of primary concern, while for others the tribological performance of the system, although important, is not the main driver for its design. Thus, in modern engineering, we find increasing use of materials with more attractive combinations of density and mechanical properties than steel, or with benefits in cost, performance or formability, such as polymers, ceramics and various composite materials [6–8]. We also see a rapid increase in the use of surface engineering to provide a cost-effective combination of near-surface performance with desirable bulk properties in engineering components [9, 10]. These developments all pose particular challenges for the tribologist.

The origins of these challenges are many. The conditions to which a surface is exposed during wear are quite different from those involved in the measurement of conventional mechanical properties such as tensile strength, indentation hardness or fracture toughness. The dimensions of oxide or lubricant films, of surface height variation or of wear debris typically lie in the range from 10 nm to 10 μ m [9]. In the absence of a thick lubricant film, surfaces make contact with each other at local high spots (asperities) which interact and induce high stresses (up to the yield point in some cases) over distances of the order of micrometres on a timescale of the order of microseconds. For typical speeds of relative motion, the strain rates at these microscopic sites of mechanical interaction can therefore be of the order of $10^4-10^7 s^{-1}$. Not only are the timescales very short and strain rates high, but all the energy of frictional work is dissipated through the interactions of these contacts, often leading to high but transient local temperatures [11]. Even in a lubricated contact, the power density can be remarkably high: it has been estimated that in a thin elastohydrodynamic (EHL) oil film, the rate of viscous energy dissipation is of the order of 100 TW m⁻³, equivalent to dissipating the entire electrical power output of USA in a volume of 5 l.

The difficulties involved in fully describing, and then in formulating models for, the behaviour of a wearing surface are not just associated with the extreme local conditions. The problem is much more complex than that, for at least three more reasons. First, the process of wear itself changes the composition and properties of the surface and near-surface regions; the material which separates two sliding surfaces can be treated as a distinct 'third-body' with its own evolutionary history and properties and these properties will often change during the lifetime of the system [12]. Second, the removal or displacement of material during wear leads to changes in surface topography. Third, the mechanisms by which wear occurs are often complex and can involve a mixture of mechanical and chemical processes: for example, in the unlubricated sliding of two steel surfaces, material may be removed by mechanical means after oxidation, while under conditions of boundary lubrication the source of wear is often the mechanical removal of the products of chemical reaction between the steel surface and the lubricant additives [13, 14]. Neither the mechanical nor the chemical interactions involved in sliding wear can yet be modelled accurately. The problem of fretting wear, in which contacting surfaces are exposed to small cyclic relative displacements, has some similarities to, but also many differences from, that of continuous sliding [15].

The case of abrasive wear is in principle slightly more tractable since chemical effects usually play a negligible role, but even here it would be necessary to model the deformation of the material to very large plastic strains, to incorporate realistic failure criteria (to account for ductile rupture or brittle fracture), to allow for changes in surface topography during wear, to account for the inhomogeneity of the material (associated with its microstructure, as it is initially and as it becomes modified during wear) at the length scale relevant to the unit interaction with an abrasive particle and to sum the individual effects of the interactions with perhaps many billions of abrasive particles.¹ The properties of the abrasive particles themselves would also have to be incorporated into a full model: these will include their bulk mechanical properties such as stiffness and strength, as well as a full description of their shape. The difficulties involved in describing the relevant aspects of particle shape alone have stimulated much research [16].

¹ One gram of abrasive particles 10 µm in diameter represents about 10⁹ particles.

In view of the highly complex nature of wear processes and the difficulty of producing realistic models for them, it is not surprising that many discussions of sliding wear start with the simplest possible assumption of the relationship between wear rate and normal load:

$$Q = \frac{KW}{H} \tag{1}$$

where Q is the volume removed from the surface per unit sliding distance, W is the normal load applied to the surface by its counterbody and H is the indentation hardness of the wearing surface. K is a dimensionless quantity which is usually called the *wear coefficient* and which provides a valuable means of comparing the severity of different wear processes. If K, W and H remain constant during wear, then it is implicit in equation (1) that the volume of material lost from the surface is directly proportional to the relative sliding distance, or at constant sliding speed, to time. Equation (1) is usually called the *Archard wear equation*. Archard was perhaps the first to derive the relationship from a plausible physical model in 1953 [17], although Archard himself acknowledged the earlier work of Holm in 1946, and the empirical statement that wear is directly proportional to sliding distance and inversely proportional to normal load was made as early as 1927 by Preston in a study of the polishing of plate glass [18]. An equation identical to equation (1) was also stated by Taylor in 1948 without any indication that it was not already well known [19].²

For engineering applications, and especially for the wear of materials whose hardness cannot readily be defined (such as elastomers), the wear rate is commonly stated as k = K/H = Q/W. *k* is often called the *specific wear rate* and quoted in units of mm³ N⁻¹ m⁻¹. For a material with a hardness *H* of 1 GPa (a soft steel, or a hard aluminium alloy, for example), the numerical value of *k* expressed in mm³ N⁻¹ m⁻¹ is exactly the same as the value of *K*.

Figure 1.1 shows, very approximately, the range of values of K seen in various types of wear. Under unlubricated sliding conditions (so-called dry sliding), K can be as high as 10^{-2} , although it can also be as low as 10^{-6} . Often two distinct regimes of wear are distinguished, termed 'severe' and 'mild'. Not only do these correspond to quite different wear rates (with K often above and below 10^{-4} , respectively), but they also involve significantly different mechanisms of material loss. In metals, 'severe' sliding wear is associated with relatively large particles of metallic debris, while in 'mild' wear the debris is finer and formed of oxide particles [13]. In the case of ceramics, the 'severe' wear regime is associated with brittle fracture, whereas 'mild' wear results from the removal of reacted (often hydrated) surface material.

When hard particles are present and the wear process involves abrasion (by sliding or rolling particles) or erosion (by the impact of particles), then the highest values of K occur;³ the relatively high efficiency by which material is removed by abrasive or erosive wear explains why these processes can also be usefully employed in manufacturing [5].

The values of K which occur for unlubricated sliding, or for wear by hard particles, are generally intolerably high for practical engineering applications, and in most tribological designs lubrication is used to reduce the wear rate; the effect of lubrication in reducing wear

² Although the relevant paper was published in 1950, it had been presented at a conference in 1948.

³ Equation (1) can be applied to abrasive wear as well as to sliding wear; an analogous equation can also be derived for erosion by solid particle impact, from which a value of K can be derived [20].

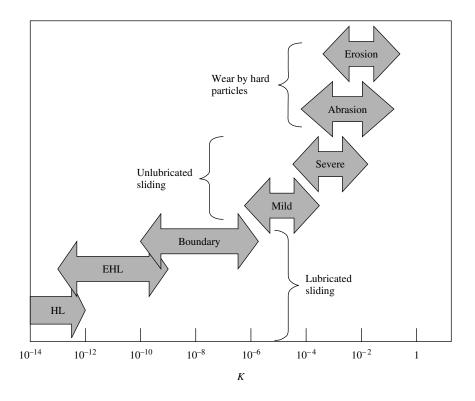


Figure 1.1 Schematic representation of the range of wear coefficient K exhibited under different conditions of wear. HL = hydrodynamic lubrication; EHL = elastohydrodynamic lubrication

is far more potent than its effect on friction, and the increase in life which results from the reduction in wear is generally much more important than the increase in efficiency from the lower frictional losses. As Figure 1.1 shows, even the least effective lubrication can reduce the wear rate by several orders of magnitude, and as the thickness of the lubricant film is increased in the progression from boundary to EHL and then to hydrodynamic lubrication, so the value of *K* falls rapidly. In the hydrodynamically lubricated components of a modern automotive engine, values of *K* as low as 10^{-19} are achieved [21].

There is a great deal of current interest in improving lubricants so as to achieve low wear rates with thinner films (associated with higher contact pressures). A good protective lubricant film requires the right combination of adhesion to the substrate, film formation and replenishment rate and shear strength [14]; allied with this is the need to find replacements for highly effective additives such as ZDDP (zinc dialkyl dithiophosphate) which contain elements which are detrimental both to the environment and to the long-term operation of automotive exhaust catalysts. Boron compounds are receiving much attention in this context, and there are also attractions in lubricants which can be transported to the sliding surfaces in the vapour phase, especially for very small-scale devices (e.g. MEMS) and for systems operating at high temperatures [14, 21, 22]. There is also active research into lubricants and lubricant additives which are effective for non-ferrous metals, ceramics and engineered surfaces [21].

As our understanding of wear processes deepens, it becomes increasingly important to be able to transfer that knowledge to engineers involved in both the design and operation of machines. Maps or wear regime diagrams provide powerful tools for the design process [4, 7, 23], while increasingly sophisticated methods have been developed to assess and monitor the tribological health of operating machinery and determine the appropriate levels of maintenance [24].

1.4 Conclusions

While accurate predictive models for wear rate are still an elusive goal, it is clear that significant recent progress has been made in our understanding of many aspects of wear mechanisms and that advances in materials, surface engineering and lubricants, as well as in design methods and condition monitoring, have led to major improvements in the efficiency, lifetime cost and performance of many engineering systems. There is still much potential for future development, and challenges in tribology, especially in the vital field of wear, remain.

References

- 1. Almen, J.O., in Mechanical Wear (ed J.T. Burwell), American Society for Metals, 1950, pp. 229-288.
- Glossary of terms and definitions in the field of friction, wear and lubrication, Research Group on Wear of Engineering Materials, Organisation for Economic Co-operation and Development, 1969, reprinted in *Wear Control Handbook* (eds M.B. Peterson and W.O. Winer), American Society of Mechanical Engineers, 1980, pp. 1143–1303.
- 3. Standard terminology relating to wear and erosion, standard G-40-01, American Society for Testing and Materials, 2001.
- Kato, K., 'Classification of Wear Mechanisms', in Wear Mechanisms, Materials and Practice (ed G.W. Stachowiak), John Wiley & Sons, Ltd, Chichester, 2006, pp. 9–20.
- Hutchings, I.M., 'Abrasion Processes in Wear and Manufacturing', Proceedings of the Institution of Mechanical Engineers, Part J, Journal of Engineering Tribology, 216, 2002, 55–62.
- Briscoe, B.J. and Sinha, S.K., 'Tribology of Polymeric Solids and Their Composites', in Wear Mechanisms, Materials and Practice (ed G.W. Stachowiak), John Wiley & Sons, Ltd, Chichester, 2006, pp. 223–268.
- Jahanmir, S., 'Wear of Ceramics: Wear Transitions and Tribochemical Reactions', in *Wear Mechanisms, Materials and Practice* (ed G.W. Stachowiak), John Wiley & Sons, Ltd, Chichester, 2006, pp. 167–190.
- Friedrich, K., Zhang, Z. and Klein, P., 'Wear of Polymer Composites', in Wear Mechanisms, Materials and Practice (ed G.W. Stachowiak), John Wiley & Sons, Ltd, Chichester, 2006, pp. 269–290.
- 9. Holmberg, K. and Matthews, A., 'Tribology of Engineered Surfaces', in *Wear Mechanisms, Materials and Practice* (ed G.W. Stachowiak), John Wiley & Sons, Ltd, Chichester, 2006, pp. 123–166.
- Erdemir, A. and Donnet, C., 'Tribology of Diamond and Diamond-Like Carbon Films', in Wear Mechanisms, Materials and Practice (ed G.W. Stachowiak), John Wiley & Sons, Ltd, Chichester, 2006, pp. 191–222.
- Ashby, M.F., Abulawi, J. and Kong, H.S., 'Temperature Maps for Frictional Heating in Dry Sliding', *Tribology Transactions*, 34, 1991, 577–587.
- Berthier, Y., 'Third-Body Reality Consequences and Use of the Third-Body Concept to Solve Friction and Wear Problems', in *Wear – Mechanisms, Materials and Practice* (ed G.W. Stachowiak), John Wiley & Sons, Ltd, Chichester, 2006, pp. 291–316.
- Biswas, S.K., 'Wear of Metals: A Material Approach', in Wear Mechanisms, Materials and Practice (ed G.W. Stachowiak), John Wiley & Sons, Ltd, Chichester, 2006, pp. 21–36.
- Hsu, S.M., Munro, R.C., Shen, M.C. and Gates, R.S., 'Boundary Lubricated Wear', in Wear Mechanisms, Materials and Practice (ed G.W. Stachowiak), John Wiley & Sons, Ltd, Chichester, 2006, pp. 37–70.
- Kapsa, P., Fouvry, S. and Vincent, L., 'Basic Principles of Fretting', in Wear Mechanisms, Materials and Practice (ed G.W. Stachowiak), John Wiley & Sons, Ltd, Chichester, 2006, pp. 317–338.

- Stachowiak, G.W., Stachowiak, G.B., De Pellegrin, D.V. and Podsiadlo, P., 'Characterization and Classification of Abrasive Particles and Surfaces', in *Wear – Mechanisms, Materials and Practice* (ed G.W. Stachowiak), John Wiley & Sons, Ltd, Chichester, 2006, pp. 339–368.
- 17. Archard, J.F., 'Contact and Rubbing of Flat Surfaces', Journal of Applied Physics, 24, 1953, 981-988.
- Preston, F.W., 'The Theory and Design of Plate Glass Polishing Machines', Journal of the Society of Glass Technologists, 11, 1927, 214–256.
- 19. Taylor, C.F., in Mechanical Wear (ed J.T. Burwell), American Society for Metals, 1950, pp. 1-7.
- Hutchings, I.M. 'Tribology: Friction and Wear of Engineering Materials', Butterworth Heinemann, Oxford, UK, 1992.
- Neville, A. and Morina, A., 'Wear and Chemistry of Lubricants', in Wear Mechanisms, Materials and Practice (ed G.W. Stachowiak), John Wiley & Sons, Ltd, Chichester, 2006, pp. 71–94.
- Gellman, A.J. and Spencer, N.D., 'Surface Chemistry in Tribology', in Wear Mechanisms, Materials and Practice (ed G.W. Stachowiak), John Wiley & Sons, Ltd, Chichester, 2006, pp. 95–122.
- Hsu, S.M. and Shen, M.C., 'Wear Mapping of Materials', in Wear Mechanisms, Materials and Practice (ed G.W. Stachowiak), John Wiley & Sons, Ltd, Chichester, 2006, pp. 369–424.
- Roylance, B.J., 'Machine Failure and Its Avoidance Tribology's Contribution to Effective Maintenance of Critical Machinery', in *Wear – Mechanisms, Materials and Practice* (ed G.W. Stachowiak), John Wiley & Sons, Ltd, Chichester, 2006, pp. 425–452.