Foundations of F#

Robert Pickering

Apress’

Foundations of F#
Copyright © 2007 by Robert Pickering

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-59059-757-6
ISBN-10: 1-59059-757-5
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editors: James Huddleston, Ewan Buckingham

Technical Reviewer: Don Syme

Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,
Jonathan Hassell, Chris Mills, Matthew Moodie, Jeffrey Pepper, Dominic Shakeshaft, Matt Wade

Project Manager: Elizabeth Seymour

Copy Edit Manager: Nicole Flores

Copy Editor: Kim Wimpsett

Assistant Production Director: Kari Brooks-Copony

Production Editor: Laura Cheu

Compositor: Lynn LHeureux

Proofreader: Elizabeth Berry

Indexer: Broccoli Information Management

Artist: April Milne

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress. com, or visit
http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.comin the Source Code/
Download section.

For Susan and for Jim

Contents at a Glance

FOrBWOrd . . . e Xiii
Aboutthe AUTNOr e XV
About the Technical REVIBWETt e e e Xvii
ACKNOWIBAGMENTSo Xix
Preface: The Story of the BoOK i i Xxi
CHAPTER 1 Introduction........... 1
CHAPTER 2 How to Obtain, Install, andUse F# 7
CHAPTER 3 Functional Programming 15
CHAPTER 4 Imperative Programming 55
CHAPTER 5 Object-Oriented Programming 81
CHAPTER 6 Organizing, Annotating, and Quoting Code 111
CHAPTER 7 TheF#Libraries............ 129
CHAPTER 8 Userlnterfaces 167
CHAPTER 9 DataAcCessooiiiiiiii.. 209
CHAPTER 10 Distributed Applications 239
CHAPTER 11 Language-Oriented Programming 271
CHAPTER 12 The F# Tool Suite and .NET Programming Tools 299
CHAPTER 13 Compatibility and Advanced Interoperation 323

Contents

FOrBWOrd . . . e Xiii
Aboutthe AUTNOr e XV
About the Technical REVIBWETt e e e Xvii
ACKNOWIBAGMENTSo Xix
Preface: The Story of the BoOK i i Xxi
CHAPTER1 Introduction............. 1
What Is Functional Programming?, 1

Why Is Functional Programming Important? 2

What s F#? ... 2

WholsUsing F#? 3

Whols ThisBook For? ..., 4

What's Next? 5

CHAPTER 2 How to Obtain, Install, andUse F# 7
Obtaining F# 7

Installing FEonWindows i 7

Installing FEonLinux i 8

Using F# in DifferentWays, 9

Installing the Software Used in ThisBook 13

SUMMaANY . .. 14

CHAPTER 3 Functional Programming 15
Identifiers 15

KeyWOrds ... 16

Literals e 17

Valuesand Functions i 19

SCOPE .o 22

ReCUISION ... 25

Anonymous Functions 26

Operators 26

vii

viii

CONTENTS

CHAPTER 4

CHAPTER 5

LiStS .ot 28
List Comprehensions it 31
Control Flow i 33
Typesand Type Inference iiiiiiiinonn.. 34
Pattern Matching 37
Defining TYPESot 42
Exceptions and Exception Handling 49
Lazy Evaluation 50
SUMMaANY . .. e 53
Imperative Programming 55
The unit Type ... 55
The mutable Keyword i 57
Defining Mutable Record Types, 59
Theref TYpe ... 60
ATy S o 62
Array COmprehensionscoieiiiineiiinnenin... 66
Control Flow i e 66
Loops over Comprehensionsccoiiiiniin.n.. 69
Calling Static Methods and Properties from .NET Libraries 69
Using Objects and Instance Members from .NET Libraries 71
Using Indexers from .NET Libraries 73
Working with Events from .NET Libraries 74
Pattern Matching over NETTypes, 76
Thel>0perator ...t e 78
SUMMaANY . .. e e 80
Object-Oriented Programming 81
Castingt 81
TYPE eSS . oo 83
Type Annotations for Subtyping 83
Records ASObjectst 85
F# TypeswithMembers 88
ObjeCt EXpressions e 90
Defining Interfaces i 93
Implementing Interfaces L. 93
Classes, Fields, and Explicit Constructors 95
Implicit Class Construction, 98
Classesand Inheritance, 99

Classesand Methods 101

CHAPTER 6

CHAPTER 7

CONTENTS
AccessingtheBase Class ..., 103
Propertiesand Indexers i, 104
Classes and StaticMethods 106
Overriding Methods from Non-F# Libraries 107
Defining Delegates i 108
StrUCts . .o 108
ENUMS .. 109
SUMMANY ... e e 110
Organizing, Annotating, and Quoting Code 111
Modules 111
NaMESPACESottt e 112
Opening Namespaces and Modules 114
Giving Namespaces and Modules Aliases 115
Signature Files 116
Module SCOPEo 116
Module Execution 117
Optional Compilation 119
COMMENES . .o 120
DocCommentsc.iiiiiiiii i 120
Custom Attributes i 122
QuotedCode ... 124
SUMMANY .o 127
The F# Libraries .. 129
LibrarieS OVerviewt s 129
The Native F# Library FSLib.dll 130
The ML Compatibility Library MLLib.dll 131
The Native F# Library FSLib.dll it 132
The Microsoft.FSharp.Core.Operators Module 132
The Microsoft.FSharp.Reflection Module 137
The Microsoft.FSharp.Collections.Seq Module 139
The Microsoft.FSharp.Core.Enum Module 149
The Microsoft.FSharp.Text.Printf Module 151
The Microsoft.FSharp.Control.[Event Module 154
The Microsoft.FSharp.Math Namespace 156
The ML Compatibility Library MLLib.dll 160
The Microsoft.FSharp.Compatibility.0Caml.Pervasives Module . . . 160
The Microsoft.FSharp.Compatibility.0Caml.Arg Module 164

SUMMaANY . .o 166

ix

CONTENTS

CHAPTER 8

CHAPTER 9

CHAPTER 10

Userinterfaces .. 167
Introducing WinForms i 167
Drawing WinForms 168
Working with Controls in WinForms 175
Using the Visual Studio Form Designer’'s FormsinF#............. 179
Working with WinForms Events and the I[Event Module 182
Creating New Forms Classescoiiiiiiinninn... 186
Introducing ASP.NET2.0 i, 188
Creating an IHttpHandlerot 189
Working with ASP.NETWebForms 192
Introducing Windows Presentation Foundation 195
Introducing Windows Presentation Foundation3D 197
SUMMaAIY ... e e e e 207
DataAccess 209
The System.Configuration Namespace 209
The System.I0 Namespacecovuiinneunnnnn.. 212
The System.Xml Namespacec.coveininn.. 214
ADO.NET .. 216
The EntLib Data AccessBlock 221
DataBinding 223
Data Binding and the DataGridView 225
ADO.NET EXensionsccueiiieiiiineiinnennnn. 228
Introducing LINQ o 232
Using LINQto XML 234
UsingLINQto SQLt 236
SUMMaAIY ... e e e e 238
Distributed Applications 239
Networking Overview, 239
Using TCP/IP SOCKEtSo e 240
USing HTTP e 249
Calling Web Services, 250
Creating Web Servicest 255
Windows Communication Foundation 261
Hosting WCF Servicesco i, 265

SUMMANY ..ot e 270

CHAPTER 11

CHAPTER 12

CONTENTS
Language-Oriented Programming 271
What Is Language-Oriented Programming? 271
Data Structures As Little Languages 271
A Data Structure—Based Language Implementation 272
Metaprogramming with Quotations 278
An Arithmetic-Language Implementation 280
The Abstract SyntaxTreet 281
Tokenizingthe Text: Fslex, 281
Generatinga Parser: Fsyacc 284
Usingthe Parser 286
Interpretingthe AST 288
Compilingthe AST i 289
Compilation vs. Interpretation 293
SUMMANY ..o 297
The F# Tool Suite and .NET Programming Tools 299
Using Useful fsc.exe Command-Line Switches 299
Basic Compiler Switches 300
Compiler Optimization Switches 300
Compiler Warning Switches 302
Compiler Target Switches 303
Signing and Versioning Switches 303
Printing the Interface Switches 304
Adding Resources Switches, 304
Generating HTML Switches 305
CLIVersion Switches 306
Compilation Details Switches 307
Statically Linking Switches 307
Using fsi.exe Effectively, 307
fsiexeCommands i 307
Controlling the fsi.exe Environment 308
fsi.exe Command-Line Switches 310
Using the Source DirectoryMacro 311
Writing NUnitTests it 311
Using Assembly Browsersouiiriiiiniinann.. 313

Using Debugging TooISt 315

Xi

Xii

CONTENTS

CHAPTER 13

Using Profiling Toolsc it 316
Ntimer ... 317
Perfmon and Performance Counters 317
NProf ..o e 320
CLRProfilero 321

SUMMaANY ... 322

Compatibility and Advanced Interoperation 323

Calling F# Librariesfrom C# 323
Returning Tuples o 324
Exposing Functions That Take Functions As Parameters 324
UsingUnion TYpest 326
Using FLists ... o 329
Defining TypesinaNamespace 329
Defining Classes and Interfaces 330

Using F# with the .NET Framework Versions1and 1.1 332

Calling Using COM Objectst 335

USINgP/INVOKEo 336

UsingInlineIL 338

Using F# from Native Code viaCOM 340

SUMMANY . .o e 343

Foreword

A new language needs a simple and clear introductory book that makes it accessible to a
broad range of programmers. In Foundations of F#, Robert Pickering has captured the essen-
tial elements that the professional programmer needs to master in order to get started with F#
and .NET. As the designer of F#, I am thrilled to see Robert take up the challenge of presenting
F# in a way that is accessible to a wide audience.

F# combines the simplicity and elegance of typed functional programming with the
strengths of the .NET platform. Although typed functional programming is relatively new to
many programmers and thus requires some learning, in many ways it makes programming
simpler. This is mainly because F# programs tend to be built from compositional, correct
foundational elements, and type inference makes programs shorter and clearer. Robert first
introduces the three foundational paradigms of F#: functional programming, imperative pro-
gramming, and object-oriented programming, and he shows how F# lets you use them in
concert. He then shows how this multiparadigm approach can be used in conjunction with
the .NET libraries to perform practical programming tasks such as GUI implementation, data
access, and distributed programming. He then introduces some of the particular strengths of
F# in the area of “language-oriented” programming.

F# is a practical language, and Robert has ensured that the reader is well equipped with
information needed to use the current generation of F# tools well. Many computer profession-
als first encounter functional programming through a short section of the undergraduate
curriculum and often leave these courses uncertain about the real-world applicability of the
techniques they have been taught. Similarly, some people encounter functional programming
only in its purest forms and are uncertain whether it is possible to combine the elements of
the paradigm with other approaches to programming and software engineering. Robert has
helped remove this uncertainty: typed functional programming is practical, easy to learn, and
a powerful addition to the .NET programming landscape.

F# is also a research language, used in part to deliver recent advances in language design,
particularly those that work well with .NET. It combines a stable and dependable base language
with more recent extensions. Robert’s book describes F# 2.0, the latest release of the language
at the time of writing. The rest of the F# team and I are very grateful to Robert’'s many sugges-
tions, and the language has been greatly improved through this. I hope you enjoy reading this
book as much as I enjoyed being its technical reviewer.

Don Syme
Cambridge, UK

xiii

About the Author

ROBERT PICKERING was born in Sheffield, in the north of England,
but a fascination with computers and the “madchester” indie music
scene led him to cross the Pennines and study computer science at the
University of Manchester.

After finishing his degree, he moved to London to catch the tail end
of the dot-com boom working at marchFirst; then he moved to Avanade
to do some more serious work. At Avanade, he specialized in creating
enterprise applications using the .NET Framework, and he got the
chance to work on projects in Denmark, Holland, and Belgium; he
finally settled in Paris, France, where he lives now with his wife and
their two cats. He has been writing about F# almost since it began, and the F# wiki on his
http://www.strangelights.comweb site is among the most popular F# web sites.

He currently works for LexiFi, which is an innovative ISV that specializes in software for
analyzing and processing complex financial derivatives—products such as swaps and options.
LexiFi has pioneered the use of functional programming in finance in order to develop a rigor-
ous formalism for representing financial instruments.

Xv

About the Technical Reviewer

DON SYME is a researcher at Microsoft Research, Cambridge. Born in Toowoomba, Australia,
his love for programming was sparked by family and teachers at age 10. He studied at the
Australian National University and the University of Cambridge, becoming an expert in the
application of automated proof to real-world problems, participating in the team that for-
mally verified the correctness of aspects of the Intel Pentium IV floating-point circuits. Joining
Microsoft in 1998, he saw the opportunity to enhance and transform the design of the NET
Framework by including elements of functional programming, beginning with the addition of
generics to C# 2.0 and the .NET common language runtime, a project he saw through to com-
pletion in Visual Studio 2005. In 2003 he began the design and implementation of F#, which
has now become the premier functional programming language for the .NET Framework.

He continues to be a driving force in the design, implementation, and enhancement of the
language.

Xvii

Acknowledgments

If there is one person I feel I should be acknowledging, it is Jim Huddleston, the book’s editor.
Jim was there from the book’s beginning. He helped me get it commissioned, he aided me in
working out the contents, he gave me much encouragement and constructive criticism, and
he showed great skill as an editor. Sadly, Jim died on February 25, 2007, just as the book was
entering its final stages of production. Even though I never met Jim in person, never even
talked to him on the telephone, I feel a real sense of loss knowing he is gone. My thoughts are
with his family at this very sad time, and I'm very disappointed that I never got to meet him in
person and that he never saw the finished book.

Sadly, Jim’s was not the only death that coincided with the closing stages of writing this
book. On March 28, 2007, my uncle Gordon lost his battle with cancer. He was a great lover of
life, with many interests. He was a maths teacher who was an avid New Scientist reader with a
deep interest in maths and science and a passion for music; he was a talented musician who
played many gigs across Orkney and the north of Scotland. He will be greatly missed by me
and all my family.

I feel very lucky to have worked on the project with my technical reviewer, Don Syme,
who went above and beyond the cause by contributing many ideas to the book, helping
improve the implementations of many of the samples, and giving me much encouragement.
I'd also like to thank all the Apress staff who took part in creating this book, especially
Elizabeth Seymour, Kim Wimpsett, and Laura Cheu.

I'd also like to thank Don in another capacity, as the creator and developer of F#, along
with James Margetson and all the others at Microsoft Research, Cambridge, who worked on
F#. Specifically, I'd like to thank them for their hard work on the compiler, and I'd like to let
them know that their quick response times to bugs and queries have been very much
appreciated. I'd also like to thank all the F# community, in particular Christopher J. Barwick
(a.k.a. optionsScalper), who did so much to boost the F# community when he created the
hubFS (http://cs.hubfs.net).

I'd like to thank all the people who had to put up with me while I wrote this book. My
family: Mum, Dad, and Sister had to put up with me sneaking off to write whenever I went to
visit them. Also, my work colleagues often suffered grumpy mornings after late nights of F#
hacking and writing: Arnaud, Aurélie, Baptiste, Buuloc, Daniel, Dennis, Emmanuel, Fabrice,
Francois, Frederik, Guillaume, Ibrahima, Jean-Marc, Laurent, Lionel, Oussama, Patrice,
Philippe, Regis, Sebastien J., Sebastien P, Stefaan, Stefany, and Stephane—I thank you all. Last
but by no means least, I'd like to thank my wife, Susan, for all the help and support she has
given; without her understanding, this book could never have happened.

Xix

Preface: The Story of the Book

In 2003 I was looking for a way to process IL, the intermediate language into which all .NET
languages are compiled. At the time, .NET was fairly new, and there weren't a lot of options for
doing this. I quickly realized that the best option at the time, and probably still today, was an
API called Abstract IL (AbsIL). AbsIL was written in a language called F#, and I decided to use
this language to write a small wrapper around AbsIL so I could extract the information I
needed from a DLL in a form more usable from C#. But a funny thing happened while writing
the wrapper: even though in those days writing F# was a little hard going because the com-
piler was far from polished, I found that I actually enjoyed programming in F# so much that
when I had finished the wrapper, I didn’t want to go back to C#. In short, I was hooked.

At the time I was working as a consultant, so I needed to regularly check out new tech-
nologies and their APIs; therefore, I got to do all my experimentation using F#. At the same
time, people were talking about a new way to communicate on the Web, and a new word was
about to enter the English language: blog. I decided I should have a blog because anyone who
was anyone in technology seemed to have one, so I created http://www.strangelights.com
(where my blog can still be found to this today). This was later followed by a wiki about F#,
which can also be found at http://www.strangelights.com and which continues to be very
popular.

My job meant I had to do a lot of traveling, so this meant quite a lot of time in hotel rooms
or on trains and planes, and I came to view this time as time to try out stuff in F#. So, I ended
up exchanging quite a lot emails with Don Syme, and then eventually we met. We went for a
beer in the pub where Watson and Crick went after they first pieced together the structure of
DNA. Will people talk about the pub were Syme and Pickering first met years from now?
Errrm, perhaps not. Anyway, all this led me to the point where I was wondering what I should
do with my newfound knowledge of F# and functional programming. About this time a guy
called Jim Huddleston mailed the F# mailing list and asked whether anyone would like to
write a book about F#. Well, I just couldn’t help myself—it sounded like the job for me.

So, with much help and encouragement from Jim, I started writing the book. Some of it
was written in Paris where I was living on the weekends, some of it was written in Brussels
were I was working during the week, and much of it was written while I was traveling between
the two on the Thalys (the high-speed train between France and Belgium). A little of it was
written as far north as the Orkney Islands in Scotland while visiting my aunt and uncle, and a
little of the reviewing was done while meeting my in-laws in New Zealand. Finally, thanks to
the contacts I made while writing the book, I got a new job working for the prestigious ISV
LexiFi.

It has been great fun watching the language evolve over time and turn from the begin-
nings of a language into the fully fledged and highly usable language you see today. hope
reading this book changes your life as much as writing it has changed mine.

XXi

CHAPTER 1

Introduction

This introductory chapter will address some of the major questions you may have about F#
and functional programming.

What Is Functional Programming?

Functional programming (FP) is the oldest of the three major programming paradigms. The
first FP language, IPL, was invented in 1955, about a year before Fortran. The second, Lisp, was
invented in 1958, a year before Cobol. Both Fortran and Cobol are imperative (or procedural)
languages, and their immediate success in scientific and business computing made imperative
programming the dominant paradigm for more than 30 years. The rise of the object-oriented
(O0) paradigm in the 1970s and the gradual maturing of OO languages ever since have made
OO programming the most popular paradigm today.

Despite the vigorous and continuous development of powerful FP languages (SML, OCaml,
Haskell, and Clean, among others) and FP-like languages (APL and Lisp being the most success-
ful for real-world applications) since the 1950s, FP remained a primarily academic pursuit until
recently. The early commercial success of imperative languages made it the dominant paradigm
for decades. Object-oriented languages gained broad acceptance only when enterprises recog-
nized the need for more sophisticated computing solutions. Today, the promise of FP is finally
being realized to solve even more complex problems—as well as the simpler ones.

Pure functional programming views all programs as collections of functions that accept
arguments and return values. Unlike imperative and object-oriented programming, it allows
no side effects and uses recursion instead of loops for iteration. The functions in a functional
program are very much like mathematical functions because they do not change the state of
the program. In the simplest terms, once a value is assigned to an identifier, it never changes,
functions do not alter parameter values, and the results that functions return are completely
new values. In typical underlying implementations, once a value is assigned to an area in
memory, it does not change. To create results, functions copy values and then change the
copies, leaving the original values free to be used by other functions and eventually be thrown
away when no longer needed. (This is where the idea of garbage collection originated.)

The mathematical basis for pure functional programming is elegant, and FP therefore
provides beautiful, succinct solutions for many computing problems, but its stateless and
recursive nature makes the other paradigms convenient for handling many common pro-
gramming tasks. However, one of F#’s great strengths is that you can use multiple paradigms
and mix them to solve problems in the way you find most convenient.

CHAPTER 1 © INTRODUCTION

Why Is Functional Programming Important?

When people think of functional programming, they often view its statelessness as a fatal flaw,
without considering its advantages. One could argue that since an imperative program is often
90 percent assignment and since a functional program has no assignment, a functional pro-
gram could be 90 percent shorter. However, not many people are convinced by such
arguments or attracted to the ascetic world of stateless recursive programming, as John
Hughes pointed out in his classic paper “Why Functional Programming Matters”:

The functional programmer sounds rather like a medieval monk, denying himself the
pleasures of life in the hope that it will make him virtuous.

John Hughes, Chalmers University of Technology
(http://www.math.chalmers.se/~rjmh/Papers/whyfp.html)

To see the advantages of functional programming, you must look at what FP permits,
rather than what it prohibits. For example, functional programming allows you to treat func-
tions themselves as values and pass them to other functions. This might not seem all that
important at first glance, but its implications are extraordinary. Eliminating the distinction
between data and function means that many problems can be more naturally solved. Func-
tional programs can be shorter and more modular than corresponding imperative and
object-oriented programs.

In addition to treating functions as values, functional languages offer other features that
borrow from mathematics and are not commonly found in imperative languages. For exam-
ple, functional programming languages often offer curried functions, where arguments can be
passed to a function one at a time and, if all arguments are not given, the result is a residual
function waiting for the rest of its parameters. It’s also common for functional languages to
offer type systems with much better “power-to-weight ratios,” providing more performance
and correctness for less effort.

Further, a function might return multiple values, and the calling function is free to con-
sume them as it likes. I'll discuss these ideas, along with many more, in detail and with plenty
of examples, in Chapter 3.

What Is F#?

Functional programming is the best approach to solving many thorny computing problems,
but pure FP isn't suitable for general-purpose programming. So, FP languages have gradually
embraced aspects of the imperative and OO paradigms, remaining true to the FP paradigm
but incorporating features needed to easily write any kind of program. F# is a natural succes-
sor on this path. It is also much more than just an FP language.

Some of the most popular functional languages, including OCaml, Haskell, Lisp, and
Scheme, have traditionally been implemented using custom runtimes, which leads to prob-
lems such as lack of interoperability. F# is a general-purpose programming language for .NET, a
general-purpose runtime. F# smoothly integrates all three major programming paradigms.
With F#, you can choose whichever paradigm works best to solve problems in the most effec-
tive way. You can do pure FB if you're a purist, but you can easily combine functional,

CHAPTER 1 © INTRODUCTION

imperative, and object-oriented styles in the same program and exploit the strengths of each
paradigm. Like other typed functional languages, F# is strongly typed but also uses inferred
typing, so programmers don’t need to spend time explicitly specifying types unless an ambigu-
ity exists. Further, F# seamlessly integrates with the .NET Framework base class library (BCL).
Using the BCL in F# is as simple as using it in C# or Visual Basic (and maybe even simpler).

F# was modeled on Objective Caml (OCaml), a successful object-oriented FP language,
and then tweaked and extended to mesh well technically and philosophically with .NET. It
fully embraces .NET and enables users to do everything that .NET allows. The F# compiler can
compile for all implementations of the Common Language Infrastructure (CLI), it supports
.NET generics without changing any code, and it even provides for inline Intermediate Lan-
guage (IL) code. The F# compiler not only produces executables for any CLI but can also run
on any environment that has a CLI, which means F# is not limited to Windows but can run on
Linux, Apple Mac OS X, and OpenBSD. (Chapter 2 covers what it’s like to run F# on Linux.)

The F# compiler can be integrated into Visual Studio, supporting IntelliSense expression
completion and automatic expression checking. It also gives tooltips to show what types have
been inferred for expressions. Programmers often comment that this really helps bring the
language to life.

F# was invented by Dr. Don Syme and is now the product of a small but highly dedicated
team he heads at Microsoft Research (MSR) in Cambridge, England. However, F# is not just a
research or academic language. It is used for a wide variety of real-world applications, whose
number is growing rapidly.

Although other FP languages run on .NET, F# has established itself as the de facto .NET
functional programming language because of the quality of its implementation and its superb
integration with .NET and Visual Studio.

No other .NET language is as easy to use and as flexible as F#!

Who Is Using F#?

F# has a strong presence inside Microsoft, both in MSR and throughout the company as a
whole. Ralf Herbrich, coleader of MSR’s Applied Games Group, which specializes in machine
learning techniques, is typical of F#’s growing number of fans:

The first application was parsing 110GB of log data spread over 11,000 text files in over
300 directories and importing it into a SQL database. The whole application is 90 lines
long (including comments!) and finished the task of parsing the source files and import-
ing the data in under 18 hours; that works out to a staggering 10,000 log lines processed
per second! Note that I have not optimized the code at all but written the application in
the most obvious way. I was truly astonished as I had planned at least a week of work for
both coding and running the application.

The second application was an analysis of millions of feedbacks. We had developed the
model equations and I literally just typed them in as an F# program; together with the
reading-data-from-SQL-database and writing-results-to-MATLAB-data-file the F#
source code is 100 lines long (including comments). Again, I was astonished by the run-
ning time; the whole processing of the millions of data items takes 10 minutes on a

CHAPTER 1 © INTRODUCTION

standard desktop machine. My C# reference application (from some earlier tasks) is
almost 1,000 lines long and is no faster. The whole job from developing the model equa-
tions to having first real world data results took 2 days.

Ralf Herbrich, Microsoft Research
(http://blogs.msdn.com/dsyme/archive/2006/04/01/566301.aspx)

F# usage outside Microsoft is also rapidly growing. I asked Chris Barwick, who runs hubFS
(http://cs.hubFS.net), a popular web site dedicated to F#, about why F# was now his language
of choice, and he said this:

I've been in scientific and mathematics computing for more than 14 years. During that
time, I have waited and hoped for a platform that would be robust in every manner.
That platform has to provide effective tools that allow for the easy construction and
usage of collateral and that makes a scientific computing environment effective. NET
represents a platform where IL gives rise to consistency across products. F# is the lan-
guage that provides for competent scientific and mathematical computing on that
platform. With these tools and other server products, I have a wide range of options with
which to build complex systems at a very low cost of development and with very low
ongoing costs to operate and to improve. F# is the cornerstone needed for advanced sci-
entific computing.

Christopher J. Barwick, JJB Research (private email)

Finally, I talked to Jude O’Kelly, a software architect at Derivatives One, a company that
sells financial modeling software, about why Derivatives One used F# in its products:

We tested our financial models in both C# and F#; the performance was about the same,
but we liked the F# versions because of the succinct mathematical syntax. One of our
problems with F# was the lack of information; we think this book improves this situa-
tion enormously.

Jude O’Kelly, Derivatives One (private email)

Who Is This Book For?

This book is aimed primarily at IT professionals who want to get up to speed quickly on F#. A
working knowledge of the .NET Framework and some knowledge of either C# or Visual Basic
would be nice, but it's not necessary. All you really need is some experience programming in
any language to be comfortable learning F#.

Even complete beginners, who've never programmed before and are learning F# as their
first computer language, should find this book very readable. Though it doesn't attempt to
teach introductory programming per se, it does carefully present all the important details of F#.

CHAPTER 1 © INTRODUCTION

What’s Next?

This book teaches F#, by example, as a compiled language rather than a scripting language. By
this I mean most examples are designed to be compiled with the fsc.exe compiler, either in
Visual Studio or on a command line, rather than executed interactively with fsi.exe, the F#
interactive environment. In reality, most examples will run fine either way.

Chapter 2 gives you just enough knowledge about setting up an F# development environ-
ment to get you going.

Chapters 3, 4, 5, and 6 cover the core F# syntax. I deliberately keep the code simple,
because this will give you a better introduction to how the syntax works.

Chapter 7 looks at the core libraries distributed with F# to introduce you to their flavor and
power, rather than to describe each function in detail. The F# online documentation (http://
research.microsoft.com/fsharp/manual/namespaces.html) is the place to get the details.

Then you'll dive into how to use F# for the bread-and-butter problems of the working pro-
grammer. Chapter 8 covers user interface programming, Chapter 9 covers data access, and
Chapter 10 covers how applications can take advantage of a network.

The final chapters take you through the topics you really need to know to master F#.
Chapter 11 looks at support for creating little languages or domain-specific languages (DSLs),
a powerful and very common programming pattern in F#. Chapter 12 covers the tools you can
use to debug and optimize F# programs. Finally, Chapter 13 explores advanced interoperation
issues.

CHAPTER 2

How to Obtain, Install,
and Use F#

This chapter is designed to get you up and running with F# as quickly as possible. You'll look

at how to obtain F#, how to install it on both Windows and Linux, and how to use the compiler
in various ways. I'll also discuss what version of software the examples in this book were tested
with and what extra software you might need to install.

Obtaining F#

You can download F# from the Microsoft Research F# Download page at http://research.
microsoft.com/fsharp/release.aspx. The package includes various versions of the compiler,
which are compatible with different versions of the CLR, fsi.exe (the F# interactive console),
some F#-based parsing tools, the F# base class libraries, the F# documentation, and some F#
samples.

Installing F# on Windows

Installing F# on Windows is straightforward. You need to be running as an account with sys-
tem administrator privileges to install F#. Simply unzip the contents of the F# distribution to a
temporary location, and then run the InstallFSharp.msi package, which is in the root of the
distribution. The .msi should work whether or not Visual Studio 2003 or Visual Studio 2005 is
installed.

If youd prefer not to use an .msi, you can compile from the command line simply by
unzipping to your preferred location and running alternative-install.bat, which will install
the F# runtime libraries into the global assembly cache (GAC). You can also use this batch file
to install F# against the Shared Source Common Language Infrastructure (SSCLI), more com-
monly known as Rotor, by using the -sscli command-line switch.

CHAPTER 2 © HOW TO OBTAIN, INSTALL, AND USE F#

Note The SSCLI is a compressed archive of the source code for a working implementation of the ECMA
CLI and the ECMA C# language specifications. This implementation builds and runs on Windows XP, and you
can also compile and run it on other operating systems such as Linux or Mac 0S X. This implementation is
ideal if you really want to get under the covers and see what’s going on; however, you may find it more diffi-
cult to use than .NET, so you're probably best off sticking with .NET while reading this book.

If you use the alternative-install.bat batch file, Visual Studio integration will not be
installed. For installing Visual Studio integration, two further batch files are available,
alternative-install-vs2003.bat and alternative-install-vs2005.bat. Please note that at
the time of this writing the free Express Editions of Visual Studio do not support plug-ins, so
you cannot use F# integration with them.

Installing F# on Linux

It’s difficult to write a simple guide to installing F# on Linux, because there are so many differ-
ent distributions of Linux and so many ways you can configure them. The following are the
steps that worked well for me running SUSE Linux on a single computer. I performed all these
steps as the root account.

1. Install Mono using the packages provided with the SUSE Linux distribution; you can
find these by searching for mono and then sharp in the Install Software dialog box
available from the Computer menu.

2. Unpack the F# distribution, and copy the resulting files to /usr/1ib/fsharp.
3. Inthe /usr/1ib/fsharp directory, run chmod +x install-mono.sh.

4. Run the dos2unix tool on the text file install-mono. sh.

5. Still in the /usr/1lib/fsharp directory, run the command sh install-mono.sh.

After performing those steps, [was able to use F# from any account from the command
line by running mono /usxr/1lib/fsharp/bin/fsc.exe, followed by the command-line options.
Obviously, this was inconvenient to run every time, so I created a shell script file in /usr/bin
and as fsc:

#!/bin/sh
exec /usr/bin/mono $MONO_OPTIONS /usr/lib/fsharp/bin/fsc.exe "$@"

CHAPTER 2 © HOW TO OBTAIN, INSTALL, AND USE F#

I then ran chmod +x fsc to give users permission to execute it. After this, running the F#
compiler was as simple as typing fsc at the command line. The F# interactive compiler,
fsi.exe, will also run under Linux, but on the installation I used at the time of this writing, I
needed to use the --no-gui switch. The shell script for this is as follows:

#!/bin/sh
exec /usr/bin/mono $MONO_OPTIONS /usr/lib/fsharp/bin/fsi.exe --no-gui "$@"

Note 1 used SUSE Linux, available from http://www.novell.com/linux/, because | found it installed
smoothly on real and virtual machines, requiring very little manual setup.

Using F# in Different Ways

F# programs are just text files, so you can use any text editor to create them. Just save your
program with the extension . fs, and use fsc.exe to compile them. For example, if you had the
following program in the text file helloworld. fs:

#light
print_endline "Hello World"

you could just run fsc.exe helloworld.fs to compile your program into helloworld.exe,
which would output the following to the console:

Hello World

In my opinion, the easiest and quickest way to develop F# programs is in Visual Studio in
conjunction with the F# interactive compiler (see Figure 2-1). You can type F# programs into
the text editor, taking advantage of syntax highlighting and IntelliSense code completion;
compile them into executables; and debug them interactively by setting breakpoints and
pressing F5. Also, you can execute parts of your code interactively using F# interactive. Just
highlight the code you want to execute, and press Alt+Enter; F# interactive will execute the
code and show the results. This is great for testing snippets individually.

10 CHAPTER 2 © HOW TO OBTAIN, INSTALL, AND USE F#

2% HelloWorld - Microsoft Yisual Studio i =18]x

File Edt View Froject Buid Debug Test Tools Window Community Help
- H @S RB(9 e |FFREH

Bhbas|EE=2 008 @ 285 R
> N R T IR | - Prog.fs | Start Page | o
1D - B
8 | L4 sobkon eloword (i roject) SR TR le Mol
“| = T Helloworld

i) Prog.fs

-
4| | _'1_J
Te: EY=TT The given ILlle(= A2 & COmplistlon unit. “~
INOTE: Hrime: toggle timing onfoff.
INOTE: fitypsa: ; toggle display of types onfoff.
NOTE: Hoquic: s exic.
MOTE :
[WOTE: Visit the F# website at hteop://research.microsoft.com/Isherp.
MOTE: Bug reports to fsbugs@microsoft.com. Enjoy!
[NOTE :
MMOTE: Visual Icudio Key bindings:
[NOTE :
MOTE: Up/Down = cycle history
[NOTE : CTRL-C = interrupt session
[NOTE : ALT-ENTER = =end selected source text to F3I session (adds ;;)
= » = » » Hello World
wal it @ ounit = ()
> = =l
|5 output] 24 Ervor Lt [5] Find Resuts 1|
Ready Ln3 Colt chi INS

Figure 2-1. Visual Studio hosting F# interactive

Note If you are not convinced you want to invest in a copy of Visual Studio, trial versions of this software
are available at https://www.tryvs2005. com.

If you prefer, you can type your programs into the F# interactive console directly when it’s
running in stand-alone mode, as shown in Figure 2-2.

CHAPTER 2 © HOW TO OBTAIN, INSTALL, AND USE F#

OTE:

OTE: See *‘fsi —help’' for flags

OTE:

OTE: Commands: #ir {string>; reference (dynamically load}> the given DLL.
OTE: #I <string>; add the given search path for referenced DLLs.

fluse <stringr;; accept input from the given file.
#load <string> ...<{string>;;
load the given file<s?» as a compilation unit.
toggle timing on~soff.
toggle display of types onsoff.
Hguit exit.
OTE:
OTE: Uisit the F#f website at http:/rresearch.microsoft.consfzharp.
OTE: Bug reports to fshugs@microsoft.com. Enjoy?

> System.Environment .Uersions;

wval it : Version = 2.8.58727.42 {Build = 58727;
Major = 2;
MajorRevizion =
Minor = B8;
MinorRevision =
Revision = 42;3

Figure 2-2. The F# interactive console running in stand-alone mode

When you use the interactive console, you type the code you want; then when you've
completed a section, you use two semicolons (; ;) to indicate that the compiler should com-
pile and run it.

F# interactive responds to commands in two ways. If you bind a value to an identifier, it
prints the name of the identifier and its type. So, typing the following into F# interactive:

>leti=1+ 2;;

gives the following:

val i : int

However, if you just type a value into F# interactive, it will respond slightly differently.
Typing the following into F# interactive:

> 1+ 2;;

gives the following:

val it : int = 3

11

12

CHAPTER 2 © HOW TO OBTAIN, INSTALL, AND USE F#

This means the value has been bound to a special identifier, called it, that is available to
other code within the F# interactive session. When any expression is evaluated at the top level,
its value is also printed, after the equals sign; note the 3 in the previous example. As you get to
know fsi.exe and F# in general, using F# interactive will become more and more useful for
debugging programs and finding out how they work. (I discuss values, identifiers, and types in
more detail in Chapter 3.)

You can get code completions by pressing Tab. I find this mode of working useful in test-
ing short programs by copying and pasting them into the console or for checking properties
on existing libraries. For example, in Figure 2-2 I checked the System.Environment.Version
property. However, I find this mode inconvenient for creating longer programs since it’s diffi-
cult to store the programs once they're coded; they have to be copied and pasted from the
console. Using Visual Studio, even if you don’t intend to just run them interactively, you can
still easily execute snippets with Alt+Enter.

If you save your program with the . fsx extension instead of the . fs extension, you can run
your programs interactively by right-clicking them and selecting the Run with F# Interactive
menu option, as shown in Figure 2-3. This scripting style of programming is great for creating
small programs to automate repetitive tasks. This way your program’s configuration, such as
the file paths it uses, can be stored inside regular strings in the program and can be quickly
edited by the programmer using any text editor as needed.

% C:',Documents and Settings'robertpi',My Documents'Books'Foundations of F#"-.,l: oy] 4|

File Edit ‘iew Favorites Tools Help | f

OBack - -_) - l_ﬂ' ‘ /.__) Search [l_:‘ Folders "

address Ilﬂ Z:\Documents and Settingsirobertpiify Documents'Books\Foundations of Fa\CodelChapter02iRightClick j Go

Folders X | Name =~ | Size | Type | pa
NkR_Fat Seript File 15
@ E’Psmp (= Open with Visual Studio 2003/2005
& & My Documents Run with F# Interactive
) Add
B) Books Scan fFor Yiruses..,
= I53) Foundations of Fa# = Open With...,
B) Code) WinZip »
H= C3) Chapter0z — X
(£ Hellowwarld
(2 Rightclick. Cut
[C3) Chapteros Copy

[C3) Chapteros

Create Shorkcut
[C3) Chaptero?

Delete
[C3) Chapteros

Rename
) Chapterog
[3) Chapter1o Properties
) Chapter1l
(5 old

= I GE -
| I ENiE | |

Figure 2-3. Running an F# script by right-clicking it

You can find more information about the F# programming tools and general program-
ming tools for .NET in Chapter 11.

CHAPTER 2 © HOW TO OBTAIN, INSTALL, AND USE F#

Installing the Software Used in This Book

The code in this book will focus on using fsc.exe, rather than fsi.exe. This is because although
fsi.exe is great for testing code, running simple scripts, and running experiments, I believe
fsc.exe is more useful for producing finished software. Since there’s little difference between
the syntax and the commands, most examples will work with little or no adaptation in fsi.exe,
and I'll warn you when any changes are necessary.

All the samples in this book were created using .NET 2.0 running on Windows XP
Professional. If you're using .NET 1.0 or 1.1, you'll experience problems with many of the
samples because quite a few of them use classes and methods from the .NET 2.0 base class
library (BCL) that aren’t available in version 1.0 or 1.1.

The most common problem you will face when working with .NET 1.0 and 1.1 is that I use
System.Collections.Generic.List, referred to as ResizeArray in F#, and System.Collections.
Generic.Dictionary. You can always work around this by replacing these two classes with
System.Collections.ArraylList and System.Collections.Hashtable, respectively. There may
be other places where I use methods or classes not available in .NET 1.0 and 1.1, but generally
you will be able to work around this with a little extra coding.

At the time of this writing, Mono shipped with its version of Framework 2.0, which the F#
compiler targets by default; however, this was still in beta, with a production-quality version
due to ship in mid-2007. A small subset of this book’s examples has been tested on Mono 2.0,
and the examples ran without problems.

A small number of examples use several other software libraries and packages. It’s not
necessary to immediately download and install all these software packages, but for specific
examples, as listed in Table 2-1, you'll need to do this at some point.

Table 2-1. Additional Software Used Within This Book

Software Used In URL
.NET Framework 3.0 Chapter 8, http://www.microsoft.com/downloads/details.
Chapter 10 aspx?FamilyId=10CC340B-F857-4A14-83F5-
25634C3BF043&displaylang=en
SDK for .NET Framework 3.0 Chapter 8, http://www.microsoft.com/downloads/details.
Chapter 10 aspx?familyid=C2B1E300-F358-4523-B479-
F53D234CDCCF&displaylang=en
SQL Server 2005 Chapter 9 http://msdn.microsoft.com/vstudio/express/
Express Edition sql/register/default.aspx
SQL Server 2005 Samples Chapter 9 http://www.microsoft.com/downloads/details.

aspx?familyid=E719ECF7-9F46-4312-AF89-
6AD8702E4E6E8displaylang=en

Microsoft .NET LINQ Chapter 9 http://www.microsoft.com/downloads/details.

Preview (May 2006) aspx?familyid=1e902c21-340c-4d13-9f04-
70eb5e3dceeaddisplaylang=en

Windows Server 2003 Chapter 12 http://www.microsoft.com/downloads/details.

Resource Kit Tools aspx?FamilyID=9d467a69-57ff-4ae7-96ee-

b18c4790cffddDisplaylLang=en
NUnit Chapter 12 http://www.nunit.org/index.php?p=download

continued

13

14

CHAPTER 2 © HOW TO OBTAIN, INSTALL, AND USE F#

Table 2-1. Continued

Software Used In URL

NProf Chapter 12 http://www.mertner.com/confluence/display/
NProf/Home

CLR Profiler for .NET 2.0 Chapter 12 http://www.microsoft.com/downloads/details.
aspx?familyid=a362781c-3870-43be-8926-
862b40aaocdoddisplaylang=en

Reflector Chapter 12 http://www.aisto.com/roeder/dotnet/

Obviously, some of these links are a little long to type, so I've summarized them all at
http://strangelights.com/FSharp/Foundations/default.aspx/FSharpFoundations.Downloads

where I'll keep them updated.

Summary

This chapter described how to install and run F# and the different ways you can work with it.
The following chapters will explain how to program with F#, starting in Chapter 3 with func-

tional programming in F#.

CHAPTER 3

Functional Programming

You saw in Chapter 1 that pure functional programming treats functions as values, relies on
recursion for looping, and does not allow changes to state. In this chapter, you'll survey the
major language constructs of F# that support the functional programming paradigm.

Identifiers

Identifiers are the way you give names to values in F# so you can refer to them later in a program.
You define an identifier using the keyword let followed by the name of the identifier, an equals
sign, and an expression that specifies the value to which the identifier refers. An expression is any
piece of code that represents a computation that will return a value. The following expression
shows a value being assigned to an identifier:

let x = 42

To most people coming from an imperative programming background, this will look like a
variable assignment. There are a lot of similarities, but there are key differences. In pure func-
tional programming, once a value is assigned to an identifier, it never changes. This is why I will
refer to them throughout this book as identifiers and not variables. You will see in the “Scope”
section later in this chapter that, under some circumstances, you can redefine identifiers and
that in imperative programming in F#, in some circumstances, the value of an identifier can
change.

An identifier can refer to either a value or a function, and since F# functions are really values
in their own right, this is hardly surprising. (I discuss this relationship in detail in the “Functions
and Values” section later in this chapter.) This means F# has no real concept of a function name
or parameter name; they are all just identifiers. You write a function definition the same way as a
value identifier, except a function has two or more identifiers between the let keyword and the
equals sign, as follows:

let raisePowerTwo x = x ** 2.0

The first identifier is the name of the function, raisePowerTwo, and the identifier that fol-
lows it is the name of the function’s parameter, x.

15

CHAPTER 3 ' FUNCTIONAL PROGRAMMING

Keywords

Most, if not all, programming languages have the concept of keywords. A keyword is a lan-
guage token that the compiler reserves for special use. In F# you cannot use a keyword as an
identifier name or a fype name (I discuss types later in this chapter in “Defining Types”). The
following are the F# keywords:

abstract 1s1

and lsr

as Ixor
assert match member
asr mod
begin module
class mutable namespace
default new
delegate null

do of

done open
downcast or
downto override
else rec

end sig
exception static
false struct
finally then

for to

fun true
function try

if type

in val
inherit when
inline upcast
interface while
land with

lor

