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Tribology is concerned with understanding the behaviour and performance of the components
of machines and equipment, with surfaces that are subject to relative motion, either from
other components or from loose materials. It therefore has a wide range of applications
across many industries, and also in medicine in understanding the mechanism of operation
of the joints between bones. The Tribology in Practice Series of books aims to make an
understanding of tribology readily accessible and relevant to industry, so that it can be
brought to bear on engineering problems.
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Preface

Wear is the process occurring at the interfaces between interacting bodies and is usually
hidden from investigators by the wearing components. However, this obstacle has been
gradually overcome by scientists, revealing an intricate world of various wear modes and
mechanisms. Since the early wear experiments our knowledge about wear has increased
considerably and a significant progress in the description of wear mechanisms has been
made. Over the past decades our views and understanding of wear have changed, including
the classification of wear mechanisms. Concepts such as abrasion, adhesion and fatigue,
originally used in the classification of wear mechanisms, are, now, insufficient. New materials
and surface coatings wear in a specific manner. Complex reactions and transitions often
take place on the wearing surfaces and our understanding of wear mechanisms occurring is
critical to the effective utilization of these materials. Furthermore, if we understand how a
material resists wear and friction, then it should be much easier to improve that material.

It is now clear that all known forms of friction and wear are controlled by thin films of
material present between the interacting surfaces. It has been recognized since ancient times
that supplying liquid or grease to a contact offers a lower friction and wear. If such a film
is merely generated by wear of the bodies sliding in dry contact, the wear and friction are
usually much higher. In general terms, this film formation controls wear to a large extent
and is usually beneficial since it lowers friction and wear. However, there are also instances
when film formation raises wear and friction.

In May 2000 Chris Taylor, the editor of the Journal of Engineering Tribology, had asked
me to guest-edit a special issue of the Journal of Engineering Tribology on the topic of
‘Wear/Lubricated Wear’. I found this to be a very good idea and agreed. The special issue
was published almost two years later in 2002. The issue contained nine excellent papers
covering a broad range of topics representing our state of knowledge on recent developments
in the area of wear/lubricated wear. World-leading researchers in the area of wear and wear
control, such as Koji Kato, Sanjay Biswas, Stephen Hsu, Ronald Munro, Ming Shen, Richard
Gates, Andrew Gellman, Nic Spencer, Said Jahanmir, Ali Erdemir, Christophe Donnet, Brian
Briscoe, Sujeet Sinha, Klaus Friedrich, Zhong Zhang, Patrick Klein and Gwidon Stachowiak,
contributed papers on various topics to this issue. On completion of this work it became
apparent that many researchers and engineers throughout the world would benefit from an
expanded version in a book form. So I had presented the idea of publishing this special issue



xx Preface

in a more expanded form to the Professional Engineering Publishers Ltd. The publisher was
very supportive of the idea. In addition, the Editorial Board of the PEP book series made
many valuable suggestions regarding the book content. As a result several additional experts,
such as Ian Hutchings, Anne Neville, Ardian Morina, Kenneth Holmberg, Alan Matthews,
Yves Berthier, Philippe Kapsa, Siegfried Fouvry, Leo Vincent and Brian Roylance, were
invited to contribute chapters in specific areas of wear and wear control. Altogether, six
additional chapters were invited and, as a result, a unique piece of work has emerged.

The resulting book represents the current state of art in the area of wear, wear mechanisms
and materials. The chapters discuss the latest concepts in wear mechanism classification,
wear of metals, wear of polymer and polymer composites, fretting wear, wear mapping of
materials, friction and wear of diamond and diamond-like carbon films, wear of ceramics,
concept of a third body in wear and friction problems and the tribology of engineered
surfaces. Wear in boundary lubrication, effects of lubricant chemistry on wear, effects of
surface chemistry in tribology, characterization and classification of particles and surfaces,
and machine failure and its avoidance are also discussed. The strength of this book is in its
current knowledge of topic and its frequent references to engineering practice. However, this
book is not limited to presenting what is already known about wear. It also attempts to present
the myriad of new emerging problems and the possible ways of solving them. It shows us
that, although we already know a lot about wear, there are still some aspects of it to be yet
uncovered and thoroughly investigated. It shows us that new ways and approaches to wear
control are still being discovered and implemented in practice. The book also demonstrates
what type of new problems we are most likely to be dealing with in the future.

I am very grateful to the authors for sharing with us their knowledge and for their hard
work. In particular, I appreciate the time they dedicated to the meticulous preparation of
their manuscripts. After all, it is not easy to put an extra task on top of the many other duties
and commitments one already has. I am sure this book will provide a valuable reference for
people with interest in wear and wear control.

Gwidon Stachowiak



1
The Challenge of Wear

I.M. Hutchings

Abstract

While accurate predictive models for wear rate are still an elusive goal, it is clear that
significant recent progress has been made in our understanding of many aspects of wear
mechanisms and that advances in materials, surface engineering and lubricants, as well as in
design methods and condition monitoring, have led to major improvements in the efficiency,
lifetime cost and performance of many engineering systems. There is still much potential for
future development, and challenges in tribology, especially in the vital field of wear, remain.

1.1 Introduction

To understand the degradation processes known as wear, to predict the rate of wear and to reduce
it still form some of the most problematic challenges facing the engineer. The understanding
of wear often involves a detailed knowledge of mechanics, physics, chemistry and material
science, while its quantitative prediction, even to within an order of magnitude, remains in
many cases a distant goal. Although wear can often be reduced by lubrication, the extent of that
reduction can almost never be predicted accurately. The following chapters focus on particular
aspects of wear and review the current state of our knowledge on this vitally important topic.

1.2 Definitions and Development of Wear Studies

The widest definition of wear, which has been recognized for at least 50 years, includes the
loss of material from a surface, transfer of material from one surface to another or movement of
material within a single surface [1]. Although a narrower definition of wear has been proposed
as ‘progressive loss of substance from the operating surface of a body occurring as a result of
relative motion at the surface’ [2], the wide range of engineering applications of concern to

Wear – Materials, Mechanisms and Practice I.M. Hutchings
© 2005 John Wiley & Sons, Ltd



2 Wear – Materials, Mechanisms and Practice

the tribologist is served better by a broader definition. A simple and useful statement is that
wear is ‘damage to a solid surface, generally involving progressive loss of material, due to
relative motion between that surface and a contacting substance or substances’ [3]. This includes
(1) degradation by the displacement of material within the surface (leading to changes in surface
topography without loss of material), as well as the more usual case of material removal; (2) the
wear processes common in machines in which one surface slides or rolls against another, either
with or without the presence of a deliberately applied lubricant; and (3) the more specialized
types of wear which occur when the surface is abraded by hard particles moving across it, or
is eroded by solid particles or liquid drops striking it or by the collapse of cavitation bubbles
in a liquid. This definition, quite deliberately, tells us nothing about the mechanisms by which
the degradation takes place. These may be purely mechanical, for example involving plastic
deformation or brittle fracture, or they may involve significant chemical aspects, for example
oxidation of a metal or hydration of a ceramic; in many practical cases, both chemical and
mechanical processes play a role [4].

The study of tribology has a long history, extending for several centuries before the word itself
was coined in 1965. Early studies of friction were performed by Leonardo da Vinci in the late
sixteenth century, and the first quantitative understanding of fluid film lubrication originated
with Beauchamp Tower in the late nineteenth century. Wear has entered the scientific arena
rather more recently. The design and construction of early machines involved large clearances
and rather slow speeds of operation, with the result that, provided gross adhesion or excessive
friction could be avoided, changes in dimensions of sliding parts due to wear could often be
tolerated with little adverse effect on performance. It was the development of the high-speed
internal combustion engine in the early part of the twentieth century that provided the initial
driving force for the study of wear which has grown in importance to the present day. Our
understanding of wear mechanisms has developed most rapidly with the widespread use of
electron microscopy and instrumental methods of microanalysis over the past 30 years. There
are now many examples of advanced engineering products, some involving high-speed sliding
or rolling and others small dimensions or hostile environments, whose development and
successful use are possible only through the understanding and successful limitation of wear
processes. These include gas turbine engines, artificial human joints, automotive engines and
transmissions, tyres and brakes, hard disk drives for data storage and an increasing number
of electromechanical devices for domestic and industrial use. Wear is, however, not always
to be avoided: there are many manufacturing processes involving abrasive processing, for
example, in which wear is used productively to form and shape surfaces [5].

1.3 Scope and Challenges

In some applications such as bearings, wear (and friction) is of primary concern, while for
others the tribological performance of the system, although important, is not the main driver
for its design. Thus, in modern engineering, we find increasing use of materials with more
attractive combinations of density and mechanical properties than steel, or with benefits
in cost, performance or formability, such as polymers, ceramics and various composite
materials [6–8]. We also see a rapid increase in the use of surface engineering to provide
a cost-effective combination of near-surface performance with desirable bulk properties in
engineering components [9, 10]. These developments all pose particular challenges for the
tribologist.
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The origins of these challenges are many. The conditions to which a surface is exposed
during wear are quite different from those involved in the measurement of conventional
mechanical properties such as tensile strength, indentation hardness or fracture toughness.
The dimensions of oxide or lubricant films, of surface height variation or of wear debris
typically lie in the range from 10 nm to 10 �m [9]. In the absence of a thick lubricant
film, surfaces make contact with each other at local high spots (asperities) which interact
and induce high stresses (up to the yield point in some cases) over distances of the order
of micrometres on a timescale of the order of microseconds. For typical speeds of relative
motion, the strain rates at these microscopic sites of mechanical interaction can therefore be
of the order of 104–107s−1. Not only are the timescales very short and strain rates high, but
all the energy of frictional work is dissipated through the interactions of these contacts, often
leading to high but transient local temperatures [11]. Even in a lubricated contact, the power
density can be remarkably high: it has been estimated that in a thin elastohydrodynamic
(EHL) oil film, the rate of viscous energy dissipation is of the order of 100 TW m−3,
equivalent to dissipating the entire electrical power output of USA in a volume of 5 l.

The difficulties involved in fully describing, and then in formulating models for, the
behaviour of a wearing surface are not just associated with the extreme local conditions. The
problem is much more complex than that, for at least three more reasons. First, the process of
wear itself changes the composition and properties of the surface and near-surface regions;
the material which separates two sliding surfaces can be treated as a distinct ‘third-body’
with its own evolutionary history and properties and these properties will often change
during the lifetime of the system [12]. Second, the removal or displacement of material
during wear leads to changes in surface topography. Third, the mechanisms by which wear
occurs are often complex and can involve a mixture of mechanical and chemical processes:
for example, in the unlubricated sliding of two steel surfaces, material may be removed by
mechanical means after oxidation, while under conditions of boundary lubrication the source
of wear is often the mechanical removal of the products of chemical reaction between the
steel surface and the lubricant additives [13, 14]. Neither the mechanical nor the chemical
interactions involved in sliding wear can yet be modelled accurately. The problem of fretting
wear, in which contacting surfaces are exposed to small cyclic relative displacements, has
some similarities to, but also many differences from, that of continuous sliding [15].

The case of abrasive wear is in principle slightly more tractable since chemical effects
usually play a negligible role, but even here it would be necessary to model the deformation
of the material to very large plastic strains, to incorporate realistic failure criteria (to account
for ductile rupture or brittle fracture), to allow for changes in surface topography during
wear, to account for the inhomogeneity of the material (associated with its microstructure,
as it is initially and as it becomes modified during wear) at the length scale relevant to the
unit interaction with an abrasive particle and to sum the individual effects of the interactions
with perhaps many billions of abrasive particles.1 The properties of the abrasive particles
themselves would also have to be incorporated into a full model: these will include their
bulk mechanical properties such as stiffness and strength, as well as a full description of
their shape. The difficulties involved in describing the relevant aspects of particle shape
alone have stimulated much research [16].

1 One gram of abrasive particles 10 �m in diameter represents about 109 particles.
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In view of the highly complex nature of wear processes and the difficulty of producing
realistic models for them, it is not surprising that many discussions of sliding wear start with
the simplest possible assumption of the relationship between wear rate and normal load:

Q = KW

H
(1)

where Q is the volume removed from the surface per unit sliding distance, W is the normal
load applied to the surface by its counterbody and H is the indentation hardness of the
wearing surface. K is a dimensionless quantity which is usually called the wear coefficient
and which provides a valuable means of comparing the severity of different wear processes.
If K, W and H remain constant during wear, then it is implicit in equation (1) that the volume
of material lost from the surface is directly proportional to the relative sliding distance, or
at constant sliding speed, to time. Equation (1) is usually called the Archard wear equation.
Archard was perhaps the first to derive the relationship from a plausible physical model in
1953 [17], although Archard himself acknowledged the earlier work of Holm in 1946, and
the empirical statement that wear is directly proportional to sliding distance and inversely
proportional to normal load was made as early as 1927 by Preston in a study of the polishing
of plate glass [18]. An equation identical to equation (1) was also stated by Taylor in 1948
without any indication that it was not already well known [19].2

For engineering applications, and especially for the wear of materials whose hardness
cannot readily be defined (such as elastomers), the wear rate is commonly stated as
k = K/H = Q/W . k is often called the specific wear rate and quoted in units of
mm3 N−1 m−1. For a material with a hardness H of 1 GPa (a soft steel, or a hard aluminium
alloy, for example), the numerical value of k expressed in mm3 N−1 m−1 is exactly the same
as the value of K.

Figure 1.1 shows, very approximately, the range of values of K seen in various types of
wear. Under unlubricated sliding conditions (so-called dry sliding), K can be as high as 10−2,
although it can also be as low as 10−6. Often two distinct regimes of wear are distinguished,
termed ‘severe’ and ‘mild’. Not only do these correspond to quite different wear rates (with
K often above and below 10−4, respectively), but they also involve significantly different
mechanisms of material loss. In metals, ‘severe’ sliding wear is associated with relatively
large particles of metallic debris, while in ‘mild’ wear the debris is finer and formed of oxide
particles [13]. In the case of ceramics, the ‘severe’ wear regime is associated with brittle
fracture, whereas ‘mild’ wear results from the removal of reacted (often hydrated) surface
material.

When hard particles are present and the wear process involves abrasion (by sliding or
rolling particles) or erosion (by the impact of particles), then the highest values of K occur;3

the relatively high efficiency by which material is removed by abrasive or erosive wear
explains why these processes can also be usefully employed in manufacturing [5].

The values of K which occur for unlubricated sliding, or for wear by hard particles, are
generally intolerably high for practical engineering applications, and in most tribological
designs lubrication is used to reduce the wear rate; the effect of lubrication in reducing wear

2 Although the relevant paper was published in 1950, it had been presented at a conference in 1948.
3 Equation (1) can be applied to abrasive wear as well as to sliding wear; an analogous equation can also be derived
for erosion by solid particle impact, from which a value of K can be derived [20].
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Figure 1.1 Schematic representation of the range of wear coefficient K exhibited under different
conditions of wear. HL = hydrodynamic lubrication; EHL = elastohydrodynamic lubrication

is far more potent than its effect on friction, and the increase in life which results from the
reduction in wear is generally much more important than the increase in efficiency from the
lower frictional losses. As Figure 1.1 shows, even the least effective lubrication can reduce
the wear rate by several orders of magnitude, and as the thickness of the lubricant film is
increased in the progression from boundary to EHL and then to hydrodynamic lubrication,
so the value of K falls rapidly. In the hydrodynamically lubricated components of a modern
automotive engine, values of K as low as 10−19 are achieved [21].

There is a great deal of current interest in improving lubricants so as to achieve low
wear rates with thinner films (associated with higher contact pressures). A good protective
lubricant film requires the right combination of adhesion to the substrate, film formation and
replenishment rate and shear strength [14]; allied with this is the need to find replacements
for highly effective additives such as ZDDP (zinc dialkyl dithiophosphate) which contain
elements which are detrimental both to the environment and to the long-term operation of
automotive exhaust catalysts. Boron compounds are receiving much attention in this context,
and there are also attractions in lubricants which can be transported to the sliding surfaces
in the vapour phase, especially for very small-scale devices (e.g. MEMS) and for systems
operating at high temperatures [14, 21, 22]. There is also active research into lubricants
and lubricant additives which are effective for non-ferrous metals, ceramics and engineered
surfaces [21].
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As our understanding of wear processes deepens, it becomes increasingly important to
be able to transfer that knowledge to engineers involved in both the design and operation
of machines. Maps or wear regime diagrams provide powerful tools for the design process
[4, 7, 23], while increasingly sophisticated methods have been developed to assess and
monitor the tribological health of operating machinery and determine the appropriate levels
of maintenance [24].

1.4 Conclusions

While accurate predictive models for wear rate are still an elusive goal, it is clear that
significant recent progress has been made in our understanding of many aspects of wear
mechanisms and that advances in materials, surface engineering and lubricants, as well as in
design methods and condition monitoring, have led to major improvements in the efficiency,
lifetime cost and performance of many engineering systems. There is still much potential for
future development, and challenges in tribology, especially in the vital field of wear, remain.
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