MICROWAVE DEVICES, CIRCUITS AND SUBSYSTEMS FOR COMMUNICATIONS ENGINEERING

Edited by

I. A. Glover, S. R. Pennock and P. R. Shepherd

All of Department of Electronic and Electrical Engineering University of Bath, UK

MICROWAVE DEVICES, CIRCUITS AND SUBSYSTEMS FOR COMMUNICATIONS ENGINEERING

MICROWAVE DEVICES, CIRCUITS AND SUBSYSTEMS FOR COMMUNICATIONS ENGINEERING

Edited by

I. A. Glover, S. R. Pennock and P. R. Shepherd

All of Department of Electronic and Electrical Engineering University of Bath, UK

Copyright © 2005

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SO, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk Visit our Home Page on www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to permeq@wiley.co.uk, or faxed to (+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The Publisher is not associated with any product or vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0-471-89964-X (HB)

Typeset in 10/12pt Times by Graphicraft Limited, Hong Kong, China. Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire. This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two trees are planted for each one used for paper production.

Contents

List of Contributors		XV
Preface		xvii
1	Overview	1
	I. A. Glover, S. R. Pennock and P. R. Shepherd	
1.1	Introduction	1
1.2	RF Devices	2
1.3	Signal Transmission and Network Methods	4
1.4	Amplifiers	5
1.5	Mixers	6
1.6	Filters	7
1.7	Oscillators and Frequency Synthesisers	7
2	RF Devices: Characteristics and Modelling	9
	A. Suarez and T. Fernandez	
2.1	Introduction	9
2.2	Semiconductor Properties	10
	2.2.1 Intrinsic Semiconductors	10
	2.2.2 Doped Semiconductors	13
	2.2.2.1 N-type doping	13
	2.2.2.2 P-type doping	14
	2.2.3 Band Model for Semiconductors	14
	2.2.4 Carrier Continuity Equation	17
2.3	P-N Junction	18
	2.3.1 Thermal Equilibrium	18
	2.3.2 Reverse Bias	21
	2.3.3 Forward Bias	23
	2.3.4 Diode Model	24
	2.3.5 Manufacturing	25
	2.3.6 Applications of P-N Diodes at Microwave Frequencies	26
	2.3.6.1 Amplitude modulators	28
	2.3.6.2 Phase shifters	29
	2.3.6.3 Frequency multipliers	30
2.4	The Schottky Diode	32
	2.4.1 Thermal Equilibrium	32
	2 4 2 Payarga Pias	2.4

vi Contents

	2.4.3 Forward Bias	35
	2.4.4 Electric Model	36
	2.4.5 Manufacturing	37
	2.4.6 Applications	37
	2.4.6.1 Detectors	38
	2.4.6.2 Mixers	39
2.5	PIN Diodes	40
	2.5.1 Thermal Equilibrium	40
	2.5.2 Reverse Bias	40
	2.5.3 Forward Bias	41
	2.5.4 Equivalent Circuit	43
	2.5.5 Manufacturing	44
	2.5.6 Applications	45
	2.5.6.1 Switching	45
	2.5.6.2 Phase shifting	47
	2.5.6.3 Variable attenuation	50
	2.5.6.4 Power limiting	50
2.6	e	51
2.7	Gunn Diodes	52
2.,	2.7.1 Self-Oscillations	54
	2.7.2 Operating Modes	55
	2.7.2.1 Accumulation layer mode	56
	2.7.2.2 Transit-time dipole layer mode	56
	2.7.2.3 Quenched dipole layer mode	56
	2.7.2.4 Limited-space-charge accumulation (LSA) mode	57
	2.7.2.4 Enimed-space-charge accumulation (EST) mode 2.7.3 Equivalent Circuit	57
	2.7.4 Applications	58
	2.7.4.1 Negative resistance amplifiers	58
	2.7.4.1 Regardy resistance amplifiers 2.7.4.2 Oscillators	59
2.8	IMPATT Diodes	59
2.0	2.8.1 Doping Profiles	60
	2.8.2 Principle of Operation	60
	2.8.3 Device Equations	62
	2.8.4 Equivalent Circuit	63
2.9	Transistors	65
2.7	2.9.1 Some Preliminary Comments on Transistor Modelling	65
		65
	2.9.1.1 Model types	65
	2.9.1.2 Small and large signal behaviour 2.9.2 GaAs MESFETs	66
		68
	2.9.2.1 Current-voltage characteristics2.9.2.2 Capacitance-voltage characteristics	70
	2.9.2.3 Small signal equivalent circuit	70
	2.9.2.4 Large signal equivalent circuit	74
	2.9.2.5 Curtice model	74
	2.9.2.5 Curuce model 2.9.3 HEMTs	75
	2.9.3.1 Current-voltage characteristics	76 78
	2.9.3.2 Capacitance-voltage characteristics	78 78
	2.9.3.3 Small signal equivalent circuit	78
	2.9.3.4 Large signal equivalent circuit	78

Contents vii

	2.9.4 HBTs	80
	2.9.4.1 Current-voltage characteristics	84
	2.9.4.2 Capacitance-voltage characteristics	84
	2.9.4.3 Small signal equivalent circuit	86
	2.9.4.4 Large signal equivalent circuit	87
	2.10 Problems	88
	References	89
3	Signal Transmission, Network Methods and Impedance Matching	91
	N. J. McEwan, T. C. Edwards, D. Dernikas and I. A. Glover	
3.1	Introduction	91
3.2	Transmission Lines: General Considerations	92
	3.2.1 Structural Classification	92
	3.2.2 Mode Classes	94
3.3	The Two-Conductor Transmission Line: Revision of	
	Distributed Circuit Theory	95
	3.3.1 The Differential Equations and Wave Solutions	96
	3.3.2 Characteristic Impedance	98
3.4	Loss, Dispersion, Phase and Group Velocity	99
	3.4.1 Phase Velocity	100
	3.4.2 Loss	100
	3.4.3 Dispersion	101
	3.4.4 Group Velocity	102
	3.4.5 Frequency Dependence of Line Parameters	105
	3.4.5.1 Frequency dependence of G	108
	3.4.6 High Frequency Operation	109
	3.4.6.1 Lossless approximation	111
	3.4.6.2 The telegrapher's equation and the wave equation	111
3.5	Field Theory Method for Ideal TEM Case	113
	3.5.1 Principles of Electromagnetism: Revision	114
	3.5.2 The TEM Line	117
	3.5.3 The Static Solutions	117
	3.5.4 Validity of the Time Varying Solution	119
	3.5.5 Features of the TEM Mode	121
	3.5.5.1 A useful relationship	122
	3.5.6 Picturing the Wave Physically	123
3.6	Microstrip	126
	3.6.1 Quasi-TEM Mode and Quasi-Static Parameters	128
	3.6.1.1 Fields and static TEM design parameters	128
	3.6.1.2 Design aims	129
	3.6.1.3 Calculation of microstrip physical width	130
	3.6.2 Dispersion and its Accommodation in Design Approaches	132
	3.6.3 Frequency Limitations: Surface Waves and Transverse Resonance	135
	3.6.4 Loss Mechanisms	137
	3.6.5 Discontinuity Models	139
	3.6.5.1 The foreshortened open end	139
	3.6.5.2 Microstrip vias	141
	3.6.5.3 Mitred bends	142
	3.6.5.4 The microstrip T-junction	142

viii Contents

	3.6.6 Introduction to Filter Construction Using Microstrip	145
	3.6.6.1 Microstrip low-pass filters	145
	3.6.6.2 Example of low-pass filter design	148
3.7	Coupled Microstrip Lines	148
	3.7.1 Theory Using Even and Odd Modes	150
	3.7.1.1 Determination of coupled region physical length	156
	3.7.1.2 Frequency response of the coupled region	157
	3.7.1.3 Coupler directivity	158
	3.7.1.4 Coupler compensation by means of lumped capacitors	159
	3.7.2 Special Couplers: Lange Couplers, Hybrids and Branch-Line	
	Directional Couplers	161
3.8	Network Methods	163
	3.8.1 Revision of z, y, h and ABCD Matrices	164
	3.8.2 Definition of Scattering Parameters	166
	3.8.3 S-Parameters for One- and Two-Port Networks	168
	3.8.4 Advantages of S-Parameters	171
	3.8.5 Conversion of S-Parameters into Z-Parameters	171
	3.8.6 Non-Equal Complex Source and Load Impedance	174
3.9	Impedance Matching	176
	3.9.1 The Smith Chart	176
	3.9.2 Matching Using the Smith Chart	182
	3.9.2.1 Lumped element matching	182
	3.9.2.2 Distributed element matching	187
	3.9.2.3 Single stub matching	187
	3.9.2.4 Double stub matching	189
	3.9.3 Introduction to Broadband Matching	191
	3.9.4 Matching Using the Quarter Wavelength Line Transformer	194
2.40	3.9.5 Matching Using the Single Section Transformer	194
3.10	Network Analysers	195
	3.10.1 Principle of Operation	196
	3.10.1.1 The signal source	197
	3.10.1.2 The two-port test set	197
	3.10.1.3 The receiver	198
	3.10.2 Calibration Kits and Principles of Error Correction	198
	3.10.3 Transistor Mountings	202
2 11	3.10.4 Calibration Approaches Summary	206
3.11	References	207 208
	References	200
4	Amplifier Design	209
7	N. J. McEwan and D. Dernikas	207
4.1	Introduction	209
4.2	Amplifier Gain Definitions	209
	4.2.1 The Transducer Gain	211
	4.2.2 The Available Power Gain	212
	4.2.3 The Operating Power Gain	213
	4.2.4 Is There a Fourth Definition?	213
	4.2.5 The Maximum Power Transfer Theorem	213
	4.2.6 Effect of Load on Input Impedance	216
	4.2.7 The Expression for Transducer Gain	218

Contents

	4.2.8 The Origin of Circle Mappings	221
	4.2.9 Gain Circles	222
4.3	Stability	223
	4.3.1 Oscillation Conditions	224
	4.3.2 Production of Negative Resistance	227
	4.3.3 Conditional and Unconditional Stability	228
	4.3.4 Stability Circles	229
	4.3.5 Numerical Tests for Stability	230
	4.3.6 Gain Circles and Further Gain Definitions	231
	4.3.7 Design Strategies	237
4.4		239
	4.4.1 Compensated Matching Example	240
	4.4.2 Fano's Limits	241
	4.4.3 Negative Feedback	243
	4.4.4 Balanced Amplifiers	244
	4.4.4.1 Principle of operation	245
	4.4.4.2 Comments	245
	4.4.4.3 Balanced amplifier advantages	246
	4.4.4.4 Balanced amplifier disadvantages	246
4.5	Low Noise Amplifier Design	246
	4.5.1 Revision of Thermal Noise	246
	4.5.2 Noise Temperature and Noise Figure	248
	4.5.3 Two-Port Noise as a Four Parameter System	250
	4.5.4 The Dependence on Source Impedance	251
	4.5.5 Noise Figures Circles	254
	4.5.6 Minimum Noise Design	255
4.6	Practical Circuit Considerations	256
	4.6.1 High Frequencies Components	256
	4.6.1.1 Resistors	256
	4.6.1.2 Capacitors	259
	4.6.1.3 Capacitor types	261
	4.6.1.4 Inductors	263
	4.6.2 Small Signal Amplifier Design	267
	4.6.2.1 Low-noise amplifier design using CAD software	268
	4.6.2.2 Example	269
	4.6.3 Design of DC Biasing Circuit for Microwave Bipolar Transistors	272
	4.6.3.1 Passive biasing circuits	272
	4.6.3.2 Active biasing circuits	274
	4.6.4 Design of Biasing Circuits for GaAs FET Transistors	277
	4.6.4.1 Passive biasing circuits	277
	4.6.4.2 Active biasing circuits	279
	4.6.5 Introduction of the Biasing Circuit	279
	4.6.5.1 Implementation of the RFC in the bias network	282
	4.6.5.2 Low frequency stability	287
	4.6.5.3 Source grounding techniques	288
4.7	Computer Aided Design (CAD)	290
	4.7.1 The RF CAD Approach	291
	4.7.2 Modelling	293
	4.7.3 Analysis	296
	4.7.3.1 Linear frequency domain analysis	296

x Contents

	4.7.3.2 Non-linear time domain transient analysis	297
	4.7.3.3 Non-linear convolution analysis	297
	4.7.3.4 Harmonic balance analysis	297
	4.7.3.5 Electromagnetic analysis	298
	4.7.3.6 Planar electromagnetic simulation	298
	4.7.4 Optimisation	298
	4.7.4.1 Optimisation search methods	299
	4.7.4.2 Error function formulation	300
	4.7.5 Further Features of RF CAD Tools	302
	4.7.5.1 Schematic capture of circuits	302
	4.7.5.2 Layout-based design	302
	4.7.5.3 Statistical design of RF circuits	303
	Appendix I	306
	Appendix II	306
	References	310
5	Mixers: Theory and Design	311
•	L. de la Fuente and A. Tazon	011
5.1	Introduction	311
5.2	General Properties	311
5.3	Devices for Mixers	313
	5.3.1 The Schottky-Barrier Diode	313
	5.3.1.1 Non-linear equivalent circuit	313
	5.3.1.2 Linear equivalent circuit at an operating point	314
	5.3.1.3 Experimental characterization of Schottky diodes	317
	5.3.2 Bipolar Transistors	319
	5.3.3 Field-Effect Transistors	321
5.4		322
	5.4.1 Intermodulation Products	323
	5.4.2 Application to the Schottky-Barrier Diode	327
	5.4.3 Intermodulation Power	327
	5.4.4 Linear Approximation	329
5.5	Diode Mixer Theory	331
	5.5.1 Linear Analysis: Conversion Matrices	332
	5.5.1.1 Conversion matrix of a non-linear resistance/conductance	333
	5.5.1.2 Conversion matrix of a non-linear capacitance	335
	5.5.1.3 Conversion matrix of a linear resistance	336
	5.5.1.4 Conversion matrix of the complete diode	337
	5.5.1.5 Conversion matrix of a mixer circuit	337
	5.5.1.6 Conversion gain and input/output impedances	338
	5.5.2 Large Signal Analysis: Harmonic Balance Simulation	339
5.6	FET Mixers	341
	5.6.1 Single-Ended FET Mixers	341
	5.6.1.1 Simplified analysis of a single-gate FET mixer	341
	5.6.1.2 Large-signal and small-signal analysis of single-gate FET mixers	343
	5.6.1.3 Other topologies	346
5.7	Double-Gate FET Mixers	349
	5.7.1 IF Amplifier	354
	5.7.2 Final Design	355
	5.7.3 Mixer Measurements	356

Contents xi

5.8	Single-Balanced FET Mixers	358
5.9	Double-Balanced FET Mixers	359
5.10	Harmonic Mixers	360
	5.10.1 Single-Device Harmonic Mixers	362
	5.10.2 Balanced Harmonic Mixers	362
5.11	Monolithic Mixers	364
	5.11.1 Characteristics of Monolithic Medium	365
	5.11.2 Devices	366
	5.11.3 Single-Device FET Mixers	366
	5.11.4 Single-Balanced FET Mixers	368
	5.11.5 Double-Balanced FET Mixers	370
	Appendix I	375
	Appendix II	375
	References	376
6	Filters	379
	A. Mediavilla	
6.1	Introduction	379
6.2	Filter Fundamentals	379
	6.2.1 Two-Port Network Definitions	379
	6.2.2 Filter Description	381
	6.2.3 Filter Implementation	383
	6.2.4 The Low Pass Prototype Filter	383
	6.2.5 The Filter Design Process	384
	6.2.5.1 Filter simulation	384
6.3	Mathematical Filter Responses	385
	6.3.1 The Butterworth Response	385
	6.3.2 The Chebyshev Response	386
	6.3.3 The Bessel Response	390
	6.3.4 The Elliptic Response	390
6.4	Low Pass Prototype Filter Design	393
	6.4.1 Calculations for Butterworth Prototype Elements	395
	6.4.2 Calculations for Chebyshev Prototype Elements	400
	6.4.3 Calculations for Bessel Prototype Elements	404
	6.4.4 Calculations for Elliptic Prototype Elements	405
6.5	Filter Impedance and Frequency Scaling	405
	6.5.1 Impedance Scaling	405
	6.5.2 Frequency Scaling	410
	6.5.3 Low Pass to Low Pass Expansion	410
	6.5.4 Low Pass to High Pass Transformation	412
	6.5.5 Low Pass to Band Pass Transformation	414
	6.5.6 Low Pass to Band Stop Transformation	418
	6.5.7 Resonant Network Transformations	421
6.6	Elliptic Filter Transformation	423
	6.6.1 Low Pass Elliptic Translation	423
	6.6.2 High Pass Elliptic Translation	425
	6.6.3 Band Pass Elliptic Translation	426
	6.6.4 Band Stop Elliptic Translation	426
6.7	Filter Normalisation	429
	6.7.1 Low Pass Normalisation	429

xii Contents

	6.7.2 High Pass Normalisation	430
	6.7.3 Band Pass Normalisation	431
	6.7.3.1 Broadband band pass normalisation	432
	6.7.3.2 Narrowband band pass normalisation	433
	6.7.4 Band Stop Normalisation	435
	6.7.4.1 Broadband band stop normalisation	436
	6.7.7.2 Narrowband band stop normalisation	438
7	Oscillators, Frequency Synthesisers and PLL Techniques	461
	E. Artal, J. P. Pascual and J. Portilla	
7.1	Introduction	461
7.2	Solid State Microwave Oscillators	461
	7.2.1 Fundamentals	461
	7.2.1.1 An IMPATT oscillator	463
	7.2.2 Stability of Oscillations	466
7.3	Negative Resistance Diode Oscillators	467
	7.3.1 Design Technique Examples	469
7.4	Transistor Oscillators	469
	7.4.1 Design Fundamentals of Transistor Oscillators	471
	7.4.1.1 Achievement of the negative resistance	472
	7.4.1.2 Resonator circuits for transistor oscillators	473
	7.4.2 Common Topologies of Transistor Oscillators	475
	7.4.2.1 The Colpitts oscillator	476
	7.4.2.2 The Clapp oscillator	477
	7.4.2.3 The Hartley oscillator	477
	7.4.2.4 Other practical topologies of transistor oscillators	478
	7.4.2.5 Microwave oscillators using distributed elements	478
	7.4.3 Advanced CAD Techniques of Transistor Oscillators	479
7.5	Voltage-Controlled Oscillators	481
	7.5.1 Design Fundamentals of Varactor-Tuned Oscillators	481
	7.5.2 Some Topologies of Varactor-Tuned Oscillators	482
	7.5.2.1 VCO based on the Colpitts topology	482
	7.5.2.2 VCO based on the Clapp topology	483
	7.5.2.3 Examples of practical topologies of microwave VCOs	483
7.6	e e e e e e e e e e e e e e e e e e e	484
	7.6.1 Frequency	485
	7.6.2 Output Power	485
	7.6.3 Stability and Noise	485
	7.6.3.1 AM and PM noise	486
	7.6.4 Pulling and Pushing	488
7.7	Microwave Phase Locked Oscillators	489
	7.7.1 PLL Fundamentals	489
	7.7.2 PLL Stability	493
7.8	Subsystems for Microwave Phase Locked Oscillators (PLOs)	493
	7.8.1 Phase Detectors	494
	7.8.1.1 Exclusive-OR gate	495
	7.8.1.2 Phase-frequency detectors	496
	7.8.2 Loop Filters	501
	7.8.3 Mixers and Harmonic Mixers	505
	7.8.4 Frequency Multipliers and Dividers	506

Contents	xiii
----------	------

7.8.4.1 Dual modulus divider	506
7.8.4.2 Multipliers	508
7.8.5 Synthesiser ICs	508
Phase Noise	509
7.9.1 Free running and PLO Noise	513
7.9.1.1 Effect of multiplication in phase noise	514
7.9.2 Measuring Phase Noise	514
Examples of PLOs	514
References	518
x	519
	7.8.4.2 Multipliers 7.8.5 Synthesiser ICs Phase Noise 7.9.1 Free running and PLO Noise 7.9.1.1 Effect of multiplication in phase noise 7.9.2 Measuring Phase Noise Examples of PLOs References

List of Contributors

E. Artal

E. Mitai	Brown, 11. Los Castros, 3,003, Santanteri, Cantaoria, Spain.				
L. de la Fuente	ETSIIT – DICOM, Av. Los Castros, 39005, Santander, Cantabria, Spain.				
D. Dernikas	Formerly University of Bradford, U.K. Currently Aircom International, Grosvenor House, 65–71 London Road, Redhill, Surrey, RH1 1LQ, U.K.				
T. C. Edwards	Engalco, 3, Georgian Mews, Bridlington, East Yorkshire, YO15 3TG, U.K.				
T. Fernandez	ETSIIT – DICOM, Av. Los Castros, 39005, Santander, Cantabria, Spain.				
I. A. Glover	Department of Electronic and Electrical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, U.K.				
N. J. McEwan	Filtronic PLC, The Waterfront, Salts Mill Road, Saltaire, Shipley, West Yorkshire, BD18 3TT, U.K.				
A. Mediavilla	ETSIIT – DICOM, Av. Los Castros, 39005, Santander, Cantabria, Spain.				
J. P. Pascual	ETSIIT – DICOM, Av. Los Castros, 39005, Santander, Cantabria, Spain.				
S. R. Pennock	Department of Electronic and Electrical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, U.K.				
J. Portilla	ETSIIT - DICOM, Av. Los Castros, 39005, Santander, Cantabria, Spain.				
P. R. Shepherd	Department of Electronic and Electrical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, U.K.				
A. Suarez	ETSIIT – DICOM, Av. Los Castros, 39005, Santander, Cantabria, Spain.				
A. Tazon	ETSIIT – DICOM, Av. Los Castros, 39005, Santander, Cantabria, Spain.				

ETSIIT - DICOM, Av. Los Castros, 39005, Santander, Cantabria, Spain.

Preface

This text originated from a Master's degree in RF Communications Engineering offered since the mid-1980s at the University of Bradford in the UK. The (one-year) degree, which has now graduated several hundred students, was divided into essentially three parts:

Part 1 – RF devices and subsystems

Part 2 – RF communications systems

Part 3 – Dissertation project.

Part 1 was delivered principally in Semester 1 (October to mid-February), Part 2 in Semester 2 (mid-February to June) and Part 3 during the undergraduate summer vacation (July to September). Parts 1 and 2 comprised the taught component of the degree consisting of lectures, tutorials, laboratory work and design exercises. Part 3 comprised an individual and substantial project drawing on skills acquired in Parts 1 and 2 for its successful completion.

In the mid-1990s it was decided that a distance-learning version of the degree should be offered which would allow practising scientists and technologists to retrain as RF and microwave communications engineers. (At that time there was a European shortage of such engineers and the perception was that a significant market existed for the conversion of numerate graduates from other disciplines, e.g. physics and maths, and the retraining of existing engineers from other specialisations, e.g. digital electronics and software design.) In order to broaden the market yet further, it was intended that the University of Bradford would collaborate with other European universities running similar degree programmes so that the text could be expanded for use in all. The final list of collaborating institutions was:

University of Bradford, UK University of Cantabria, Spain University of Bologna, Italy Telecommunications Systems Institute/Technical University of Crete, Greece

Microwave Devices, Circuits and Subsystems for Communications Engineering is a result of this collaboration and contains the material delivered in Part 1 of the Bradford degree plus additional material required to match courses delivered at the other institutions.

xviii Preface

In addition to benefiting students studying the relevant degrees in the collaborating institutions, it is hoped that the book will prove useful to both the wider student population and to the practising engineer looking for a refresher or conversion text.

A companion website containing a sample chapter, solutions to selected problems and figures in electronic form (for the use of instructors adopting the book as a course text) is available at ftp://ftp.wiley.co.uk/pub/books/glover.

1

Overview

I. A. Glover, S. R. Pennock and P. R. Shepherd

1.1 Introduction

RF and microwave engineering has innumerable applications, from radar (e.g. for air traffic control and meteorology) through electro-heat applications (e.g. in paper manufacture and domestic microwave ovens), to radiometric remote sensing of the environment, continuous process measurements and non-destructive testing. The focus of the courses for which this text was written, however, is microwave communications and so, while much of the material that follows is entirely generic, the selection and presentation of material are conditioned by this application.

Figure 1.1 shows a block diagram of a typical microwave communications transceiver. The transmitter comprises an information source, a baseband signal processing unit, a modulator, some intermediate frequency (IF) filtering and amplification, a stage of up-conversion to the required radio frequency (RF) followed by further filtering, high power amplification (HPA) and an antenna. The baseband signal processing typically includes one, more, or all of the following: an antialising filter, an analogue-to-digital converter (ADC), a source coder, an encryption unit, an error controller, a multiplexer and a pulse shaper. The antialisaing filter and ADC are only required if the information source is analogue such as a speech signal, for example. The modulator impresses the (processed) baseband information onto the IF carrier. (An IF is used because modulation, filtering and amplification are technologically more difficult, and therefore more expensive, at the microwave RF.)

The receiver comprises an antenna, a low noise amplifier (LNA), microwave filtering, a down-converter, IF filtering and amplification, a demodulator/detector and a baseband processing unit. The demodulator may be coherent or incoherent. The signal processing will incorporate demultiplexing, error detection/correction, deciphering, source decoding, digital-to-analogue conversion (DAC), where appropriate, and audio/video amplification and filtering, again where appropriate. If detection is coherent, phase locked loops (PLLs) or their equivalent will feature in the detector design. Other control circuits, e.g. automatic gain control (AGC), may also be present in the receiver.

The various subsystems of Figure 1.1 (and the devices comprising them whether discrete or in microwave integrated circuit form) are typically connected together with transmission

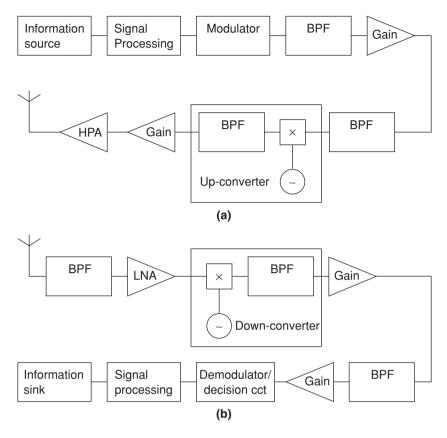


Figure 1.1 Typical microwave communications transmitter (a) and receiver (b)

lines implemented using a variety of possible technologies (e.g. coaxial cable, microstrip, co-planar waveguide).

This text is principally concerned with the operating principles and design of the RF/microwave subsystems of Figure 1.1, i.e. the amplifiers, filters, mixers, local oscillators and connecting transmission lines. It starts, however, by reviewing the solid-state devices (diodes, transistors, etc.) incorporated in most of these subsystems since, assuming good design, it is the fundamental physics of these devices that typically limits performance.

Sections 1,2–1.7 represent a brief overview of the material in each of the following chapters.

1.2 RF Devices

Chapter 2 begins with a review of semiconductors, their fundamental properties and the features that distinguish them from conductors and insulators. The role of electrons and holes as charge carriers in intrinsic (pure) semiconductors is described and the related concepts of carrier mobility, drift velocity and drift current are presented. Carrier concentration gradients, the diffusion current that results from them and the definition of the diffusion

Overview 3

coefficient are also examined and the doping of semiconductors with impurities to increase the concentration of electrons or holes is described. A discussion of the semiconductor energy-band model, which underlies an understanding of semiconductor behaviour, is presented and the important concept of the Fermi energy level is defined. This introductory but fundamental review of semiconductor properties finishes with the definition of mean carrier lifetime and an outline derivation of the carrier continuity equation, which plays a central role in device physics.

Each of the next six major sections deals with a particular type of semiconductor diode. In order of treatment these are (i) simple P-N junctions; (ii) Schottky diodes; (iii) PIN diodes; (iv) step-recovery diodes; (v) Gunn diodes; and (vi) IMPATT diodes. (The use of the term diode in the context of Gunn devices is questionable but almost universal and so we choose here to follow convention.) The treatment of the first three diode types follows the same pattern. The device is first described in thermal equilibrium (i.e. with no externally applied voltage), then under conditions of reverse bias (the P-material being made negative with respect to the N-material), and finally under conditions of forward bias (the P-material being made positive with respect to the N-material). Following discussion of the device's physics under these different conditions, an equivalent circuit model is presented that, to an acceptable engineering approximation, emulates the device's terminal behaviour. It is a device's equivalent circuit model that is used in the design of circuits and subsystems. There is a strong modern trend towards computer-aided design in which case the equivalent circuit models (although of perhaps greater sophistication and accuracy than those presented here) are incorporated in the circuit analysis software. The discussion of each device ends with some comments about its manufacture and a description of some typical applications.

The treatment of the following diode types is less uniform. Step-recovery diodes, being a variation on the basic PIN diode, are described only briefly. The Gunn diode is discussed in some detail since its operating principles are quite different from those of the previous devices. Its important negative resistance property, resulting in its principal application in oscillators and amplifiers, is explained and the relative advantages of its different operating modes are reviewed. Finally, IMPATT diodes are described, that, like Gunn devices, exhibit negative resistance and are used in high power (high frequency) amplifiers and oscillators, their applications being somewhat restricted, however, by their relatively poor noise characteristics. The doping profiles and operating principles of the IMPATT diode are described and the important device equations are presented. The discussion of IMPATT diodes concludes with their equivalent circuit.

Probably the most important solid-state device of all in modern-day electronic engineering is the transistor and it is this device, in several of its high frequency variations, that is addressed next. The treatment of transistors starts with some introductory and general remarks about transistor modelling, in particular, pointing out the difference between small and large signal models. After these introductory remarks three transistor types are addressed in turn, all suitable for RF/microwave applications (to a greater or lesser extent). These are (i) the gallium arsnide metal semiconductor field effect transistor (GaAs MESFET); (ii) the high electron mobility transistor (HEMT); and (iii) the heterojunction bipolar transistor (HBT). In each case the treatment is essentially the same: a short description followed by presentations of the current-voltage characteristic, capacitance-voltage characteristic, the small signal equivalent circuit and the large signal equivalent circuit.

1.3 Signal Transmission and Network Methods

Chapter 3 starts with a survey of practical transmission line structures including those without conductors (dielectric waveguides), those with a single conductor (e.g. conventional waveguide), and those with two conductors (e.g. microstrip). With one exception, all the two-conductor transmission line structures are identified as supporting a quasi-TEM (transverse electromagnetic) mode of propagation – important because this type of propagation can be modelled using classical distributed-circuit transmission line theory. A thorough treatment of this theory is given, starting with the fundamental differential equations containing voltage, current and distributed inductance (L), conductance (G), resistance (R) and capacitance (C), and deriving the resulting line's attenuation constant, phase constant and characteristic impedance. Physical interpretations of the solution of the transmission line equations are given in terms of forward and backward travelling waves and the concepts of loss, dispersion, group velocity and phase velocity are introduced. The frequency-dependent behaviour of a transmission line due to the frequency dependence of its L, G, R and C (due in part to the skin effect) is examined and the special properties of a lossless line (with R = G = 0) are derived.

Following the distributed-circuit description of transmission lines, the more rigorous field theory approach to their analysis is outlined. A short revision of fundamental electromagnetic theory is given before this theory is applied to the simplest (TEM) types of transmission line with a uniform dielectric and perfect conductors. The relationship between the time-varying field on the TEM line and the static field solution to Maxwell's equations is discussed and the validity of the solutions derived from this relationship is confirmed. The special characteristics of the TEM propagation mode are examined in some detail. The discussion of basic transmission line theory ends with a physical interpretation of the field solutions and a visualisation of the field distribution in a coaxial line.

Most traditional transmission lines (wire pair, coaxial cable, waveguide) are purchased as standard components and cut to length. Microstrip, and similarly fabricated line technologies, however, are typically more integrated with the active and passive components that they connect and require designing for each particular circuit application. A detailed description of microstrip is therefore given along with the design equations required to obtain the physical dimensions that achieve the desired electrical characteristics, given constraints such as substrate permittivity and thickness that are fixed once a (commercial) substrate has been selected. The limitations of microstrip including dispersion and loss are discussed and methods of evaluating them are presented. The problem of discontinuities is addressed and models for the foreshortened open end (an approximate open circuit termination), vias (an approximate short circuit termination), mitred bends (for reducing reflections at microstrip corners) and T-junctions are described.

In addition to a simple transmission line technology for interconnecting active and passive devices, microstrip can be used as a passive device technology in its own right. Microstrip implementation of low-pass filters is described and illustrated with a specific example. The general theory of coupled microstrip lines, useful for generalised filter and coupler design, is presented and the concepts of odd- and even-modes explained. Equations and design curves for obtaining the physical microstrip dimensions to realise a particular electrical design objective are presented. The directivity of parallel microstrip couplers is discussed and simplified expressions for its calculation are presented. Methods of improving coupler

Overview 5

performance by capacitor compensation are described. The discussion of practical microstrip design methods concludes with a brief survey of other microstrip coupler configurations including Lange couplers, branch-line couplers and hybrid rings.

Network methods represent a fundamental way of describing the effect of a device or subsystem inserted between a source and load (which may be the Thévenin/Norton equivalent circuits of a complicated existing system). From a systems engineering perspective, the network parameters of the device or subsystem describe its properties completely – knowledge of the detailed composition of the device/subsystem (i.e. the circuit configuration or values of its component resistors, capacitors, inductors, diodes, transistors, transformers, etc.) being unnecessary. The network parameters may be expressed in a number of different ways, e.g. impedance (z), admittance (y), hybrid (h), transmission line (ABCD) and scattering (s) parameters, but all forms give identical (and complete) information and all forms can be readily transformed into any of the others. Despite being equivalent, there are certain practical advantages and disadvantages associated with each particular parameter set and at RF and microwave frequencies these weigh heavily in favour of using s-parameters. A brief review of all commonly used parameter sets is therefore followed by a more detailed definition and interpretation of s-parameters for both one- and two-port (two- and four-terminal) networks.

The reflection and transmission coefficients at the impedance discontinuities of a device's input and output are described explicitly by the device's s-parameters. One of the central problems in RF and microwave design is impedance matching the input and output of a device or subsystem with respect to its source and load impedances. (This problem may be addressed in the context of a variety of objectives such as minimum reflection, maximum gain or minimum noise figure.) The chapter therefore continues with an account of the most widely used aids to impedance matching, namely the Smith chart and its derivatives (admittance and immitance charts). These aids not only accelerate routine (manual) design calculations but also present a geometrical interpretation of relative impedance that can lead to analytical insights and creative design approaches. Both lumped and distributed element techniques are described including the classic transmission line cases of single and double stub matching. The treatment of matching ends with a discussion of broadband matching, its relationship to quality factor (Q-) circles that can be plotted on the Smith chart, and microstrip line transformers.

Chapter 3 closes with a description of network analysers – arguably the most important single instrument at the disposal of the microwave design engineer. The operating principles of this instrument, which can measure the frequency dependent s-parameters of a device, circuit or subsystem, are described and the sources of measurement error are examined. The critical requirement for good calibration of the instrument is explained and the normal calibration procedures, including the technologies used to make measurements on naked (unpackaged) devices, are presented.

1.4 Amplifiers

Virtually all systems need amplifiers to increase the amplitude and power of a signal. Many people are first introduced to amplifiers by means of low frequency transistor and operational amplifier circuits. At microwave frequencies amplifier design often revolves around terms such as available power, unilateral transducer gain, constant gain and constant noise figure circles, and biasing the transistor through a circuit board track that simply changes its width

in order to provide a high isolation connection. This chapter aims to explain these terms and why they are used in the design of microwave amplifiers.

Chapter 4 starts by carefully considering how we define all the power and gain quantities. Microwave frequency amplifiers are often designed using the s-parameters supplied by the device manufacturer, so following the basic definitions of gain, the chapter derives expressions for gain working in terms of s-parameters. These expressions give rise to graphical representations in terms of circles, and the idea of gain circles and their use is discussed.

If we are to realise an amplifier, we want to avoid it becoming an oscillator. Likewise, if we are to make an oscillator, we do not want the circuit to be an amplifier. The stability of a circuit needs to be assessed and proper stability needs to be a design criterion. We look at some basic ideas of stability, and again the resulting conditions have a graphical interpretation as stability circles.

Amplifiers have many different requirements. They might need to be low noise amplifiers in a sensitive receiver, or high power amplifiers in a transmitter. Some applications require narrowband operation while some require broadband operation. This leads to different implementations of microwave amplifier circuits, and some of these are discussed in this chapter.

At microwave frequencies the capacitance, inductance and resistance of the packages holding the devices can have very significant effects, and these features need to be considered when implementing amplifiers in practice. Also alternative circuit layout techniques can be used in place of discrete inductors or capacitors, and some of these are discussed. In dealing with this we see that even relatively simple amplifier circuits are described by a large number of variables. The current method of handling this amount of data and achieving optimum designs is to use a CAD package, and an outline of the use of these is also given.

1.5 Mixers

Mixers are often a key component in a communication or radar system. We generally have our basic message to send, for example, a voice or video signal. This has a particular frequency content that typically extends from very low frequency, maybe zero, up to an upper limit, and we often refer to this as the baseband signal. Many radio stations, TV stations, and mobile phones can be used simultaneously, and they do this by broadcasting their signal on an individually allocated broadcast frequency. It is the mixer circuit that provides the frequency translation from baseband up to the broadcast frequency in the transmitter, and from the broadcast frequency back down to the original baseband in the receiver, to form a superheterodyne system.

A mixer is a non-linear circuit, and must be implemented using a nonlinear component. Chapter 5 first outlines the operation of the commonly used nonlinear components, the diode and the transistor. After that the analysis of these circuits are developed, and the terms used to characterise a mixer are also described. This is done for the so-called linear analysis for small signals, and also for the large signal harmonic balance analysis.

The currently popular transistor mixers are then described, particularly the signal and dual FET implementations that are common in Monolithic Microwave Integrated Circuits (MMICs). The designs of many mixers are discussed and typical performance characteristics are presented. The nonlinear nature of the circuit tends to produce unwanted frequencies at the output of the mixer. These unwanted terms can be 'balanced' out, and the chapter also discusses the operation of single and double balanced mixer configurations.

Overview 7

1.6 Filters

Chapter 6 provides the background and tools for designing filter circuits at microwave frequencies. The chapter begins with a review of two-port circuits and definitions of gain, attenuation and return loss, which are required in the later sections. The various filter characteristics are then described including low-pass, high-pass, band-pass and band-stop responses along with the order number of the filter and how this affects the roll-off of the gain response from the band edges.

The various types of filter response are then described: Butterworth (maximally flat within the passband), Chebyshev (equal ripple response in the pass band), Bessel (maximally flat in phase response) and Elliptic (equal ripple in pass band and stop band amplitude response).

The chapter then addresses the topic of filter realisation and introduces the concept of the low pass prototype filter circuit, which provides the basis for the filter design concepts in the remainder of the chapter. This has a normalised characteristic such that the 3 dB bandwidth of the filter is at a frequency of 1 radian/s and the load impedance is 1 ohm. The four types of filter response mentioned above are then considered in detail, with the mathematical description of the responses given for each.

The chapter then continues with the detail of low pass filter design for any particular value of the order number, N. The equivalent circuit descriptions of the filters are given for both odd and even values of N and also for T- and Π -ladders of capacitors and inductors. Analyses are provided for each of the four filter response types and tables of component values for the normalised response of each is provided.

As these tables are only applicable to the normalised case (bandwidth = 1 radian/s and the filter having a load impedance of 1 ohm), the next stage in the description of the filter realisation is to provide techniques for scaling the component values to apply for any particular load impedance and also for any particular value of low-pass bandwidth. The mathematical relationships between these scalings and the effects on the component values of the filter ladder are derived.

So far, the chapter has only considered the low pass type of filter, so the remainder of the chapter considers the various transformations required to convert the low pass response into equivalent high pass, band pass and band stop responses for each of the filter characteristic types. This therefore provides the reader with all the tools and techniques to design a microwave filter of low pass, high pass, band pass or band stop response with any of the four characteristic responses and of various order number.

1.7 Oscillators and Frequency Synthesisers

Chapter 7 describes the fundamentals of microwave oscillator design, including simple active component realisations using diodes and transistors. The chapter commences with an introduction to solid-state oscillator circuits considered as a device with a load. The fundamental approach is to consider the oscillation condition to be defined so that the sum of the device and load impedances sum to zero. Since the real part of the load impedance must be positive, this implies that the real part of the active device's effective impedance must be negative. This negative resistance is achieved in practice by using a negative resistance diode or a transistor which has a passive feedback network. The active device will have a nonlinear behaviour and its impedance depends on the amplitude of the signal. The balancing condition for the zero impedance condition therefore defines both the frequency and amplitude of oscillation.

The chapter continues with a description of diode realisations of negative resistance oscillators including those based on IMPATT and Gunn devices. This section includes example designs using typical diode characteristics, optimum power conditions and oscillation stability considerations.

Transistor oscillators are then considered. The fundamental design approach is to consider the circuit to be a transistor amplifier with positive feedback, allowing the growth of any starting oscillating signal. This starting signal is most likely to be from ever-present noise in electronic circuits. The feedback circuit is resonant at the desired oscillation frequency, so only noise signals within the bandwidth of the resonant circuit will be amplified and fed back, the other frequencies being filtered out. The possible forms of the resonant feedback circuit are discussed, these include lumped L-C circuits, transmission line equivalents, cavity resonators and dielectric resonators.

The standard topology of transistor feedback oscillators such as the Colpitts, Clapp and Hartley configurations are described and analysed from a mathematical point of view. This section concludes with a discussion of some of the Computer Aided Design (CAD) tools available for the design and analysis of solid-state microwave oscillator circuits.

The next section of the chapter deals with the inclusion of voltage-controlled tuning of the oscillator so that the frequency of oscillation can be varied by the use of a controlling DC voltage. The main implementations for voltage-controlled oscillators (VCOs) use varactor diodes and Yttrium Iron Garnets (YIGs). Varactors are diodes whose junction capacitance can be varied over a significant range of values by the applied bias voltage. When used as part of the frequency selective feedback circuit, variation of this diode capacitance will lead to a variation in the oscillation frequency. YIGs are high-Q resonators in which the ferromagnetic resonance depends (among other factors) on the magnetic field across the device. This in turn can be controlled by an applied voltage. As well as having a high Q value (and therefore a highly stable frequency), YIGs are also capable of a very wide range of voltage control, leading to very broadband voltage control. Examples of practical VCO design complete this section.

The next section considers the characterisation and testing of oscillators. The various parameters used to specify the performance of a particular oscillator include: the oscillator frequency, characterised using a frequency counter or spectrum analyser; the output power, characterised using a power meter; stability and noise (in both amplitude and phase), which can again be analysed using a spectrum analyser or more sophisticated phase noise measurement equipment.

The final section of the chapter deals with phase-locked oscillators, which use phase-locked loops (PLLs) to stabilise the frequency of microwave oscillators. A fundamental description of PLLs is given, along with a consideration of their stability performance. These circuits are then incorporated into the microwave oscillators using a frequency multiplier and harmonic mixers so that the microwave frequency is locked on to a lower, crystal stabilised, frequency so that the characteristics of the highly stable low frequency source are translated on to the microwave frequency.

RF Devices: Characteristics and Modelling

A. Suarez and T. Fernandez

2.1 Introduction

Semiconductor transistors and diodes both exhibit a non-linear current and/or voltage input—output characteristic. Such non-linearity can make the behaviour of these devices difficult to model and simulate. It does enable, however, the implementation of useful functions such as frequency multiplication, frequency translation, switching, variable attenuators and power limiting. Transistors and some types of diodes may also be active, i.e. capable of delivering energy to the system, allowing them to be used in amplifier and oscillator designs. Passive non-linear responses are used for applications such as frequency mixing, switching or power limiting.

The aims of this chapter are: (1) to give a good understanding of the operating principles of the devices presented and to convey factual knowledge of their characteristics and limitations so as to ensure their appropriate use in circuit design; (2) to present accurate equivalent circuit models and introduce some efficient modelling techniques necessary for the analysis and simulation of the circuits in which the devices are employed; and (3) to present the most common applications of each device, illustrating the way in which their particular characteristics are exploited.

The chapter starts with a revision of semiconductor physics, including the general properties of semiconductor materials and band theory that is usually used to explain the origin of these properties. This is followed by a detailed description of the two most important semiconductor devices, diodes and transistors, in their various RF/microwave incarnations. In keeping with the practical circuit and subsystem design ethos of the courses on which this text is based, significant emphasis is placed on the devices' equivalent circuit models that are necessary for both traditional and modern computer-aided design.

2.2 Semiconductor Properties

Solids may be divided into three principal categories: metals, insulators and semiconductors [1, 2]. Metals consist of positive ions, surrounded by a cloud of electrons. Free electrons, which are shared by all the atoms, are able to move under the influence of an electric field at 0 K. Metals have only one type of charge carrier, the electron, conduction being due to electron movement only. The concentration of electrons in an electrically neutral metal is always approximately the same whatever the material or temperature, with values between 10^{22} and 10^{23} cm⁻³.

Insulators are crystalline structures in which electrons are bound closely together in covalent bonds. Electrons in insulators do not move under the influence of an electric field at room temperature, T_0 (= 300 K).

Semiconductors are crystalline structures composed of valence-IV atoms, linked by covalent bonds. They behave as insulators at 0 K and as good conductors at room temperature. The absence of one electron leaves a hole in the covalent bond. When applying an electric field, the filling of this vacancy by another electron, leaving, in turn, another hole, gives rise to an apparent hole movement. A positive charge value may be associated with every hole. Semiconductors have thus two types of charge carriers: electrons and the holes.

2.2.1 Intrinsic Semiconductors

Intrinsic semiconductors may have any of several different forms: single elements with valence IV, such as silicon (Si), germanium (Ge), and carbon (C), and compounds with average valence IV. Among the latter, binary III–V and II–VI associations are the most usual. For example, Gallium Arsenide (GaAs), a III–V compound, is commonly used for microwave devices due to its good conduction properties. In the semiconductor crystal every atom is surrounded by four other atoms and linked to them by four covalent bonds (Figure 2.1).

In compound semiconductors these bonds are formed between the positive and negative ions with four peripheral electrons and are called hetero-polar valence bonds. For instance, in the case of GaAs, four covalent bonds are formed between the negative ions Ga⁻ and the positive ions As⁺.

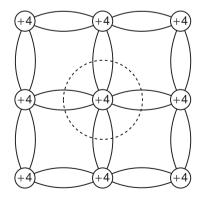


Figure 2.1 Covalent bonding in semiconductor crystal