Foundations of
GTK+
Development

Andrew Krause

Apress:

Foundations of GTK+ Development
Copyright © 2007 by Andrew Krause

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-793-4
ISBN-10 (pbk): 1-59059-793-1
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editors: Jason Gilmore, Matt Wade

Technical Reviewers: Christiana Evelyn Johnson, Micah Carrick

Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,
Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Jeff Pepper, Paul Sarknas,
Dominic Shakeshaft, Jim Sumser, Matt Wade

Project Manager: Richard Dal Porto

Copy Edit Manager: Nicole Flores

Copy Editor: Heather Lang

Assistant Production Director: Kari Brooks-Copony

Production Editor: Katie Stence

Compositor: Pat Christenson

Proofreader: Elizabeth Berry

Indexer: Ann Rogers

Artist: April Milne

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress. com, or visit http://www.apress.com.

The information in this book s distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code/
Download section or at the official book site, http://www.gtkbook.com.

I dedicate this book to Mrs. Kaminsky, for never allowing me to settle for anything but my
best. I hope you can look at this book and see everything that you have done for me,
even though I have yet to broaden the scope of my writing beyond technology.

Contents at a Glance

Aboutthe AUTNOr Xvii
ACKNOWIBAgMENTS. Xix
INtrodUCHION XXi
CHAPTER 1 Getting Startedl 1
CHAPTER 2 Your First GTK+ Applications 15
CHAPTER3 ContainerWidgets 43
CHAPTER4 BasicWidgets i, 75
CHAPTERS Dialogs........... ... 111
CHAPTER6 UsingGLib......... 159
CHAPTER7 TheTextViewWidget....................................... 219
CHAPTER8 TheTreeViewWidget....................................... 261
CHAPTER9 MenusandToolbarscooiiiiiiiin... 315
CHAPTER 10 Dynamic User Interfaces 355
CHAPTER 11 Creating Custom Widgets.................................... 381
CHAPTER 12 Additional GTK+ Widgets 431
CHAPTER 13 Putting It All Together................ 471
APPENDIX A GTK+ Propertiescc i, 481
APPENDIXB GTK+Signals....................ooiiiiiii, 529
APPENDIXC GTK+Styles......... ... 565
APPENDIXD GTK+Stockltems.............................oiiiiiii.. 583
APPENDIXE GError Types ...t 587
APPENDIX F Exercise Solutionsand Hints................................. 595

Contents

About the Author .
Acknowledgments
Introduction

CHAPTER 1

CHAPTER 2

.. XVii
.. Xix
.. XXi
Getting Started................... ... 1
ABrief History of GTK+ 2
The XWindow System. ... i 2
GTK+ and Supporting Libraries ..., 3
GLib .. 5
GObjeCt. ... 6
DK . 7
GAKPIXbUT 7
PaNgo 8
ATK 9
Language Bindings................ . 9
Installing GTK+ 10
SUMMANY .. 12
Your First GTK+ Applications 15
HelloWorld. 15
Initializing GTK+ ... 16
Widget Hierarchy........... 17
GTK+Windowso 19
The Main Loop Function. 20
Using GCC and pkg-configto Compile 21
Extending “HelloWorld” i 23
Signalsand Callbackso i 27
Connectingthe Signal 27
Callback Functions i 28
Emitting and Stopping Signals 29
EVeNtS. .. 29
Event TYpeS 31
Using Specific Event Structures 31

vii

viii

CONTENTS

CHAPTER 3

CHAPTER 4

Further GTK+ Functions i, 32
GtkWidget Functions. i 32
GtkWindow Functions................... il 33
Process PendingEvents............................o 35

BUHONS 36

Widget Properties. ... 38

Test Your Understanding. ..., 40

SUMMANY .. M

Container Widgets.. 43

GtkContainer 43
Decorator Containers i, 43
Layout Containers.coeiriii e 44
Resizing Children. ... i 44
Container Signals ... 46

Horizontal and Vertical Boxes..................cooiiiiiiiiinns, 46

Horizontal and Vertical Panes.oiiint 50

Tables. ... 53
TablePacking i 55
Table Spacingt 57

Fixed Containers............. ... o i 57

EXpanders ... 60

Handle BOXeS. ... 62

NOtEDOOKS 64
GtkNotebook Properties. ... 66
Tab Operations ...t 67

Event BoXeS. 68

TestYourUnderstanding...................oo i, 72

SUMMANY .. 73

BasicWidgets... 75

Using Stock ltems. 75

ToggleButtons 77
Managing WidgetFlags il 78
CheckButtons........... ... i 80

RadioButtons. ... 82

CHAPTER 5

CONTENTS
TextEntries 84
Entry Properties. ... 86
Inserting Text into a GtkEntry Widget 87
Manipulating GtkEntry Text.............. 87
SpinButtons 88
Adjustments........ 88
ASpinButton Example............. ...l 89
Horizontal and Vertical Scales 91
Widget Styles. 93
The GtkStyle Structure............. ... i 93
Resource Files........... ..o 94
Additional Buttons. 97
ColorButtons 97
File Chooser Buttons., 101
FontButtons............. ... i 106
Test Your Understanding. ..., 108
SUMMANY ... 110
Dialogs 111
Creating Your Own Dialogs.............ccooviiiii i, 11
Creatinga Message Dialogooooiiiii i, 112
Nonmodal Message Dialogo... 118
Another Dialog Example............ 119
BUilt-in Dialogs 122
Message Dialogs.co i 122
The About Dialog...............c o, 126
File Chooser Dialogs.coooviviii i 132
Color Selection Dialogsccoiiiiiiiiiii.., 139
Font Selection Dialogs ...t 143
Dialogs with Multiple Pages ..., 146
Creating GtkAssistantPages.........................coitt 151
GtkProgressBar 153
Page Forward Functions, 154
TestYourUnderstanding..............., 156

ix

CONTENTS

CHAPTER 6

Using GLib. ... 159
GLID BASICSot 160
Basic Data Types. ... 160
Standard Macros.................. . 161
Message Logging 164
Memory Management i 165
Memory Slices. ... 165
Memory Allocation 168
Memory Profiling............ ... 169
Utility Functions. 171
EnvironmentVariablesol 17
TIMerS. .o 172
File Manipulation..............l 174
DIreCtonies ... 177
File System. ... 178
The Main Loop.o 179
Contexts and SOUrCES.covviiiiii i, 179
Timeouts. ... 180
Idle Functions.l 183
Data TypesS. 184
SHiNGS. ..o 184
Linked ListS 186
Balanced Binary Trees.............. ..., 188
N-ary TreeS ... o 191
AITaYS .. 194
HashTables...............co i 197
Quarks. ... 199
Keyed DataLists................ ... i, 199
Input-Output Channels. i, 201
GlOChannelsand Files..................cocoiiiii .., 201
GlOChannelsand Pipes il 203
Spawning Processes.ov i 210
Dynamic Modules. o 212
Test Your Understanding. ..., 215

CHAPTER 7

CHAPTER 8

CONTENTS
The Text View Widget 219
Scrolled Windows. ... 219
TexXtVieWS .. 224
TextBuffers ... 225
Text View Properties.o i, 226
Pango Tab Arrayso 229
Textlteratorsand Marks..............., 231
Editing the TextBuffer 232
Cutting, Copying, and Pasting Text 238
Searchingthe TextBuffer, 242
Scrolling TextBuffers.................co il 245
TeXtTagS . ..o 246
Inserting Imagest 252
Inserting Child Widgetsc i, 254
GIKSOUrCEVIBW 256
Test Your Understanding. ..., 258
SUMMANY 259
The Tree View Widget 261
PartsofaTree View...... ..., 262
GtkTreeModel. ... 263
GtkTreeViewColumn and GtkCellRenderer 265
Using GtkListStore i 266
Creatingthe Tree View.................. .., 270
Renderers and Columns.ooi... 271
Creating the GtkListStore................. 272
Using GtkTreeStore i, 274
Referencing ROWS. 278
TreePaths ... 278
Tree Row References. ...t 280
Tree lterators 281
Adding Rows and Handling Selections 282
Single Selections. 282
Multiple Selections i 283
AddingNew ROWS.o 284
Removing MultipleRowsl 289

Handling Double-clicks 292

Xi

Xii

CONTENTS

CHAPTER 9

Editable TextRenderers.......... L. 292
Cell Data Functions o 295
Cell Renderers.o 299
Toggle Button Renderers. ..., 299
Pixbuf Renderers......... ... 301
SpinButtonRenderers..............l 302
ComboBoxRenderers....................iiiiil 305
ProgressBarRenderers. ...l 308
Keyboard Accelerator Renderers 309
Test Your Understanding. ..., 313
SUMMANY 314
Menusand Toolbars....................................... 315
Pop-up Menus. ... 315
CreatingaPop-upMenu 316
Pop-up Menu Callback Functions. 319
Keyboard Accelerators. ... 321
StatusBarHints, 323
The Status BarWidgetc. i, 324
Menu ltem Information. 325
Menultems 328
SUDMENUS ... 328
Image Menultems 329
CheckMenultems i, 329
RadioMenultems.............. .o 330
MenuBars....... ... 330
ToOIDArS . ..o 333
Toolbar Rems. 335
Toggle ToolButtons i, 336
Radio ToolButtons il 337
MenuToolButtons ... 337
Dynamic Menu Creationo i, 339
Creating Ul Fileso, 339
Loading Ul Files........... ... 341
Additional Action Types ... 345
Placeholders. ... 347

Custom SToCK TeMS 348

CHAPTER 10

CHAPTER 11

CONTENTS
Test Your Understanding. ..., 352
SUMMANY .. 352
Dynamic User Interfaces.................................. 355
User Interface Design. i 355
Know YourUSers. ... 356
Keep the Design Simple.l 356
Always Be Consistent.............. i, 357
Keepthe Userinthe Loop..............., 358
We All Make Mistakes ..., 358
The Glade User Interface Builder................................. 359
The Glade Interface., 360
Creatingthe Window, 362
AddingaToolbar............ L 364
Completing the File Browser......................ooooieen. 367
Making Changes ...t 369
Widget Signals. 370
CreatingaMenu i, 371
Using Libglade............. ... 372
LoadingaUserInterface 374
Connecting Signals..................co i 375
TestYourUnderstanding............... ..., 378
SUMMANY ... 378
Creating Custom Widgets 381
DerivingNew Widgets i 381
Creating the MyIPAddress Header File 382
Creating the Source File............... ... il 385
Testingthe Widget i 405
Creating a Widget from Scratch.................................. 407
Creating the MyMarquee Header File 407
Creating the MyMarquee Widget 409
Realizing the Widget. 413
Specifying Size Requests and Allocations. 47
Exposingthe Widget.................l 418
Drawing Functions 420
Implementing Public Functions. 421

Testingthe Widget i 424

Xiii

Xiv

CONTENTS

CHAPTER 12

CHAPTER 13

Implementing Interfaceso. i 425
Implementing the Interface................................. 426
Usingthelnterface, 428

Test Your Understanding. ..., 429

SUMMANY 430

Additional GTK+ Widgets 431

Drawing Widgets. o i 431
ADrawing AreaExample. ... 432
The LayoutWidget 436

Calendars.t 437

Status Icons. 439

Printing Support 441
PrintOperations. it 443
Beginning the Print Operation............................... 448
RenderingPages.................. 449
Finalizing the Print Operation 452

Cairo Drawing Context.o 452
DrawingPaths........... L 453
Rendering Options.t 454

RecentFiles.............. i 455
Recent ChooserMenuoooiiiiinen., 459
AddingRecentFilesl 460
Recent Chooser Dialog., 463

Automatic Completion............... ... 466

TestYourUnderstanding............... ..., 468

SUMMaArY 469

Putting It All Together..................................... 47

File BrOWSer. . ..o 471

Calculator. 472

Hangman 473

PingUtility ... 474

Calendar. 475
Markup Parser Functions..................., 476

Parsingthe XML File............. 477

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F

CONTENTS

Further RESOUICESo e 477
SUMMANY 479
GTK+ Properties ... 481
GTK+ Properties 481
Child Widget Properties.................cc i, 525
GTK+ Signals ... 529
BVeNtS. .. 529
Widget Signalsc o i 533
GTK+Styles... 565
Default RCFile Styles. i 565
Pango Text Markup Languageccoiiiiii.... 567
GtKTextTag Styles. ... 569
Widget Style Properties. ... 572
GTK+ Stock ltems .. 583
GError Types ... 587
Exercise Solutionsand Hints 595
Exercise 2-1. Using Events and Properties 595
Exercise 2-2. GObject Property System 596
Exercise 3-1. Using Multiple Containers........................... 596
Exercise 3-2. Even More Containers.............................. 597
Exercise 4-1. Renaming Files............. ..., 597
Exercise 4-2. Spin Buttons and Scales. 598
Exercise 5-1. Implementing File Chooser Dialogs 598
Exercise 6-1. Working with Files........................... 598
Exercise 6-2. Timeout Functions................................. 599
Exercise 7-1. TextEditor. 599
Exercise 8-1. File Browsercc i, 600
Exercise 9-1.Toolbars. ..o 601

Exercise 9-2. MenuBars. ... 601

Xv

Xvi CONTENTS

Exercise 10-1. Glade Text Editor 602
Exercise 10-2. Glade Text EditorwithMenus 602
Exercise 11-1. Expanding MyMarquee............................ 603
Exercise 12-1. Full TextEditor. it 604

About the Author

ANDREW KRAUSE is the creator of OpenLDev, an integrated develop-
ment environment that focuses on C, C++, and GTK+ projects. He is
currently attending Pennsylvania State University with a major in
computer engineering. Since 1998, Andrew has been developing with
many computer and web programming languages, including C, C++,
Perl, and PHP, as well as the graphical design libraries GTK+, Gtkmm,
and Qt. He also designed flight hardware for the Low Ionosphere
Measurement Satellite project at Penn State. More information about
Andrew can be found at www.andrewkrause.net.

xvii

Acknowledgments

I would like to express my gratitude to the many people who have made this book possible.
Many thanks go to Josh Hoy and Aaron Sebold, whose assistance has certainly decreased the
number of errors in the book. I would also like to thank Christiana Johnson and Micah Carrick
for their fine technical reviewing skills. You were very tough on every paragraph I wrote and
every example I coded, but this book is better today because of the hard work you put into the
project.

In addition, I would like to thank the people at Apress who put so many hours of hard
work into the book. I could not imagine writing for any other publisher. It is a great organiza-
tion that makes the writing process enjoyable. I would especially like to thank Matt Wade,
Jason Gilmore, Richard Dal Porto, Heather Lang, and Katie Stence, who put up with all of my
questions and provided quick help whenever it was needed.

Finally, I need to acknowledge my family, who has supported me in every step of the
process. Without all of you, I would not be who I am today and for that I am forever grateful.

Xix

Introduction

One of the most important aspects of an application is the interface that is provided to
interact with the user. With the unprecedented popularity of computers in society today,
people have come to expect those user interfaces to be graphical, and the question of which
graphical toolkit to use quickly arises for any developer. For many, the cross-platform, feature-
rich GTK+ library is the obvious choice.

Learning GTK+ can be a daunting task, because many features lack documentation, and
even more are difficult to understand from only the API documentation. Foundations of GTK+
Development aims to decrease the learning curve and set you on your way to creating cross-
platform graphical user interfaces for your applications.

Each chapter in this book contains multiple examples that will help you further your
understanding. In addition to these examples, the final chapter of this book provides five
complete applications that incorporate topics from the previous chapters. These applications
will show you how to bring together what you have learned to accomplish various projects.

The beginning of each chapter provides an overview of what that chapter will cover, so that
you are able to skip around if you want. Most chapters also contain exercises to test your under-
standing of the material. I recommend that you complete all of the exercises before continuing,
because the best way to learn GTK+ is to use it.

At the end of this book, you will find multiple appendixes that can serve as references for
various aspects of GTK+. These appendixes include tables listing signals, styles, and properties
for every widget in GTK+ and a complete list of stock items and GError types. These appendixes
will remain a useful reference even after you have finished reading the book and begin creating
your own applications. In addition, Appendix F contains explanations of the solutions to all of
the exercises throughout the book.

Who Should Read This Book

Because this book begins with the basics and works up to more difficult concepts, you do not
need any previous knowledge of GTK+ development to use this book. This book does assume
that you have a decent grasp of the C programming language. You should also be comfortable
with running commands and terminating applications (Ctrl+C) in a Linux terminal.

In addition to a grasp of the C programming language, some parts of this book may be diffi-
cult to understand without some further knowledge about programming for Linux in general.
You will get more out of this book if you already comprehend basic object-oriented concepts. It
is also helpful to know how Linux handles processes.

You can still use this book if you do not already know how to implement object orienta-
tion or manage processes in Linux, but you may need to supplement this book with one or
more online resources. A list of helpful links and tutorials can be found on the book’s web

XXi

Xxii

INTRODUCTION

site, which is located at www. gtkbook.com. You can also find more information about the book
at www.apress.com.

How This Book Is Organized

Foundations of GTK+ Development is composed of 13 chapters. Each chapter will give you a
broad understanding of its topic. For example, Chapter 3 covers container widgets and will
introduce many of the most important widgets derived from the GtkContainer class.

Because of this structure, some chapters can be somewhat lengthy. Do not feel as though
you have to complete a whole chapter in one sitting, because it can be difficult to remember all of
the information presented. Also, because many examples span multiple pages, consider focusing
on just a few examples at a time and really trying to understand their syntax and intent.

Each chapter provides important information and unique perspectives that will help you
to become a proficient GTK+ developer. They are as follows:

Chapter 1 teaches you how to install the GTK+ libraries and their dependencies on your
Linux system. It also gives an overview of each of the GTK+ libraries including GLib, GObject,
GDK, GdkPixbuf, Pango, and ATK.

Chapter 2 steps through two “Hello World” applications. The first shows you the basic
essentials that are required by every GTK+ application. The second expands on the first while
also covering signals, callback functions, events, and child widgets. You will then learn about
widget properties and the GtkButton widget.

Chapter 3 begins by introducing the GtkContainer structure. Next, it teaches you about
horizontal and vertical boxes, tables, fixed containers, horizontal and vertical panes, note-
books, and event boxes.

Chapter 4 covers basic widgets that provide a way for you to interact with users. These
include toggle buttons, specialized buttons, text entries, and spin buttons.

Chapter 5 introduces you to the vast array of built-in dialogs available to you. It also
teaches you how to create your own custom dialogs.

Chapter 6 is a general overview of the most useful features in GLib. It covers many of the
data types available to you. It also introduces idle functions, timeouts, spawning processes,
loading dynamic modules, file utility functions, timers, and other general utility functions.

Chapter 7 introduces you to scrolled windows. It also gives in-depth instructions on using
the text view widget. Other topics include the clipboard and the GtkSourceView library.

Chapter 8 covers two types of widgets that use the GtkTreeModel object. It gives an in-depth
overview of the tree view widget and shows you how to use combo boxes with tree models
or strings.

Chapter 9 provides two methods of menu creation: manual and dynamic. It covers menus,
toolbars, pop-up menus, keyboard accelerators, and the status bar widget.

Chapter 10 is a short chapter about how to design user interfaces with the Glade User Interface
Builder. It also shows you how to dynamically load your user interfaces using Libglade.

Chapter 11 teaches you how to create your own custom GTK+ widgets by deriving them
from other widgets or creating them from scratch. It also introduces you to implementing and
using interfaces.

Chapter 12 covers many of the remaining widgets that do not quite fit into other chapters.
This includes several widgets that were introduced in GTK+ 2.10 including recent files and tray
icon support.

INTRODUCTION

Chapter 13 gives you a few longer, real-world examples. They take the concepts you have
learned throughout the book and show you how they can be used together.

In addition to the chapters, six appendixes are provided as references to widget properties,
signals, styles, stock items, GError types, and descriptions of exercise solutions.

Conventions

This book uses various typefaces to help you distinguish between GTK+ code and regular
English phrases. Actual code is typeset in amonospace font. This can include whole lines of code
or function names, signals, and properties in a paragraph.

There are other types of conventions used in this book, which follow.

Exercise 0-0. Sample Exercise

These boxes show exercises that test your understanding of the material in the section. They can include
questions, code challenges, or various other types of material.

You should complete each of these exercises before proceeding, because they will help you practice the
concepts you have learned throughout the current chapter and put them together with concepts from past
chapters.

Note These boxes give important notes, tips, and cautions. It is essential that you pay attention to them,
because they give you information that you will need when developing your own applications.

Textual output in the terminal is shown in a monospace font between these lines,
although most output will be in the form of an image, since GTK+ is graphical.

What You Need

Before proceeding, you will need a few things: a compiler, a text editor, a terminal emulator, the
GTK+ libraries, the pkg-config application, and this book.

All compiler commands provided by this book are for the GCC compiler available at
http://gcc.gnu.org or through your package manager. Most standard C or C++ compilers
will work, but if you use a compiler other than GCC, you will have to use a different set of
commands than those provided.

xxiii

Xxiv

INTRODUCTION

Any text editor will do, so you should choose the one that suits you best. Some popular text
editors that you might consider include Vim, Emacs, Leafpad, and GEdit. Vim and Emacs are
terminal-based editors, while Leafpad and GEdit are graphical text editors.

Instructions on installing the GTK+ libraries and the pkg-config application are provided
in the last section of Chapter 1.

Official Web Site

You can find additional resources on the book’s official web site, found at www. gtkbook. com.
This web site includes up-to-date documentation, links to useful resources, and articles that will
supplement what you learn in this book. You can also find at this site a link to the downloadable
source code for every example in this book. The Apress web site, found at www.apress.com, is
another great place to find more information about this book.

When you unzip the source code from the web site, you will find a folder that contains the
examples in each chapter and an additional folder that holds exercise solutions. You can run
make to build all of the files within the current folder. It is also possible to make a single file by
using the compile command given in Chapter 2 or by running make sourcefile. For example,
to build exercise2-1.c, you should type make exercise2-1.

CHAPTER 1

Getting Started

Welcome to Foundations of GTK+ Development! In this book, you will acquire a comprehen-
sive understanding of GIMP Toolkit (GTK+) that can help you to become a proficient graphical
programmer. Before continuing, you should be aware that this book is aimed at C program-
mers, so we will jump right into using GTK+. Time will not be spent covering information you
already know.

To get the most out of this book, you should follow along with each of the examples and try
the exercises found at the end of most chapters. Getting started with GTK+ on Linux is quite
simple, because the majority of modern distributions are typically bundled with the necessary
libraries and tools.

Nevertheless, you need to make sure that you already have a few tools installed including
the GNU Compiler Collection (GCC), the GTK+ 2.0 libraries, and the associated development
packages. Later in this chapter, you will learn how to install these applications. If you do not
have a compiler, you can still use this book, but you will get more out of it if you do the exer-
cises. The best way to learn GTK+ is to use it!

Note The compiler of choice for this book is GCC, available for download at http://gcc.gnu.org. Any
standard C or C++ compiler will work, but you will have to use a different set of commands than those pro-
vided. Alternative compiler commands will not be covered in this book.

Atthe end of most chapters, you will find one or two exercises that illustrate what you have
learned up to that point. Make sure you complete each of the exercises before moving on to the
next chapter, because they will help reaffirm your knowledge. Each chapter builds on concepts
presented in previous chapters, so you will need a firm foundation in the basics to understand
more complex examples.

In this chapter, you will learn the following:

¢ The history of GTK+ and the X Window System, which will provide you with some con-
text regarding the tremendous impact these two technologies have had on developers

¢ What GTK+ and its supporting libraries provide to the graphical application developer
¢ What GTK+ language bindings are available and where to download them

¢ How to install GTK+ and its dependencies on your computer

CHAPTER 1 GETTING STARTED

A Brief History of GTK+

The GIMP Toolkit (GTK+) was originally designed for a raster graphics editor called the GNU
Image Manipulation Program (GIMP). Three individuals, Peter Mattis, Spencer Kimball, and
Josh MacDonald created GTK+ in 1997 while working in the eXperimental Computing Facility
at the University of California, Berkeley.

Licensed under the Lesser General Public License (LGPL), GTK+ was adopted as the
default graphical toolkit of GNOME and XFCE, two of the most popular Linux desktop environ-
ments. While it was originally used on the Linux operating system, GTK+ has since been
expanded to support other UNIX-like operating systems: Microsoft Windows, BeOS, Solaris,
Mac OS X, and others.

Note The LGPL is one of the things that distinguish GTK+ from other open source graphical toolkits. The
LGPL is easier to use alongside proprietary software, unlike many other popular open source licenses. This
makes the GNOME desktop environment, which utilizes GTK+, a popular choice throughout commercial
industry.

GTKH+ is currently in its second stable release cycle, GTK+ 2. The original branch, GTK+ 1,
needed to be changed dramatically to include new features and its developers saw fit to break
API compatibility.

Since the two branches of GTK+ are not compatible, they can be installed in parallel. You
will need to make the distinction to the compiler that you want to use the second branch
instead of the first when building an application, which you will learn how to do with GCC in
the next chapter.

GTK+ 2 introduced a lot of new features including a font-rendering engine called Pango
and a newly enhanced theme engine. Furthermore, improved accessibility support was imple-
mented through the Accessibility Toolkit (ATK).

This book uses version 2 of GTK+ for all code examples. While GTK+ 2.10 has already been
released, most of the examples should work with any version in the second branch. GTK+ 2
maintains backward compatibility, which means that any application that works for an earlier
release of GTK+ 2 will work on later releases of version 2.

The X Window System

In 1984, Jim Gettys and Bob Scheifler created the X Window System (X11) at Massachusetts
Institute of Technology as a platform-independent display environment for debugging the
Argus system. Currently developed by The X.Org Foundation, X11 is the standard display man-
ager on Linux and other UNIX-like operating systems. In the most basic terms, X11 provides
windowing functionality for bitmap displays.

While the X Window System is used on Linux, many other operating systems such as
Microsoft Windows do not use it. Therefore, another advantage of GTK+ is that it masks the
need to interact with the underlying rendering system, regardless of what it is. Your code will
look the same whether you are writing it for Linux, Windows, or Mac OS X.

CHAPTER 1 GETTING STARTED

Returning to Linux, X11 manages windows in their most basic and abstract form. It draws
windows on the screen and handles their movements. X11 also controls input devices, such as
mice and keyboards, in graphical environments.

X11’s basic programming interface, Xlib, provides the tools necessary to create graphical
user interfaces. Although developing with Xlib is possible, most programmers prefer to use a
graphical toolkit such as GTK+, since all of the low-level calls are hidden and managed by the
library’s methods.

One of the major features that makes X11 unique among display managers is that it
assumes the client and server are treated independently of each other. This allows the client to
exist at a remote location independent of the server.

Note The definitions of client and server in the X Window System differ from their traditional ones. The
client is the machine where the application is run. The server refers to the user’s local display, rather than the
remote machine.

Another advantage of the X Window System is that it does not strictly mandate user
interfaces. This allows the graphical user interfaces (GUI) of window managers to be highly
customizable. It is also why window managers can provide such differing interfaces and
themes. This enables the freedom of choice Linux users enjoy today.

Ironically, this freedom is also one of the biggest criticisms of X11. Many people fear that it
will encourage fragmentation within the community of Linux developers. But for now, we can
continue to enjoy the ability to choose the window manager that best suits our own needs.

The GTK+ libraries were created so that you, as the programmer, do not need to interface
with the X Window System directly. You can create windows and widgets, and you can handle
interactions between those widgets and the user, but all direct rendering to the screen and Xlib
function calls are handled automatically.

Therefore, this book will not cover the X Window System any further and will focus on the
GTK+ libraries instead. You are welcome to find more information about X11 and the X.Org
Foundation at www.X.0rg.

GTK+ and Supporting Libraries

GTK+ relies on multiple libraries, each providing the graphical application developer a specific
class of functionality.

GTK+ is an object-oriented application programming interface (API) written in the
C programming language. It is implemented with the concept of classes in mind to create an
extensible system that builds upon itself. The object-oriented framework used was originally
developed as a part of the GTK+ library itself, but has since been split from GTK+ and added to
GLib as a separate supporting library called GObject. GObject enables full object-orientated
development in C, including object inheritance, polymorphism, and, to the extent permissible
in C, data hiding.

While making a great deal of functionality from the other libraries transparently available
through its own API, the GTK+ library focuses only on providing the necessities of building

CHAPTER 1 GETTING STARTED

graphical user interfaces. The elements implemented in GTK+ itself include widgets such as
buttons, labels, text boxes, and windows. It also provides more abstract components used for
application layout and extended event capturing functionality. For example, Figure 1-1 is a
screenshot of the GIMP application, which uses GTK+.

A - The GiMP [D QN IR Emsplash.png-3.0 (RGB, 1 layer) 402x226 = O X
File Xtns Help File Edit Select View Image Layer Tools Dialogs
..@\Eﬁt@gm E]|||0||||||||||1|0(f||||||||2|OKf||||||||3|(J(f||||||||43(”%
| | =
FP A 7B HE|]
RaBET&HDZ|
[Ziaxoeo ol
« i OpenLCev
-% o | E CODENAME ROCKHOPPER
il | [R
Paintbrush SE] 5_: 1 I:I@ L
G i L=
Opacity: [||100.0 =0 [
el L IR px v || 100%|~ ||Background (805 Cancel
Brush: @ [Circle (11)
A <« Layers | — & 3%
> Pressure sensitivit 1
Layers = ®
[]Fade out Mode: Normal |[:|[J&
[lIncremental Opacity: []100.0
[]Use color from gradi Background

Figure 1-1. The GIMP

Other, less visible basics of GUI development, such as synchronous and asynchronous
event processing, are supported mainly by other libraries. Yet, GTK+ does give access to many
of them through its own APIL

A 2-D vector graphics rendering library called Cairo has provided the rendering capabili-
ties to GTK+ since the release of version 2.8. Cairo was created to render vector graphics
consistently across all platforms and systems. It also allows the window manager to take
advantage of hardware acceleration where available.

Cairo itself will not be covered in this book, with the exception of how it relates to GTK+’s
printing API, since its calls lie underneath the layers of GTK+ that you will be interacting with.
It is an important aspect you will want to explore if you later choose to hack the GTK+ source
code. You can visit www.cairographics.org to find more information about Cairo.

CHAPTER 1 GETTING STARTED

GLib
GLib is a general-purpose utility library that is used to implement many useful nongraphical
features. While it is required by GTK+, it can also be used independently. Because of this, some
applications use GLib without the other GTK+ libraries for the many capabilities it provides.
One of the main benefits of using GLib is that it provides a cross-platform interface that
allows your code to be run on any of its supported operating systems with little to no rewriting
of code! Another advantageous aspect of GLib is the vast array of data types it provides to devel-
opers. A list of a few of the data types provided by GLib follows and will be covered in further
detail in Chapter 6:

¢ GLib provides a number of data types to C programmers that are usually included by
default in other languages, such as singly and doubly linked lists. Other basic data types
include double-ended queues, self-balancing binary trees, and unbalanced n-ary trees.

¢ Hash tables allow you to create lists of pointers to data. They differ from linked lists,
because, instead of accessing elements by an integer reference, you specify a second
pointer as the key.

¢ Strings in GLib are similar to strings in C++, because they are text buffers that grow auto-
matically as data is added. These are also easy to integrate with calls to the printf()
function family.

¢ Memory slices are an efficient way to create chunks of memory that are all of the same
size. They can be used to create arrays of evenly sized elements. This structure replaced
memory chunks when it was introduced in the release of GLib 2.10.

¢ Caches allow you to share large, complex data structures in an easy API, which helps you
to save space. These are used by GTK+ for styles and graphics contexts, since both of
these objects consume a lot of resources.

GLib provides other data types, many of which will be introduced in Chapter 6. Further-
more, GLib implements other features besides data types. It also provides you with numerous
types of utility functions. For instance, you'll find utility functions for file manipulation, inter-
nationalization support, strings, warnings, debugging flags, dynamic module loading, and
automatic string completion, just to name a few.

In Chapter 6, you will also learn about idle functions, time-out functions, and timers—all
of which open up a variety of interesting possibilities to developers. Idle functions allow you to
call a function when the processor is not doing anything else for the application. Timeouts are
used to call a function at a specified interval of time provided by you. A timer keeps track of
how much time has passed since it was initiated. These could be used to check for updates
when the application is idle, implement automatic save functionality, or track elapsed time,
respectively.

Because of the cross-platform characteristics of GLib, it makes a convenient library to use
for spawning processes, file manipulation, memory allocation, and threads. Any of these can
be anightmare when trying to develop for multiple platforms. GLib takes care of the hassles, so
you do not have to worry about cross-platform compatibility issues.

CHAPTER 1 GETTING STARTED

GObject

The GLib Object System (GObject) was originally a part of the GTK+ 1 library in the form of the
GtkObject class. With the release of GTK+ 2.0, it was moved into its own library, distributed
along with GLib.

GObiject is often criticized for its complexity, since its APIs can seem extremely drawn out.
However, it was originally created to allow easy access to C objects from other programming lan-
guages. The ability to easily access C objects from other languages facilitates the large variety of
bindings available for other programming languages, even though it is implemented in C.

This is so difficult because each programming language provides a different approach to
data types, whether the differences appear on the surface or the internals of each language. For
example, in C, you have data types including char, long, and integer. Other languages, such as
Perl, do not have similar data types, since the type of each object is decided by how it is used.
GObiject gets around these limitations, the drawback being that deriving new objects is a con-
voluted process.

GObject also implements a fully featured object-oriented interface in C, which will be covered
in detail throughout this section and the rest of this book. This system is the base for the GTK+ wid-
get hierarchical structure as well as for many of the objects implemented in GTK+'’s supporting
libraries. GObject’s object-oriented interface is implemented in part by a generic, dynamic type
system called GType. GType allows programmers to implement many different dynamic data types
through singly-inherited class structure. A singly-inherited class is an object hierarchy where each
child class can only be derived directly from a single parent class. This will be discussed in more
detail in Chapter 2, after you are introduced to GTK+ widgets.

Along with the ability to create extensible data types, GObject provides programmers with
many nonclassed (or fundamental) data types. A nonclassed data type is a root class from
which others are derived. It is important to note that the root class is not derived from any
other classes itself.

Table 1-1 provides a list of the most important nonclassed data types. The GType macro,
C variable descriptor, and a description is shown for each, along with its range if applicable.

Table 1-1. Standard GObject Nonclassed Data Types

GType C Type Description

G_TYPE_NONE An empty type that is equivalent to void.

G_TYPE_CHAR gchar Equivalent to the standard C char type.

G_TYPE_INT gint Equivalent to the standard C int type. Values must be within
the range of G_MININT to G_MAXINT.

G_TYPE_LONG glong Equivalent to the standard C long type. Values must be within
the range of G_MINLONG to G_MAXLONG.

G_TYPE_BOOLEAN gboolean A standard Boolean type that holds either TRUE or FALSE.

G_TYPE_ENUM GEnumClass A standard enumeration equivalent to the C enum type.

G_TYPE_FLAGS GFlagsClass Bit fields holding Boolean flags.

G_TYPE_FLOAT gfloat Equivalent to the standard C float type. Values must be within
the range of negative G_MAXFLOAT to G_MAXFLOAT.

CHAPTER 1 GETTING STARTED

GType C Type Description

G_TYPE_DOUBLE gdouble Equivalent to the standard C double type. Values must be
within the range of negative G_MAXDOUBLE to G_MAXDOUBLE.

G TYPE_STRING gchar* Equivalent to NULL-terminated C strings.

G_TYPE_POINTER gpointer An untyped pointer type similar to void*.

GObject provides GTK+ with two other vital data types: GValue and GObject. GValue is a
generic container that can hold any structure of which the system is already aware. This allows
functions to return a piece of data of an arbitrary type. Without GValue, the object-oriented
nature of GTK+ would not be possible.

G _TYPE_GOBJECT, or GObject, is the fundamental type that the widget class inheritance
structure of GTK+ is based on. It allows widgets to inherit the properties of their parents,
including style properties and signals.

GObject is a singly-inherited system, where each child class can only have one parent
class. The derived child inherits all characteristics of the parent, because in every way, the
child is the parent. You will learn how to use this system to derive custom GTK+ widgets in
Chapter 11.

GObiject also provides widgets with a signal system, an object properties system, and
memory management. We will explore all of these concepts in the next chapter.

GDK

The GIMP Drawing Kit (GDK) is a computer graphics library originally designed for the
X Window System that wraps around low-level drawing and window functions. GDK acts as
the intermediary between Xlib and GTK+.

It renders drawings, raster graphics, cursors, and fonts in all GTK+ applications. Also,
since it is implemented in every GTK+ program, GDK provides drag-and-drop support and
window events.

GDK provides GTK+ widgets the ability to be drawn to the screen. To do this, every widget
has an associated GdkWindow object, except for a few widgets that will be discussed in a later
chapter. A GdkWindow is essentially a rectangular area located on the screen in which the widget
is drawn. GdkWindow objects also allow widgets to detect X Window System events, which will
be covered in the next chapter.

GDK has been ported to Windows and Mac OS X. It has also included support for Cairo
since the release of GTK+ 2.8.

GdkPixbuf

GdkPixbufis a small library that provides client-side image manipulation functions. It was cre-
ated as a replacement for the GNOME Imaging Model (Imlib). Images can be loaded from files
or image data can be fed directly into the library functions. We will use this library when adding
images to tree views and when creating new GtkImage widgets in later chapters.

One advantage of GdkPixbuf images is that images can be reference-counted. This means
that a GdkPixbuf image can be displayed in multiple locations, while only being stored in
memory once. It will only be destroyed when all reference counts are decremented.

CHAPTER 1 GETTING STARTED

The GdkPixbuf library takes advantage of Libart, a 2-D drawing library distributed with
GNOME, to apply transformations to images. Because of this, you can shear, scale, and rotate
images to your heart’s delight. The images are then rendered using the GAkRGB library and
drawable areas. By using such a wide variety of specialized tools, GdkPixbuf can provide image
rendering of a very high class.

GdkPixbuf, while it is a small library, provides a wide variety of functions for manipulating
and displaying images. The library will be put to only the most basic of uses throughout this
book. For more information on advanced GdkPixbuf topics, you should reference its API
documentation.

Pango

While GDK handles rendering images and windows, Pango controls text and font output in
conjunction with Cairo or Xft, depending on your GTK+ version. It can also render directly to
an in-memory buffer without the use of any secondary libraries.

Note Pango originated from the Greek word pan, which means “all,” and the Japanese word go, which
means “language.” It was chosen because one of the design goals of Pango is to support all languages by
creating a fully internationalized font-rendering system.

On Linux, Pango uses the FreeType and fontconfig libraries for client-side fonts. The thing
that makes Pango stand out from the crowd is that it supports a vast array of languages. Virtu-
ally all of the world’s major scripts are supported, which makes rendering internationalized
text a nonissue in your applications.

All text within Pango is represented internally with UTF-8 encoding. UTF-8 is used
because it is compatible with 8-bit software, which is prevalent on UNIX platforms. Offsets in
UTF-8 are calculated based on characters, not bits, because each character can take up more
than one byte. This will be important in Chapter 7 when you learn how to use the GtkTextView
widget, because you will have to step by character offset, which may not always be one byte.

Pango supports a wide variety of text attributes. These include but are not limited to
language, font family, style, weight, stretch, size, foreground color, background color,
underline, strikethrough, rise, shape, and scale. Many of these attributes support multiple
options themselves.

For convenience, the Pango Text Markup Language provides a simple set of tags that rep-
resent the text attributes in a form similar to HTML. With this markup language, you can easily
change the font styles for arbitrary parts of text in a widget. This is especially useful when cre-
ating user interfaces with Glade User Interface Builder, because you can type tags directly into
a widget’s textual content field.

We will utilize Pango for many examples in later chapters when we need to change the font
of awidget to something other than the user’s default. Using the PangoFontDescription object
or the Pango Text Markup Language can do this.

CHAPTER 1 GETTING STARTED

ATK

When designing an application, it is important to take into consideration the disabilities that
some of your users may have. Therefore, the Accessibility Toolkit (ATK) provides all GTK+ wid-
gets with a built-in method of handling accessibility issues.

Some examples of things ATK adds support for are screen readers and high-contrast visual
themes for people who are visually impaired and keyboard behavior modifiers, such as sticky
keys, for those with diminished motor control.

Although this is an important part of designing an application for production use, this
book will not cover ATK. You need to learn how to use GTK+ widgets and how to create your
own custom widgets before you can use ATK. Therefore, I will focus on GTK+ and other essen-
tials for the remainder of this book.

It is important that you keep accessibility in the back of your mind and revisit the library
when you are ready to deal with ATK in your own applications.

Language Bindings

GTK+, in its original form, can be used with the C programming language, but bindings have
been created for many others. The most popular language bindings are in the following list,
although a full list is available at waw.gtk.org/bindings.html:

¢ Gtkmm is the official set of C++ bindings. You can use GTK+ with C++ because of back-
ward compatibility, but Gtkmm provides all of the GTK+ features in a series of classes,
the style of which will be familiar to all C++ programmers. The sources for Gtkmm,
GLibmm, Libglademm, and other dependencies are available at waw.gtkmm.org.

* PyGTK, available at www. pygtk.org, provides Python bindings for the GTK+ libraries.
The advantage of using PyGTK is that it takes care of memory management and type
casting for you. This alleviates problems that can plague programmers using other lan-
guage bindings.

* Gtk2-perl, available at http://gtk2-perl.sf.net, provides all of the GTK+ libraries in
an object-oriented Perl toolkit. Each of the libraries is split into modules called G1ib,
Gtk2, and Gtk2: :GladeXML. Like most GTK+ bindings for scripting languages, memory
management is handled by the language’s facilities.

e PHP-GTK allows for handling PHP language bindings for GTK+. The PHP bindings allow
you to create client-side cross-platform GUI applications. PHP-GTK is available at
http://gtk.php.net. This topic is also covered in the Apress book Pro PHP-GTK,
authored by Scott Mattocks (Berkeley, 2006).

¢ Java-Gnome, much like Gtkmm, provides a true object-oriented platform for the GTK+
libraries. Available at http://java-gnome.sf.net, it provides all of the essential librar-
ies for developing GTK+ applications in Java.

* Gtk# provides GTK+ bindings for C# applications on a wide variety of operating systems.
It is provided by the Mono Project at www.mono-project.com.

10

CHAPTER 1 GETTING STARTED

Installing GTK+

Before you can begin programming, you must install GTK+ and its dependencies on your sys-
tem. This section covers installing GTK+ on Linux and other UNIX-like operating systems.

It is important to note, if you are using a Linux distribution with a package manager
including Ubuntu, Debian, Fedora Core, or one of many others, you should install the precom-
piled binaries provided. You will need the GTK+ 2 libraries, pkg-config, and their
dependencies.

The development packages of GTK+ and each of its dependencies are also required. In
Debian and Debian-based distributions, these packages will end in -dev. In Fedora Core and
other distributions that use the RedHat Package Manager (RPM), they will end in -devel. If you
install the development package of GTK+, most modern package managers will take care of all
of the necessary dependencies automatically. You should reference your Linux distribution’s
documentation for more information on installing distributed packages.

If you are going to install GTK+ and its dependencies from the source archives, the rest of
this section is for you. GTK+ uses the standard GNU tools for compiling: autoconf is used for
configuration and dealing with portability issues, automake for building makefiles, libtool for
building shared libraries, and make for compiling and installing binaries.

The most recent GTK+ sources can be found at www.gtk.org/download. You will need to
download the latest versions of ATK, GLib, GTK+, and Pango. You will also need Cairo, JPEG,
libpng, pkg-config, and tiff from the dependencies directory.

If you are using an older version of Linux, you will need to install libiconv. Most systems
already have this package, so it is safe to continue without it and install the library in the future
if you run into any problems. You may also need to install libint], fontconfig, and FreeType,
although these are packages provided as standard on most modern Linux distributions.

You should also note that these packages must be installed in a precise order for the
following procedure to work. After installing all of the packages from the dependencies
directory on the GTK+ FTP site, you will need to install GLib, Pango, ATK, and GTK+ in that
specific order.

The following procedure should be used on each source package, one at a time. Each
library must be successfully installed before continuing on to the next, or the procedure will
not work.

You are now ready to install GTK+, so let’s begin. Once you have downloaded a package
from the GTK+ FTP site, you can use one of the following commands to extract the file, depend-
ing on the type of archive you downloaded.

tar -xvzf package-name.tar.gz
tar -xvjf package-name.tar.bz2

By moving into the directory of the extracted archive, you will see a shell script called
configure. This script will recursively parse through each of the directories in the source dis-
tribution and create template makefiles that are customized for your operating system. Each
template file will be named Makefile.in. The following is a sample configure command that
you can use:

./configure --prefix=/usr

