
Pro LINQ Object
Relational Mapping
with C# 2008

■ ■ ■

Vijay P. Mehta

Pro LINQ Object Relational Mapping with C# 2008

Copyright © 2008 by Vijay P. Mehta

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-965-5

ISBN-10 (pbk): 1-59059-965-9

ISBN-13 (electronic): 978-1-4302-0597-5

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Ewan Buckingham
Technical Reviewer: Fabio Ferracchiati
Editorial Board: Clay Andres, Steve Anglin, Ewan Buckingham, Tony Campbell, Gary Cornell,

Jonathan Gennick, Matthew Moodie, Joseph Ottinger, Jeffrey Pepper, Frank Pohlmann,
Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Sofia Marchant
Copy Editor: Sharon Wilkey
Associate Production Director: Kari Brooks-Copony
Production Editor: Kelly Gunther
Compositor: Susan Glinert Stevens
Proofreader: Elizabeth Berry
Indexer: Carol Burbo
Artist: April Milne
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://
www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

For my wife and family

iv

Contents at a Glance

About the Author . xiii

About the Technical Reviewer . xv

Acknowledgments . xvii

Introduction . xix

PART 1 ■ ■ ■ Object-Relational Mapping Concepts
■CHAPTER 1 Getting Started with Object-Relational Mapping 3

■CHAPTER 2 ORM Patterns and Domain-Driven Design . 17

PART 2 ■ ■ ■ LINQ to SQL Examined
■CHAPTER 3 Introduction to LINQ to SQL . 47

■CHAPTER 4 Advanced LINQ to SQL . 79

PART 3 ■ ■ ■ Entity Framework Examined
■CHAPTER 5 Getting Started with the ADO.NET Entity Framework 113

■CHAPTER 6 Using the ADO.NET Entity Framework . 147

■CHAPTER 7 Advanced ADO.NET Entity Framework . 177

v

PART 4 ■ ■ ■ The Bank of Pluto Case Study
■CHAPTER 8 A Domain Model for the First Bank of Pluto 209

■CHAPTER 9 Mapping the FBP . 243

■CHAPTER 10 Mapping the Bank of Pluto with the ADO.NET
Entity Framework . 277

PART 5 ■ ■ ■ Building on the Bank of
Pluto Foundation

■CHAPTER 11 N-Tier Architecture . 311

■CHAPTER 12 LINQ to SQL, the Entity Framework, and Your Other Options . . . 347

■INDEX . 365

vii

Contents

About the Author . xiii

About the Technical Reviewer . xv

Acknowledgments . xvii

Introduction . xix

■ ■ ■ Object-Relational Mapping Concepts
■CHAPTER 1 Getting Started with Object-Relational Mapping 3

Introduction to Object-Relational Mapping . 3

What Is ORM? . 4

Benefits of ORM . 5

Qualities of a Good ORM Tool . 6
Impedance Mismatch . 8

Object Persistence . 12

Basic ORM Approach . 13

Summary . 14

■CHAPTER 2 ORM Patterns and Domain-Driven Design 17

Domain-Driven Design . 17

UML . 18

Domain-Specific Languages and More . 20

Domain Model Structure . 20

Object-Relational Patterns . 25

Domain Model . 25

Table Module . 27

Active Record . 28

Database Mapper . 28

Laziness . 34

Factories . 35

Repository/Data Access Objects (DAOs). 36

viii ■CO N T E N T S

Persistence Ignorance . 38

PI and LINQ to SQL . 40

PI and EF . 40

PI and NHibernate . 42

Further Reading . 42

Summary . 43

PART 2 ■ ■ ■ LINQ to SQL Examined
■CHAPTER 3 Introduction to LINQ to SQL . 47

What Is LINQ to SQL? . 47

Understanding the Basics . 48

LINQ to SQL Designer. 48

DataContext Class. 52

DBML and Mapping Fundamentals. 54

Querying . 67

Updating/Inserting/Deleting . 73

Summary . 78

■CHAPTER 4 Advanced LINQ to SQL . 79

Debugging . 79

Using Stored Procedures . 81

Working with User-Defined Functions . 91

Constructing Relationships, Joins, and Projections 92

Validation . 105

Transactions . 107

Summary . 110

■C ON TE N TS ix

PART 3 ■ ■ ■ Entity Framework Examined
■CHAPTER 5 Getting Started with the ADO.NET Entity Framework . . . 113

What Is EF? . 113

Exploring the Designer . 114

Understanding the EDM . 119

CSDL . 120

SSDL. 122

MSL . 124

Metadata Schemas . 126

Designer Metadata . 134

Generated Classes . 136

Using EDMGen . 142

Summary . 145

■CHAPTER 6 Using the ADO.NET Entity Framework 147

Object Services: LINQ to Entities . 147

Querying . 148

Using Query Operators . 158

Updating, Inserting, and Deleting . 168

Compiled Queries . 173

Summary . 175

■CHAPTER 7 Advanced ADO.NET Entity Framework 177

Inheritance . 177

Single-Table Mapping . 178

Table per Type . 182

Table per Concrete Class . 187

Entity Client Provider . 190

ESQL . 191

Stored Procedures . 204

Summary . 206

x ■CO N T E N T S

PART 4 ■ ■ ■ The Bank of Pluto Case Study
■CHAPTER 8 A Domain Model for the First Bank of Pluto 209

Requirements and Use Cases . 209

The Model . 214

Base Classes . 215

Entities . 225

Roles . 227

Managers . 229

DAO Implementation . 234

Class Service Infrastructure. 235

Summary . 241

■CHAPTER 9 Mapping the FBP . 243

Creating Classes with the Object Relational Designer 243

Using Inheritance . 245

Using Compiled Queries . 248

Building a Foundation . 249

Creating a Database . 270

Working with Many-to-Many Relationships . 274

Where to Go from Here . 275

Summary . 276

■CHAPTER 10 Mapping the Bank of Pluto with the ADO.NET
Entity Framework . 277

Persistence Ignorance/Custom Objects . 277

IPOCO Interfaces . 278

Top-Down Designer . 281

Applying IPOCO to BoP . 282

Mappings/Database . 292

Middle Tier/Context Manager . 299

Summary . 308

■C ON TE N TS xi

PART 5 ■ ■ ■ Building on the Bank of
Pluto Foundation

■CHAPTER 11 N-Tier Architecture . 311

Why N-Tier? . 311

DTOs . 311

Layered LTS . 313

Layered EF . 324

ASP.NET . 331

Summary . 345

■CHAPTER 12 LINQ to SQL, the Entity Framework, and Your
Other Options . 347

LTS vs. EF . 347

Functionality Differences . 348

Alternatives . 351

NHibernate. 352

EntitySpaces . 355

LLBLGen Pro . 360

Summary . 363

■INDEX . 365

xiii

About the Author

■VIJAY P. MEHTA is a software architect and author. He has provided
creative and insightful leadership throughout his career as a Fortune 500
company enterprise architect and consultant as well as through published
articles on software development patterns and practices. Starting off in
the VC++/ATL, MFC, Win32, and VB6 worlds, Vijay later moved on to
Java and .NET development. Currently working as a technology strategist,
Vijay spends the bulk of his time involved in the design and implementation
of large, cutting-edge software systems.

xv

About the Technical Reviewer

■FABIO CLAUDIO FERRACCHIATI, a prolific writer on cutting-edge technologies, has contributed to
more than a dozen books on .NET, C#, Visual Basic, and ASP.NET. He is a .NET MCSD and lives
in Milan, Italy. You can read his blog at www.ferracchiati.com.

xvii

Acknowledgments

Writing a book is a difficult task, one that cannot be done without the help of a supporting
cast. Pro LINQ Object Relational Mapping with C# 2008 is not an exception; many people have
contributed and made this project possible. First, I need to thank the wonderful people at Apress
who were immeasurably helpful along the way. In particular, I would like to thank my excellent
tech editor Fabio Ferracchiati, my project manager Sofia Marchant, my copy editor Sharon Wilkey,
and my production editor Kelly Gunther. Thanks, team—this would not have been possible
without you.

There are a number of people who have mentored and guided me over the years on the ins
and outs of enterprise software development. First are two of my early mentors, Matt Crouch
and George McCoy; you two taught me the fundamentals that school couldn’t, and for that I am
very grateful. Next, the two Java guys who taught me to really appreciate object-relational
mapping, Michael Kinnaird and Umesh Manocha, thank you for opening my eyes. Finally, the
people who taught me to think about software architecture, in particular Paul Logston and
Charles Hurley, thank you for influencing the way I think about software.

The last group of people who made this book possible is my family. First, I need to thank
my parents and sisters for always supporting me over the years. Last but definitely not least is
my wonderful wife, Alia, without whom this book would not have been possible. Thank you for
putting up with me during this process and helping to keep me sane.

xix

Introduction

It is nearly impossible today to write enterprise software without the use of one or more rela-
tional databases. Granted, in some cases the data is transient and not stored in a database, but
for the most part software needs to consume and manipulate the data in a database. Easy enough,
right? You put the lime in the coconut and you’ve got yourself a data-aware software application.
Wrong! There are hundreds of ways to connect software systems to databases and thousands of
people who think they have the skeleton key for data access layers. I can’t say that I have the
end-all pattern for data access, but I do have an efficient, repeatable way to apply industry
design patterns to build scalable object-oriented persistence layers.

Object-relational mapping (ORM) has been a gray area in Microsoft development for many
years. It’s not that Microsoft language developers didn’t understand ORM; in fact, the opposite
is true, as is exemplified by the glut of third-party .NET ORM tools on the market. The struggle
has come more from the lack of native tools with the object-oriented and object-persistence
capacity to effectively work in this arena. With the inception of .NET, Microsoft overcame the
first obstacle by developing an object-oriented environment and framework. The second obstacle,
the native object persistence layer, is only now being realized with the introduction of the
upcoming data access enhancements in Visual Studio 2008. The gray area is no longer gray, and
the .NET developers of the world finally have the native tools required to build modular, reus-
able data access layers.

Working as an architect and consultant, I have noticed a severe dearth in the .NET commu-
nity when it comes to the finer points of using design patterns to build data access layers. The
Java camp has followed the patterns = reuse mantra for a long time, but the .NET side of the
house is just starting to move in that direction. After scouring the Internet and bookstores, I
have been shocked at how few books address using object-relational mapping patterns with
.NET. The idea for this book has been in the back of my mind for a while, but I was always hesi-
tant because of the deficiency in the native Microsoft tools. Now, with the Language-Integrated
Query (LINQ) suite and the ADO.NET Entity Framework (EF), the object-relational mapping
pattern can finally be realized in the .NET space. Although there are numerous books about
LINQ, this book goes further and ties together the use of ORM design patterns with LINQ and
Visual Studio 2008.

Before the naysayers start in on me for not writing this entire book about the ADO.NET EF,
the “true” ORM tool that Microsoft is developing, let me say that I understand that EF is expected to
be a far more sophisticated ORM tool than LINQ to SQL, the .NET Language-Integrated Query
for Relational Databases, a subset of the LINQ suite. I also understand that some people are
cursing my name right now because I’m calling EF an ORM, but a cat is a cat even if you shave
off its hair and call it a dog. Bottom line, with VS 2008 there are two ORM tools: LINQ to SQL,
which is not getting the recognition it deserves, and EF, which might be getting too much atten-
tion. The focus of this book is ORM with LINQ and C# 2008. This includes EF and LINQ to SQL,
and therefore this text covers both.

xx ■IN TR O D U CT IO N

This text can be utilized as a practical guide for ORM with the .NET Framework. Although
some of this book is based on theory and design patterns, the focus is not an academic or theo-
retical discussion. However, it is important for everyone who is using an ORM tool to understand
that certain principles and patterns lay the foundation of what you are doing. After reading this
text, you will have knowledge of ORM and LINQ, and knowledge of the patterns you need to
write robust software applications. Additionally, by walking through some real-world examples,
you will have the tools you need to move forward in developing ORM solutions in .NET.

■ ■ ■

P A R T 1

Object-Relational
Mapping Concepts

3

■ ■ ■

C H A P T E R 1

Getting Started with
Object-Relational Mapping

In the introduction, I stated that the purpose of this book is to explore object-relational mapping
(ORM) by examining the new tools, LINQ to SQL and EF, as well as tried-and-true design patterns.
Unfortunately, to become a “professional” at ORM development, you have to start with the basics.
This chapter introduces you, largely in a technology-independent manner, to some of the
essential concepts of ORM. In addition to a basic examination of the “what and why” of ORM,
you will also be exploring the qualities that make up a good ORM tool and learning whether
LINQ to SQL and EF make use of them.

Introduction to Object-Relational Mapping
Developing software is a complicated task. Sure, developing software has come a long way
from the assembler days, and we have all sorts of managed, interpreted, Fisher-Price languages
and tools to make things easier for us; even so, things don’t always work as intended. This is
especially evident when a software application has to connect to a relational database manage-
ment system (RDBMS). Anyone with experience in this area knows it is rare in modern enterprise
architecture for a piece of software to live in a silo, without needing to connect to some sort
of database.

Although some might disagree, relational database systems are really considered the life-
line of every enterprise application and, in many cases, of the enterprise itself. These remarkable
systems store information in logical tables containing rows and columns, allowing data access
and manipulation through Structured Query Language (SQL) calls and data manipulation
languages (DMLs). Relational databases are unique in the enterprise because they form the
foundation from which all applications are born. In addition, unlike other software applica-
tions, databases are often shared across many functional areas of a business. One question that
I’ve been asked in the past is this: if databases have all the data, why don’t we just write all our
software in the database? After I controlled my laughter, I began to really think about this question.
From the eyes of a business user, it makes perfect sense to have a single layer in the architecture of
the system, rather than multiple layers. You would have fewer servers and moving parts—and
to paraphrase Mark Twain, as long as you watch that basket closely, it’s fine to put all your eggs
in a single basket. It makes perfect sense.

4 CH AP T E R 1 ■ G E T T I N G S T AR T E D W IT H OB J E C T- R E L AT IO N A L M AP P I N G

But wait a second. That sounds a lot like a mainframe: a single monolithic environment in
which you write procedural code to access data and use a nonintuitive user interface (UI) for
interacting with that data. Now don’t get me wrong—the mainframe has its place in the world
(yes, still), but not if you plan to write distributed applications, with rich user interfaces (that is,
web, thick client, mobile, and so forth), that are easy to customize and adapt, in a rapid appli-
cation development environment; these aspects instead require an object-oriented language
such as C#, VB.NET, Java, or C++.

If you’ve decided that you’re not going to write an entire application in Transact-SQL
(T-SQL), and you’ve decided to use an object-oriented programming language, what are your
next steps? Obviously, you need to go through some sort of process to gather requirements,
create a design, develop the software, and test (some people unwisely skip this step). However,
during the design phase, how do you plan out your data access layer? Will you use stored proce-
dures for your create, read, update, and delete (CRUD) transactions? Maybe you have built a
custom data access layer based on ADO.NET and COM+, or perhaps you have purchased some
widget to do this or that. In my experience at Microsoft shops, ORM rarely comes up in the
discussion. Why would it? ORM fundamentally goes against the direction that Microsoft pursued
for years. Although many Microsoft shops have turned to third-party tools for ORM support, the
norm has always been to use DataSets and ADO.NET objects. True object-oriented program-
ming techniques, like business objects, were hardly ever discussed, and when they were, they
were discussed only as an offshoot of ADO.NET. I suppose you could say the de facto stance of
Microsoft and most Microsoft developers has always been that the power of the DataSet and
DataTable was good enough for any enterprise application and any discerning developer.

What Is ORM?
ORM is an automated way of connecting an object model, sometimes referred to as a domain
model (more on this in the coming chapters), to a relational database by using metadata as the
descriptor of the object and data.

■Note I use the word automated in the sense that the ORM tool that you are using is neither homegrown
nor a manual process of connecting objects to a database. Most people with some basic knowledge of ADO.NET can
create a data access layer and populate a business object. In this context, an ORM tool is a third-party tool
(for example, LINQ to SQL) that provides you with commercial off-the-shelf mapping functionality.

According to Wikipedia, “Object-relational mapping (a.k.a. O/RM, ORM, and O/R mapping) is
a programming technique for converting data between incompatible type systems in relational
databases and object-oriented programming languages.” Frankly, this definition is good enough
for me because it is simple enough for everyone to understand and detailed enough to tell the
full story. Over the coming chapters, the semantics of ORM are further refined, but this defini-
tion is a good place to start.

C H AP TE R 1 ■ G E TT I N G S TA R TE D W I TH O B J E C T- R E L A T I O N AL M AP P IN G 5

Benefits of ORM
It is important to understand that there are many benefits to using ORM rather than other data
access techniques. These benefits will become more evident as you work through examples,
but the following are ones that most stick out in my mind. First, ORM automates the object-to-
table and table-to-object conversion, which simplifies development. This simplified develop-
ment leads to quicker time to market and reduced development and maintenance costs. Next,
ORM requires less code as compared to embedded SQL, handwritten stored procedures, or any
other interface calls with relational databases. Same functionality, less code—this one is a no-
brainer. Last but not least, ORM provides transparent caching of objects on the client (that is,
the application tier), thereby improving system performance. A good ORM is a highly optimized
solution that will make your application faster and easier to support.

Those points are important, but let’s talk about a real-world situation that I have seen at
various companies. Company X has developed a piece of software for a dog food producer and
has followed the mantra that stored procedures are the fastest solution, and all CRUD operations
should be handled by using stored procedures. The developers at this company have followed
this approach to the point that they have individual stored procedures for each CRUD trans-
action—more than 3,000 stored procedures in all. This approach is a common scenario in the
.NET world, with ADO.NET and SQL Server. This software has ballooned so much over the past
couple of years because of customizations, a lack of standardization, and novice developers
that development costs have doubled.

■Note Writing stored procedures does not equate to bad design. On the contrary, stored procedures if
managed correctly are an excellent alternative to dynamic SQL. If you use a code generator to create your
CRUD stored procedures, or if you develop them by hand and have good oversight, in many cases you will be
able to use them in conjunction with an ORM tool.

Company X has a major dilemma now because it has an opportunity to sell its software to
a cat food producer, but the software needs to change to meet the business needs of the cat
food company. With the increased development costs, Company X won’t be making enough
money to justify this deal. But company officials like the idea of selling their software, so they
hire a consulting company to help reduce their overhead. The consulting company wants to
use an ORM tool to help improve the situation. This consulting company builds an object
model to represent the business and to optimize and normalize the company database. In
short order, Company X is able to eliminate the thousands of stored procedures and instead
use “automagic” mapping features to generate its SQL. Development costs go down, profits
go up, and everyone is happy. Clearly this is an oversimplified example, but you can change
Company X’s name to that of any number of organizations around the world. The point is
simple: ORM tools can’t make coffee, but they can provide a proven method for handling data-
base access from object-oriented code.

6 CH AP T E R 1 ■ G E T T I N G S T AR T E D W IT H OB J E C T- R E L AT IO N A L M AP P I N G

Qualities of a Good ORM Tool
I have often been asked what criteria I like to use when evaluating an ORM tool. Because the
primary focus of this text is VS 2008, I’ve decided to outline all the features I look for, and then
discuss if and how LINQ to SQL and EF implement them. In Chapter 12, I present some non-
Microsoft commercial ORM tools and use the items in this list to help evaluate their usability.

Object-to-database mapping: This is the single most important aspect of an ORM tool. An
ORM tool must have the ability to map business objects to back-end database tables via
some sort of metadata mapping. This is fundamentally the core of object-relational mapping
(and yes, LINQ to SQL and EF support mapping business objects to database tables with
metadata).

Object caching: As the name indicates, this functionality enables object/data caching to
improve performance in the persistence layer. Although query and object caching are
available in LINQ to SQL and EF, both require some additional code to take advantage of
this functionality. You will examine this topic throughout the text as you look at how LINQ
to SQL and EF control object and state management. At this time, it is important that you
understand only that both tools support caching in some form or another.

GUI mapping: Like so many other topics in the IT world, this is a debated topic. I’m of the
mind that software with a graphical user interface (GUI) is a good thing, and the simpler
the interface, the better. However, there are still purists in the ORM world who say mappings
should be done by hand because this is the only way to ensure that the fine-grained objects are
connected correctly. I believe that if an ORM tool has everything else you need, yet no GUI,
you should still use it. If the GUI is included, consider it the icing on the cake. After all, if
the framework is in place, you can always write your own GUI. In the case of LINQ to SQL
and EF, GUI designers are provided with Visual Studio 2008.

Multiple database-platform support: This is pretty self-explanatory: a decent ORM offers
portability from one RDBMS provider to another. At the time that I’m writing this, though,
I am sad to say that LINQ to SQL supports only SQL Server 2000 and up. However, this is the
first version of this tool. EF, on the other hand, uses the provider framework and supposedly
will support multiple database platforms. It’s unclear whether these providers will be
available for release to manufacturing (RTM), but again the provider model is part of the
strategy. Although I consider this a critical piece of functionality for an ORM tool,
providing examples in anything other than SQL Server is outside the scope of this book.

Dynamic querying: Another important aspect of ORM, and the bane of database adminis-
trators (DBAs) everywhere, is dynamic query support. This means that the ORM tool offers
projections and classless querying, or dynamic SQL based on user input. This functionality is
supported natively in LINQ to SQL and EF, allowing users to specify a filter or criteria, and
the framework automagically generates the query based on the input.

C H AP TE R 1 ■ G E TT I N G S TA R TE D W I TH O B J E C T- R E L A T I O N AL M AP P IN G 7

Lazy loading: The purpose of lazy loading is to optimize memory utilization of database
servers by prioritizing components that need to be loaded into memory when a program
is started. Chapter 2 details the lazy-loading pattern, so for now just know that lazy loading
typically improves performance. LINQ to SQL has a built-in functionality that allows you
to specify whether properties on entities should be prefetched or lazy-loaded on first access.
This is actually built right into the VS 2008 designer as a property on the entity. EF also
supports lazy loading by default; however, there are a few caveats with the object context
and concurrency, which you will look at in more depth in upcoming chapters.

Nonintrusive persistence: This is an important one, and it is discussed in depth in Chapter 2.
Nonintrusive persistence means that there is no need to extend or inherit from any function,
class, interface, or anything else provider-specific. LINQ to SQL supports this concept,
because you can use a custom class that does not have any provider-specific technology,
and still have it participate in the ORM process. It’s not as black-and-white with the Entity
Framework because EF does not support nonintrusive persistence. EF does support the
use of the IPOCO pattern, which you will explore later, but natively you are required to inherit
from and extend EF-specific technology to use this ORM.

Code generation: This is another gray area of ORM. The purists will insist that there is no
place for code generation in ORM, because a well-thought-out object model should be
coded by hand. It should, in fact, be based on the conceptual model of the business domain,
not on the metadata of the database. There is room for code generation when using an
abstract data object layer, which extends your object model, but that is a different situation
that I discuss in the next chapter. I think that code generation can be useful when working
on a project in which the database schema is static, and the customer understands the
ramifications of using this approach (see the Bottom Up approach). However, even though
LINQ to SQL and EF support code generation, I’m not a big proponent of it. I think that the
semantics of the object model get lost along the way and the database schema becomes
the focus, thus making the application rigid and inflexible. Nonetheless, code generation
is an important aspect of these tools, so the text does present some examples.

Multiple object-oriented framework support: This is blue sky. You would be hard-pressed
to find an ORM product offering compatibility with multiple object-oriented languages
and development environments. I’m not talking about Visual Basic (VB) and C#; rather I’m
referencing .NET and Java. This may sound far-fetched, but at some point in the future I
envision the persistence layer becoming language agnostic. You say CLR, I say JVM . . . can’t
we all just get along? This ranks very low on the determining factors for choosing an ORM
vendor; however, I like to keep it on the list just to keep everyone on their toes.

8 CH AP T E R 1 ■ G E T T I N G S T AR T E D W IT H OB J E C T- R E L AT IO N A L M AP P I N G

Stored procedure support: The object purists are going to read this and say that stored
procedures serve no purpose in an ORM tool. Why on earth would you defile your decou-
pled model and data layer with the integration of stored procedures? The fact of the matter
is, in many large organizations you can’t get away with using dynamic SQL. The DBA group
may have had a bad experience with ORM, or they may enjoy holding all the cards, or may
just not like what you have to say. Additionally, because Microsoft has been pushing stored
procedures on developers and DBAs for years, it may be difficult for you to change the stored
procedure culture overnight. Along with the possibility that the DBA group is standing in
your path, at times stored procedures are really the only viable option because of perfor-
mance problems with long-running or complex queries in the ORM tool (for example,
reporting). Regardless of the situation, you’re not out of luck because many ORM tools,
including LINQ to SQL and EF, support stored procedures.

Miscellaneous: I once worked for a guy who said to never put miscellaneous in a list because it
showed a lack of completeness. Well, I think miscellaneous is a good way to describe the
following items that aren’t worth a subheading, but still need to be mentioned for complete-
ness. The miscellaneous criteria are as follows: price, ease of use, documentation, market
penetration, performance, and support. I would include all these criteria in an ORM tool
analysis, but they are not really relevant to the heart of this text.

The most important thing for you to remember when choosing and using an ORM tool is
that it is not going to solve world hunger. It is important that you familiarize yourself with ORM
and the tool before making any significant changes to your architecture. ORM tools can increase
productivity and decrease time to market, but they can also do the opposite if not fully under-
stood by the stakeholders involved.

Impedance Mismatch
It would be utterly irresponsible of me not to include a section about the impedance mismatch
that occurs between object code and relational databases. This is probably the single most
common explanation that people give for using ORM tools. The object-oriented archetype is
founded on the principle that applications are built by using a collection of reusable compo-
nents called objects. On the other hand, the relational database pattern is one in which the
database stores data in tabular form. Whereas the database is largely based on a purely math-
ematical algorithm, the object-oriented model is based on a representation of life and one’s
surroundings. Therefore, to overcome the disparities between the two paradigms, it is neces-
sary to map the object model to the data model.

Let’s look at an example of the paradigm mismatch. In this example, we begin with a simple
class model and slowly expand the model to illuminate the mismatch problem. Here we have
the start of a retail banking application, with a Customer class and an Account class. As seen in
Figure 1-1, the Customer class has one or more Account classes, similar to a customer at a bank.

Figure 1-1. An example of a Customer class with one or more Account classes

C H AP TE R 1 ■ G E TT I N G S TA R TE D W I TH O B J E C T- R E L A T I O N AL M AP P IN G 9

The source code associated with Figure 1-1 resembles the following:

public class Customer
{
 private string _firstName;
 private string _lastName;
 private string _fullName;
 private List<Account> _accounts = new List<Account>();
 private int _id;

 // Get and Set Properties for each of our member variables
}

public class Account
{
 private int _id;
 private int _accountNumber;
 private int _customerID;

 // Get and Set Properties for each of our member variables

}

The Data Definition Language (DDL) for Figure 1-1 looks similar to this:

CREATE TABLE [Customer](
 CustomerID] [int] IDENTITY(1,1) NOT NULL,
 FirstName] [nvarchar](50) NULL,
 LastName] [nvarchar](50) NULL,
 MiddleName] [nvarchar](50) NULL,
 FullName] [nchar](10) NULL,
 CONSTRAINT PK_Customer PRIMARY KEY ([CustomerID])
)

CREATE TABLE [dbo].[Account](
 AccountID] [int] IDENTITY(1,1) NOT NULL,
 AccountNumber] [int] NULL,
 CustomerID] [int] NOT NULL,
 CONSTRAINT PK_Account PRIMARY KEY ([AccountID]),
 CONSTRAINT FK_Account_Customer FOREIGN KEY (CustomerID)
 REFERENCES [Customer]([CustomerID])
)

In this scenario, we have a pretty vanilla example: we have one class for one table, and we
have a foreign-key relationship of the account table containing the ID of the customer table—
if only every database and application were this easy to design. I guess I would probably be out
of a job, so maybe it’s a good thing that ORM, software engineers, and design patterns are needed.

Let’s expand this case so it is based more on a system that you might see in the real world.
In the preceding case, you have a Customer class that uses strings for the first and last name.

10 CH AP T E R 1 ■ G E T T I N G S T AR T E D W IT H OB J E C T- R E L AT IO N A L M AP P I N G

Suppose after speaking with the business, you realize that the banking software will be used
in various countries and regions around the world. You know from reading a white paper on
internationalization and localization that you are going to need finer-grained control of the
names in the system because not all cultures use first and last names in the same way. Additionally,
after looking at the object model, you realize that it is lacking abstraction, which is really just a
nice way of saying that your object model is lacking flexibility and extensibility. Therefore, as
illustrated in Figure 1-2, you should refactor your model to add inheritance and abstraction
and to make your model a closer representation of the business domain.

Figure 1-2. A more realistic representation of an object model for a banking application

As represented in Figure 1-2, we have expanded our object model to better represent the
banking domain. We have modified the Customer class so it inherits from a Person base class,
and we have created a relationship between the Person class and the PersonName class to account
for complex naming situations in foreign countries. In addition, we have expanded the taxonomy
of Account so that it includes classes for Loan, Checking, Mortgage, and CreditCard—all realistic
examples of how you would use inheritance for an object model in the banking industry.

In Listing 1-1, you have the diagram from Figure 1-2 enumerated into C#. In this example,
you have a better representation of an object model that would be used in the banking industry.

Listing 1-1. A More Realistic Object Model for the Banking Industry

{
 public int Id {get; set;}
 public PersonName Name {get; set;}
}

public class PersonName
{
 public string FirstName {get;set;}
 public string LastName {get;set;}
 public string FullName{get;set;}
}

C H AP TE R 1 ■ G E TT I N G S TA R TE D W I TH O B J E C T- R E L A T I O N AL M AP P IN G 11

public class Customer:Person
{
 private List<Account> _accounts = new List<Account>();
 public List<Account> Accounts
 {
 get
 {
 return this._accounts;
 }
 set
 {
 this._accounts = value;
 }
 }

}

public class Account
{
 public int Id {get;set;}
 public int AccountNumber{get;set;}
}

How does this more-accurate object model in Listing 1-1 relate back to our database schema?
If you start with Person and PersonName, you already can see the mismatch between the data
model and object model. In the database schema, it is perfectly acceptable to have a Customer
table contain all the information for Person and PersonName. This variance has to do with the
difference between fine-grained objects and coarse-grained objects, and the database’s inability to
handle these common object-oriented relationships and associations.

Let’s talk about what I mean here when I say fine-grained and coarse-grained objects: the
analogy comes from any particulate matter (for example, sand) consisting of small or large
particles. Like particles, a coarse-grained object is one that semantically is large and contains
many aspects—for example, the Account class in Figure 1-1. Alternatively, fine-grained objects
are much smaller and detailed, like the refactored version seen in Figure 1-2. The fine-grained
approach is almost always preferred when building an object model.

There are several reasons to prefer a group of smaller objects to one giant object, but some
of the most important reasons are performance, maintainability, and scalability. Why would
you retrieve all the data for a single large object when you can easily retrieve the data you need
from a smaller object? Why remote a large object when all you need is a subset of the data? Why
make maintenance more complex by putting everything in a single class when you can break it up?
These are all questions you should ask the next time you find yourself building an object model.

■Tip In Listing 1-1, I am taking advantage of one of the new C# 3.0 language features, automatic properties.
As you can see, the code is much cleaner because you do not have to explicitly declare a private field for the
property; the compiler does it for you. I use the new language features throughout the text, and they are called
out in Tip boxes like this one.

12 CH AP T E R 1 ■ G E T T I N G S T AR T E D W IT H OB J E C T- R E L AT IO N A L M AP P I N G

Continuing with the comparison between the object model and the data model, notice
that there is significantly more inheritance in the object model in Figure 1-2 as compared to
Figure 1-1. This is a common scenario in today’s object-oriented world, with applications designed
with multiple layers of inheritance for extensibility and abstraction. After all, inheritance is one
of the core tenets of object-oriented programming and accordingly is extremely useful when it
comes to building flexibility and scalability into your application. Unfortunately, my relational
database doesn’t come with an inheritance button, and if you think yours does, as they say, I’ve
got a bridge you might be interested in purchasing. Every developer who has worked with a
relational database knows that there is no good way to connect multilevel or single-level inher-
itance relationships in a database. Sure, you can create various relationships and extension
tables, and yes, with SQL Server 2005 you can use the Common Language Runtime (CLR);
nonetheless, you will still never be able to create an inheritance model in a relational database
as cleanly (if at all) as you will in your object model.

Along with inheritance, another core aspect of object-oriented programming rears its
head in Figure 1-2; specifically, polymorphism and polymorphic associations are apparent. As
you are likely aware, this was bound to happen because anytime you introduce inheritance,
there is the possibility of polymorphism. Obviously, this polymorphism depends on your hier-
archy and implementation of your concrete classes, but it’s safe to say that polymorphism is a
possibility when you have inheritance in your object model. A good example of this is seen in
the Customer class, in which a one-to-many association with the Account class exists, and the
Account class in turn has subclasses of Loan, Checking, and so forth. Figure 1-2 tells us that the
Customer object may be associated with any instance of Account, including its subtypes at
runtime. What this means for you as the developer is that there is a good possibility that you
will want to write a query to return instances of the Account subclasses. This, of course, is one
of the great features of object-oriented programming and one of the drawbacks to relational
databases.

As seen in the previous examples, without manipulating the object model with Adapters
and other SQL data access code, there is no straightforward way to connect the object-oriented
model to a relational database model. The term Adapters is taken from Design Patterns: Elements of
Reusable Object-Oriented Software by Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides (Addison-Wesley Professional, 1994) and is defined as the conversion of the interface
of a class into another interface that clients expect. Although the examples simply portrayed
the inherent mismatch between fine- and coarse-grained objects, inheritance, and polymor-
phism, I can tell you that encapsulation, abstraction, and the other fundamentals of object-
oriented programming don’t fare much better. The bottom line: vendors or languages and
databases have never addressed the impedance mismatch between object and data, and so
ORM continues to thrive.

Object Persistence
Object persistence is at the heart of ORM. To quote Obi-Wan: “It surrounds us and penetrates
us. It binds the galaxy together.” I’m not going to write extensively about persistence because
it has been covered exhaustively elsewhere (and if you have picked up this book, I believe you
already have a basic understanding of persistence as it relates to object-oriented development). I
think it’s important, however, to provide a brief refresher and give you my two cents on the subject.

The essence of persistence is the act of saving and restoring data. These objectives are not
specific to ORM or object-oriented programming; rather, persistence is a concept that transects

C H AP TE R 1 ■ G E TT I N G S TA R TE D W I TH O B J E C T- R E L A T I O N AL M AP P IN G 13

software engineering as a whole. Persistence is apparent every time you turn on your computer,
whether you are saving a document, an e-mail, or any other data. The minute you turn on your
computer, persistence occurs, from the lowest-level circuit all the way up to the web browser
you use to log in to your bank.

In the ORM world, persistence relates to the act of dehydrating and rehydrating (or vice
versa) an object model complete with the object’s current state. Everyone knows that applica-
tion data can be persisted to relational database systems for permanent storage, but who wants
to always make a round-trip call to the database to retrieve our object data? Additionally, I have
already shown that there is an inherent mismatch between an object model and the data model.
We need a mechanism to save and restore our object hierarchy, complete with state, in our
data access layer: hence, object persistence and ORM.

The primary way to handle object persistence is to utilize object serialization. Object
serialization is the act of converting a binary object, in its current state, to some sort of data
stream that can be used at a later date or moved to an alternate location. The concept isn’t new;
object persistence has been around a long time. In classic ActiveX Data Objects (ADO), it is
possible to serialize a recordset; in Java, you can use Enterprise JavaBeans (EJB) or Plain Old
Java Objects (POJOs); and in .NET, you can use ADO.NET or Plain Old CLR Objects (POCOs).
Of course, in .NET (and Java), your objects must implement ISerializable, allowing the
language interpreter to do the serialization work for you. But back to the heart of the matter:
when trying to persist an object, serialization is imperative.

This truth was known and embraced by the ORM gurus and developers of yesteryear, and
it has carried into the designs of all modern-day ORM tools. Fortunately for us, LINQ to SQL
and EF both make good use of object persistence and serialization, making our lives simpler
and eliminating the need to spend endless hours designing a persistence mechanism in our
data access layer. As you progress deeper into LINQ to SQL and EF, you will explore caching
and object persistence in more detail.

Basic ORM Approach
Similar to much of this chapter, the ORM approach is discussed throughout the text; however,
I want to set the stage for detailed discussions in the coming chapters. Fundamentally, there
are three key approaches when it comes to ORM: the Bottom Up, the Top Down, and the Meet
in the Middle approaches. Each approach has its benefits and problems, and no approach
should be considered the panacea. It is critical when designing an application to understand
that the “one size fits all” mentality never works. Although a chunk of this book looks favorably
at the domain-driven design (DDD) model, and the patterns that Martin Fowler and others
have produced, the fact is that those patterns and practices are still fallible. A more-holistic
view of the environment, requirements, and needs of the customer is vital when designing
software.

The Bottom Up approach is as it sounds: you start at the bottom, or in this case the data-
base, and work your way up to the object model. In the LINQ to SQL designer, this is the most
supported approach. That isn’t to say that you can’t use the other approaches with LINQ to SQL
(because you can), but the quickest and easiest way is to start with the database and generate your
object model from your schema. EF, like LINQ to SQL, supports this approach; however, unlike
LINQ to SQL, this is not the primary approach for the EF designer.

Although the DDD people are going to strongly disagree with me, in some situations the
Bottom Up approach is as sound as any other development technique. However, it does lend

14 CH AP T E R 1 ■ G E T T I N G S T AR T E D W IT H OB J E C T- R E L AT IO N A L M AP P I N G

itself better to situations where you have a normalized, well-thought-out data model, or are
designing the entire system from scratch. Nonetheless, in these cases it can be the fastest
approach, and if you follow some common design patterns (which are presented in Chapter 2),
you can get a pretty good bang for your buck.

Unfortunately, I have to say that it is rare that an organization has an existing well-designed
database. My experience over the years puts the estimate of companies with normalized, well-
thought-out data models somewhere around 10 percent. The other 90 percent fall somewhere
between “Oh boy, they have no referential integrity and are using a single table to store all their
data” and “Not too bad—just needs a little normalizing.” In these cases, I tend to focus more
on the Top Down and the Meet in the Middle approaches.

The Top Down approach, the preferred method of DDD people everywhere, is simply put,
modeling your domain on business or conceptual needs rather than the database. This defini-
tion is a bit basic and thus is expanded further in later chapters. However, the Top Down approach
is the core of DDD. The main drawback to this approach is that it presents a strong learning
challenge for people who are not familiar with it and can take some time to implement correctly.
However, this approach does allow you to truly model the domain based on specific business
needs, thus providing the most flexible design approach.

The Meet in the Middle approach is most applicable to situations in which a database and
object model already exist, and your goal is to determine the mappings between the two. This
is one of those situations that rarely, if ever, happens because no matter how hard you try, the
chances that you have a domain model that orthogonally transects multiple database models
is unlikely. Most likely, you will end up refactoring, so this approach really morphs into the Top
Down or Bottom Up approach.

In both the Top Down and the Meet in the Middle approaches, LINQ to SQL comes up
short. Although the mapping support and the entity support are available, the designer doesn’t
add much to the equation. Yes, you can drag “classes” from the toolbox, but the functionality
is underdeveloped at best. Nevertheless, the designers of LINQ to SQL had the foresight to keep
the application programming interface (API) and the internals open enough for us to use the
engine with both of these approaches. The Entity Framework designer does a very good job in
both of these scenarios; it supports robustly building your conceptual domain model first and
supplying the model and the database to build the mappings.

Summary
In this chapter, I have introduced you to some of the basic concepts surrounding ORM, EF, and
LINQ to SQL. ORM is the act of connecting object code, whether it is in C#, Java, or any other
object-oriented language, to a relational database. This act of mapping is an efficient way to
overcome the mismatch that exists between object-oriented development languages and rela-
tional databases. Such a mismatch can be classified as an inequality between the native object-
oriented language operations and functions and those of a relational database. For example, it
is impossible to take an object model and save it directly into a database without some manip-
ulation. This occurs because the database doesn’t have the ability to handle inheritance or
polymorphism, two basic tenets of object-oriented development. An ORM tool is an excellent
solution to overcome the inherent difference between object code and relational databases.

The ORM tool you choose to use in your software should be evaluated based on a set of
criteria that meets your goals; however, the following are good starting points: object-to-data-
base mapping, object caching, GUI mapping, portability (multiple DB support), dynamic querying,

C H AP TE R 1 ■ G E TT I N G S TA R TE D W I TH O B J E C T- R E L A T I O N AL M AP P IN G 15

lazy loading, nonintrusive persistence, code generation, and stored procedure support. Addi-
tionally, along with the criteria and the process direction you use to choose your ORM tool, you
should also think about the approach that you envision yourself using. There are three key
approaches that you may find useful in your development: the Top Down, Meet in the Middle,
and the Bottom Up approaches. Knowing your requirements and your business needs (and
wants) will help you choose an appropriate approach and long-term ORM solution.

Chapter 2 more extensively explores the patterns and practices used to create a modular
and scalable data access layer using ORM. Chapter 2 does not reinvent these architectural
patterns but instead draws upon and simplifies the plethora of existing patterns out there and
consolidates them into a single grouping of ORM categories.

17

■ ■ ■

C H A P T E R 2

ORM Patterns and
Domain-Driven Design

A s I pointed out in the first chapter, it is impossible to discuss ORM without talking about
patterns and best practices for building persistence layers. Then again, it is also impossible to
discuss ORM patterns without calling out the gurus in the industry, namely Martin Fowler, Eric
Evans, Jimmy Nilsson, Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, the
last four of whom are known in the industry as the Gang of Four (GoF). The purposes of this
chapter are to explain and expand some of the patterns created by these gurus and to provide
concrete examples using language that every developer can understand.

Domain-Driven Design
For as long as I can remember, there have been heated debates about the process used when
developing software. Domain-driven design (DDD) is one of a handful of software-development
philosophies that have emerged in the last ten years that provides us with a precedence of
knowledge and a direction to overcome the complexities of a problem. At the heart of DDD lies
the domain, which according to Merriam-Webster Online (www.meriam-webster.com) is “a sphere
of knowledge, influence, or activity.” Although semantically correct, the essence of what the
domain is in DDD is not adequately captured by this definition.

Let me tell you what I consider the domain and DDD to be. First, the domain is the business of
a business. It is fundamentally the problem that you are trying to solve with the software. For
example, in a banking originations engine, you need to determine how to create a loan appli-
cation and how that application will be processed through the system. The domain in this case
is the whole of the banking and originations process. You need to model the domain in order to
solve the problem at hand. Thus, DDD in simple terms is the act of focusing your development
efforts on the model and the domain, using proven design patterns and practices.

In Patterns of Enterprise Application Architecture (Addison-Wesley Professional, 2002),
Martin Fowler describes the domain model as “an object model of the domain that incorpo-
rates both behavior and data.” At the highest level, this is an accurate definition. The domain
model is a common conceptual model that is used to represent the realm. Additionally, the
domain model defines a common vocabulary and interactions that can and should be used by
everyone in the software life cycle. This is not to say that a business analyst needs to become an
object-oriented expert. However, it is important that everyone involved in the life cycle have a
basic understanding of object-oriented expression and design principles.

