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Foreword

A new language needs a simple and clear introductory book that makes it accessible to a
broad range of programmers. In Foundations of F#, Robert Pickering has captured the essen-
tial elements that the professional programmer needs to master in order to get started with F#
and .NET. As the designer of F#, I am thrilled to see Robert take up the challenge of presenting
F# in a way that is accessible to a wide audience.

F# combines the simplicity and elegance of typed functional programming with the
strengths of the .NET platform. Although typed functional programming is relatively new to
many programmers and thus requires some learning, in many ways it makes programming
simpler. This is mainly because F# programs tend to be built from compositional, correct
foundational elements, and type inference makes programs shorter and clearer. Robert first
introduces the three foundational paradigms of F#: functional programming, imperative pro-
gramming, and object-oriented programming, and he shows how F# lets you use them in
concert. He then shows how this multiparadigm approach can be used in conjunction with
the .NET libraries to perform practical programming tasks such as GUI implementation, data
access, and distributed programming. He then introduces some of the particular strengths of
F# in the area of “language-oriented” programming.

F# is a practical language, and Robert has ensured that the reader is well equipped with
information needed to use the current generation of F# tools well. Many computer profession-
als first encounter functional programming through a short section of the undergraduate
curriculum and often leave these courses uncertain about the real-world applicability of the
techniques they have been taught. Similarly, some people encounter functional programming
only in its purest forms and are uncertain whether it is possible to combine the elements of
the paradigm with other approaches to programming and software engineering. Robert has
helped remove this uncertainty: typed functional programming is practical, easy to learn, and
a powerful addition to the .NET programming landscape.

F# is also a research language, used in part to deliver recent advances in language design,
particularly those that work well with .NET. It combines a stable and dependable base language
with more recent extensions. Robert’s book describes F# 2.0, the latest release of the language
at the time of writing. The rest of the F# team and I are very grateful to Robert’'s many sugges-
tions, and the language has been greatly improved through this. I hope you enjoy reading this
book as much as I enjoyed being its technical reviewer.

Don Syme
Cambridge, UK
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CHAPTER 1

Introduction

This introductory chapter will address some of the major questions you may have about F#
and functional programming.

What Is Functional Programming?

Functional programming (FP) is the oldest of the three major programming paradigms. The
first FP language, IPL, was invented in 1955, about a year before Fortran. The second, Lisp, was
invented in 1958, a year before Cobol. Both Fortran and Cobol are imperative (or procedural)
languages, and their immediate success in scientific and business computing made imperative
programming the dominant paradigm for more than 30 years. The rise of the object-oriented
(O0) paradigm in the 1970s and the gradual maturing of OO languages ever since have made
OO programming the most popular paradigm today.

Despite the vigorous and continuous development of powerful FP languages (SML, OCaml,
Haskell, and Clean, among others) and FP-like languages (APL and Lisp being the most success-
ful for real-world applications) since the 1950s, FP remained a primarily academic pursuit until
recently. The early commercial success of imperative languages made it the dominant paradigm
for decades. Object-oriented languages gained broad acceptance only when enterprises recog-
nized the need for more sophisticated computing solutions. Today, the promise of FP is finally
being realized to solve even more complex problems—as well as the simpler ones.

Pure functional programming views all programs as collections of functions that accept
arguments and return values. Unlike imperative and object-oriented programming, it allows
no side effects and uses recursion instead of loops for iteration. The functions in a functional
program are very much like mathematical functions because they do not change the state of
the program. In the simplest terms, once a value is assigned to an identifier, it never changes,
functions do not alter parameter values, and the results that functions return are completely
new values. In typical underlying implementations, once a value is assigned to an area in
memory, it does not change. To create results, functions copy values and then change the
copies, leaving the original values free to be used by other functions and eventually be thrown
away when no longer needed. (This is where the idea of garbage collection originated.)

The mathematical basis for pure functional programming is elegant, and FP therefore
provides beautiful, succinct solutions for many computing problems, but its stateless and
recursive nature makes the other paradigms convenient for handling many common pro-
gramming tasks. However, one of F#’s great strengths is that you can use multiple paradigms
and mix them to solve problems in the way you find most convenient.
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Why Is Functional Programming Important?

When people think of functional programming, they often view its statelessness as a fatal flaw,
without considering its advantages. One could argue that since an imperative program is often
90 percent assignment and since a functional program has no assignment, a functional pro-
gram could be 90 percent shorter. However, not many people are convinced by such
arguments or attracted to the ascetic world of stateless recursive programming, as John
Hughes pointed out in his classic paper “Why Functional Programming Matters”:

The functional programmer sounds rather like a medieval monk, denying himself the
pleasures of life in the hope that it will make him virtuous.

John Hughes, Chalmers University of Technology
(http://www.math.chalmers.se/~rjmh/Papers/whyfp.html)

To see the advantages of functional programming, you must look at what FP permits,
rather than what it prohibits. For example, functional programming allows you to treat func-
tions themselves as values and pass them to other functions. This might not seem all that
important at first glance, but its implications are extraordinary. Eliminating the distinction
between data and function means that many problems can be more naturally solved. Func-
tional programs can be shorter and more modular than corresponding imperative and
object-oriented programs.

In addition to treating functions as values, functional languages offer other features that
borrow from mathematics and are not commonly found in imperative languages. For exam-
ple, functional programming languages often offer curried functions, where arguments can be
passed to a function one at a time and, if all arguments are not given, the result is a residual
function waiting for the rest of its parameters. It’s also common for functional languages to
offer type systems with much better “power-to-weight ratios,” providing more performance
and correctness for less effort.

Further, a function might return multiple values, and the calling function is free to con-
sume them as it likes. I'll discuss these ideas, along with many more, in detail and with plenty
of examples, in Chapter 3.

What Is F#?

Functional programming is the best approach to solving many thorny computing problems,
but pure FP isn't suitable for general-purpose programming. So, FP languages have gradually
embraced aspects of the imperative and OO paradigms, remaining true to the FP paradigm
but incorporating features needed to easily write any kind of program. F# is a natural succes-
sor on this path. It is also much more than just an FP language.

Some of the most popular functional languages, including OCaml, Haskell, Lisp, and
Scheme, have traditionally been implemented using custom runtimes, which leads to prob-
lems such as lack of interoperability. F# is a general-purpose programming language for .NET, a
general-purpose runtime. F# smoothly integrates all three major programming paradigms.
With F#, you can choose whichever paradigm works best to solve problems in the most effec-
tive way. You can do pure FB if you're a purist, but you can easily combine functional,
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imperative, and object-oriented styles in the same program and exploit the strengths of each
paradigm. Like other typed functional languages, F# is strongly typed but also uses inferred
typing, so programmers don’t need to spend time explicitly specifying types unless an ambigu-
ity exists. Further, F# seamlessly integrates with the .NET Framework base class library (BCL).
Using the BCL in F# is as simple as using it in C# or Visual Basic (and maybe even simpler).

F# was modeled on Objective Caml (OCaml), a successful object-oriented FP language,
and then tweaked and extended to mesh well technically and philosophically with .NET. It
fully embraces .NET and enables users to do everything that .NET allows. The F# compiler can
compile for all implementations of the Common Language Infrastructure (CLI), it supports
.NET generics without changing any code, and it even provides for inline Intermediate Lan-
guage (IL) code. The F# compiler not only produces executables for any CLI but can also run
on any environment that has a CLI, which means F# is not limited to Windows but can run on
Linux, Apple Mac OS X, and OpenBSD. (Chapter 2 covers what it’s like to run F# on Linux.)

The F# compiler can be integrated into Visual Studio, supporting IntelliSense expression
completion and automatic expression checking. It also gives tooltips to show what types have
been inferred for expressions. Programmers often comment that this really helps bring the
language to life.

F# was invented by Dr. Don Syme and is now the product of a small but highly dedicated
team he heads at Microsoft Research (MSR) in Cambridge, England. However, F# is not just a
research or academic language. It is used for a wide variety of real-world applications, whose
number is growing rapidly.

Although other FP languages run on .NET, F# has established itself as the de facto .NET
functional programming language because of the quality of its implementation and its superb
integration with .NET and Visual Studio.

No other .NET language is as easy to use and as flexible as F#!

Who Is Using F#?

F# has a strong presence inside Microsoft, both in MSR and throughout the company as a
whole. Ralf Herbrich, coleader of MSR’s Applied Games Group, which specializes in machine
learning techniques, is typical of F#’s growing number of fans:

The first application was parsing 110GB of log data spread over 11,000 text files in over
300 directories and importing it into a SQL database. The whole application is 90 lines
long (including comments!) and finished the task of parsing the source files and import-
ing the data in under 18 hours; that works out to a staggering 10,000 log lines processed
per second! Note that I have not optimized the code at all but written the application in
the most obvious way. I was truly astonished as I had planned at least a week of work for
both coding and running the application.

The second application was an analysis of millions of feedbacks. We had developed the
model equations and I literally just typed them in as an F# program; together with the
reading-data-from-SQL-database and writing-results-to-MATLAB-data-file the F#
source code is 100 lines long (including comments). Again, I was astonished by the run-
ning time; the whole processing of the millions of data items takes 10 minutes on a
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standard desktop machine. My C# reference application (from some earlier tasks) is
almost 1,000 lines long and is no faster. The whole job from developing the model equa-
tions to having first real world data results took 2 days.

Ralf Herbrich, Microsoft Research
(http://blogs.msdn.com/dsyme/archive/2006/04/01/566301.aspx)

F# usage outside Microsoft is also rapidly growing. I asked Chris Barwick, who runs hubFS
(http://cs.hubFS.net), a popular web site dedicated to F#, about why F# was now his language
of choice, and he said this:

I've been in scientific and mathematics computing for more than 14 years. During that
time, I have waited and hoped for a platform that would be robust in every manner.
That platform has to provide effective tools that allow for the easy construction and
usage of collateral and that makes a scientific computing environment effective. NET
represents a platform where IL gives rise to consistency across products. F# is the lan-
guage that provides for competent scientific and mathematical computing on that
platform. With these tools and other server products, I have a wide range of options with
which to build complex systems at a very low cost of development and with very low
ongoing costs to operate and to improve. F# is the cornerstone needed for advanced sci-
entific computing.

Christopher J. Barwick, JJB Research (private email)

Finally, I talked to Jude O’Kelly, a software architect at Derivatives One, a company that
sells financial modeling software, about why Derivatives One used F# in its products:

We tested our financial models in both C# and F#; the performance was about the same,
but we liked the F# versions because of the succinct mathematical syntax. One of our
problems with F# was the lack of information; we think this book improves this situa-
tion enormously.

Jude O’Kelly, Derivatives One (private email)

Who Is This Book For?

This book is aimed primarily at IT professionals who want to get up to speed quickly on F#. A
working knowledge of the .NET Framework and some knowledge of either C# or Visual Basic
would be nice, but it's not necessary. All you really need is some experience programming in
any language to be comfortable learning F#.

Even complete beginners, who've never programmed before and are learning F# as their
first computer language, should find this book very readable. Though it doesn't attempt to
teach introductory programming per se, it does carefully present all the important details of F#.
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What’s Next?

This book teaches F#, by example, as a compiled language rather than a scripting language. By
this I mean most examples are designed to be compiled with the fsc.exe compiler, either in
Visual Studio or on a command line, rather than executed interactively with fsi.exe, the F#
interactive environment. In reality, most examples will run fine either way.

Chapter 2 gives you just enough knowledge about setting up an F# development environ-
ment to get you going.

Chapters 3, 4, 5, and 6 cover the core F# syntax. I deliberately keep the code simple,
because this will give you a better introduction to how the syntax works.

Chapter 7 looks at the core libraries distributed with F# to introduce you to their flavor and
power, rather than to describe each function in detail. The F# online documentation (http://
research.microsoft.com/fsharp/manual/namespaces.html) is the place to get the details.

Then you'll dive into how to use F# for the bread-and-butter problems of the working pro-
grammer. Chapter 8 covers user interface programming, Chapter 9 covers data access, and
Chapter 10 covers how applications can take advantage of a network.

The final chapters take you through the topics you really need to know to master F#.
Chapter 11 looks at support for creating little languages or domain-specific languages (DSLs),
a powerful and very common programming pattern in F#. Chapter 12 covers the tools you can
use to debug and optimize F# programs. Finally, Chapter 13 explores advanced interoperation
issues.



CHAPTER 2

How to Obtain, Install,
and Use F#

This chapter is designed to get you up and running with F# as quickly as possible. You'll look

at how to obtain F#, how to install it on both Windows and Linux, and how to use the compiler
in various ways. I'll also discuss what version of software the examples in this book were tested
with and what extra software you might need to install.

Obtaining F#

You can download F# from the Microsoft Research F# Download page at http://research.
microsoft.com/fsharp/release.aspx. The package includes various versions of the compiler,
which are compatible with different versions of the CLR, fsi.exe (the F# interactive console),
some F#-based parsing tools, the F# base class libraries, the F# documentation, and some F#
samples.

Installing F# on Windows

Installing F# on Windows is straightforward. You need to be running as an account with sys-
tem administrator privileges to install F#. Simply unzip the contents of the F# distribution to a
temporary location, and then run the InstallFSharp.msi package, which is in the root of the
distribution. The .msi should work whether or not Visual Studio 2003 or Visual Studio 2005 is
installed.

If youd prefer not to use an .msi, you can compile from the command line simply by
unzipping to your preferred location and running alternative-install.bat, which will install
the F# runtime libraries into the global assembly cache (GAC). You can also use this batch file
to install F# against the Shared Source Common Language Infrastructure (SSCLI), more com-
monly known as Rotor, by using the -sscli command-line switch.



CHAPTER 2 © HOW TO OBTAIN, INSTALL, AND USE F#

Note The SSCLI is a compressed archive of the source code for a working implementation of the ECMA
CLI and the ECMA C# language specifications. This implementation builds and runs on Windows XP, and you
can also compile and run it on other operating systems such as Linux or Mac 0S X. This implementation is
ideal if you really want to get under the covers and see what’s going on; however, you may find it more diffi-
cult to use than .NET, so you're probably best off sticking with .NET while reading this book.

If you use the alternative-install.bat batch file, Visual Studio integration will not be
installed. For installing Visual Studio integration, two further batch files are available,
alternative-install-vs2003.bat and alternative-install-vs2005.bat. Please note that at
the time of this writing the free Express Editions of Visual Studio do not support plug-ins, so
you cannot use F# integration with them.

Installing F# on Linux

It’s difficult to write a simple guide to installing F# on Linux, because there are so many differ-
ent distributions of Linux and so many ways you can configure them. The following are the
steps that worked well for me running SUSE Linux on a single computer. I performed all these
steps as the root account.

1. Install Mono using the packages provided with the SUSE Linux distribution; you can
find these by searching for mono and then sharp in the Install Software dialog box
available from the Computer menu.

2. Unpack the F# distribution, and copy the resulting files to /usr/1ib/fsharp.
3. Inthe /usr/1ib/fsharp directory, run chmod +x install-mono.sh.

4. Run the dos2unix tool on the text file install-mono. sh.

5. Still in the /usr/1lib/fsharp directory, run the command sh install-mono.sh.

After performing those steps, [ was able to use F# from any account from the command
line by running mono /usxr/1lib/fsharp/bin/fsc.exe, followed by the command-line options.
Obviously, this was inconvenient to run every time, so I created a shell script file in /usr/bin
and as fsc:

#!/bin/sh
exec /usr/bin/mono $MONO_OPTIONS /usr/lib/fsharp/bin/fsc.exe "$@"



CHAPTER 2 © HOW TO OBTAIN, INSTALL, AND USE F#

I then ran chmod +x fsc to give users permission to execute it. After this, running the F#
compiler was as simple as typing fsc at the command line. The F# interactive compiler,
fsi.exe, will also run under Linux, but on the installation I used at the time of this writing, I
needed to use the --no-gui switch. The shell script for this is as follows:

#!/bin/sh
exec /usr/bin/mono $MONO_OPTIONS /usr/lib/fsharp/bin/fsi.exe --no-gui "$@"

Note 1 used SUSE Linux, available from http://www.novell.com/linux/, because | found it installed
smoothly on real and virtual machines, requiring very little manual setup.

Using F# in Different Ways

F# programs are just text files, so you can use any text editor to create them. Just save your
program with the extension . fs, and use fsc.exe to compile them. For example, if you had the
following program in the text file helloworld. fs:

#light
print_endline "Hello World"

you could just run fsc.exe helloworld.fs to compile your program into helloworld.exe,
which would output the following to the console:

Hello World

In my opinion, the easiest and quickest way to develop F# programs is in Visual Studio in
conjunction with the F# interactive compiler (see Figure 2-1). You can type F# programs into
the text editor, taking advantage of syntax highlighting and IntelliSense code completion;
compile them into executables; and debug them interactively by setting breakpoints and
pressing F5. Also, you can execute parts of your code interactively using F# interactive. Just
highlight the code you want to execute, and press Alt+Enter; F# interactive will execute the
code and show the results. This is great for testing snippets individually.
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Figure 2-1. Visual Studio hosting F# interactive

Note If you are not convinced you want to invest in a copy of Visual Studio, trial versions of this software
are available at https://www.tryvs2005. com.

If you prefer, you can type your programs into the F# interactive console directly when it’s
running in stand-alone mode, as shown in Figure 2-2.
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OTE:

OTE: See *‘fsi —help’' for flags

OTE:
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toggle display of types onsoff.
Hguit exit.
OTE:
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> System.Environment .Uersions;

wval it : Version = 2.8.58727.42 {Build = 58727;
Major = 2;
MajorRevizion =
Minor = B8;
MinorRevision =
Revision = 42;3

Figure 2-2. The F# interactive console running in stand-alone mode

When you use the interactive console, you type the code you want; then when you've
completed a section, you use two semicolons (; ;) to indicate that the compiler should com-
pile and run it.

F# interactive responds to commands in two ways. If you bind a value to an identifier, it
prints the name of the identifier and its type. So, typing the following into F# interactive:

>leti=1+ 2;;

gives the following:

val i : int

However, if you just type a value into F# interactive, it will respond slightly differently.
Typing the following into F# interactive:

> 1+ 2;;

gives the following:

val it : int = 3

11
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This means the value has been bound to a special identifier, called it, that is available to
other code within the F# interactive session. When any expression is evaluated at the top level,
its value is also printed, after the equals sign; note the 3 in the previous example. As you get to
know fsi.exe and F# in general, using F# interactive will become more and more useful for
debugging programs and finding out how they work. (I discuss values, identifiers, and types in
more detail in Chapter 3.)

You can get code completions by pressing Tab. I find this mode of working useful in test-
ing short programs by copying and pasting them into the console or for checking properties
on existing libraries. For example, in Figure 2-2 I checked the System.Environment.Version
property. However, I find this mode inconvenient for creating longer programs since it’s diffi-
cult to store the programs once they're coded; they have to be copied and pasted from the
console. Using Visual Studio, even if you don’t intend to just run them interactively, you can
still easily execute snippets with Alt+Enter.

If you save your program with the . fsx extension instead of the . fs extension, you can run
your programs interactively by right-clicking them and selecting the Run with F# Interactive
menu option, as shown in Figure 2-3. This scripting style of programming is great for creating
small programs to automate repetitive tasks. This way your program’s configuration, such as
the file paths it uses, can be stored inside regular strings in the program and can be quickly
edited by the programmer using any text editor as needed.
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Figure 2-3. Running an F# script by right-clicking it

You can find more information about the F# programming tools and general program-
ming tools for .NET in Chapter 11.
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Installing the Software Used in This Book

The code in this book will focus on using fsc.exe, rather than fsi.exe. This is because although
fsi.exe is great for testing code, running simple scripts, and running experiments, I believe
fsc.exe is more useful for producing finished software. Since there’s little difference between
the syntax and the commands, most examples will work with little or no adaptation in fsi.exe,
and I'll warn you when any changes are necessary.

All the samples in this book were created using .NET 2.0 running on Windows XP
Professional. If you're using .NET 1.0 or 1.1, you'll experience problems with many of the
samples because quite a few of them use classes and methods from the .NET 2.0 base class
library (BCL) that aren’t available in version 1.0 or 1.1.

The most common problem you will face when working with .NET 1.0 and 1.1 is that I use
System.Collections.Generic.List, referred to as ResizeArray in F#, and System.Collections.
Generic.Dictionary. You can always work around this by replacing these two classes with
System.Collections.ArraylList and System.Collections.Hashtable, respectively. There may
be other places where I use methods or classes not available in .NET 1.0 and 1.1, but generally
you will be able to work around this with a little extra coding.

At the time of this writing, Mono shipped with its version of Framework 2.0, which the F#
compiler targets by default; however, this was still in beta, with a production-quality version
due to ship in mid-2007. A small subset of this book’s examples has been tested on Mono 2.0,
and the examples ran without problems.

A small number of examples use several other software libraries and packages. It’s not
necessary to immediately download and install all these software packages, but for specific
examples, as listed in Table 2-1, you'll need to do this at some point.

Table 2-1. Additional Software Used Within This Book

Software Used In URL
.NET Framework 3.0 Chapter 8, http://www.microsoft.com/downloads/details.
Chapter 10 aspx?FamilyId=10CC340B-F857-4A14-83F5-
25634C3BF043&displaylang=en
SDK for .NET Framework 3.0 Chapter 8, http://www.microsoft.com/downloads/details.
Chapter 10 aspx?familyid=C2B1E300-F358-4523-B479-
F53D234CDCCF&displaylang=en
SQL Server 2005 Chapter 9 http://msdn.microsoft.com/vstudio/express/
Express Edition sql/register/default.aspx
SQL Server 2005 Samples Chapter 9 http://www.microsoft.com/downloads/details.

aspx?familyid=E719ECF7-9F46-4312-AF89-
6AD8702E4E6E8displaylang=en

Microsoft .NET LINQ Chapter 9 http://www.microsoft.com/downloads/details.

Preview (May 2006) aspx?familyid=1e902c21-340c-4d13-9f04-
70eb5e3dceeaddisplaylang=en

Windows Server 2003 Chapter 12 http://www.microsoft.com/downloads/details.

Resource Kit Tools aspx?FamilyID=9d467a69-57ff-4ae7-96ee-

b18c4790cffddDisplaylLang=en
NUnit Chapter 12 http://www.nunit.org/index.php?p=download

continued

13
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Table 2-1. Continued

Software Used In URL

NProf Chapter 12 http://www.mertner.com/confluence/display/
NProf/Home

CLR Profiler for .NET 2.0 Chapter 12 http://www.microsoft.com/downloads/details.
aspx?familyid=a362781c-3870-43be-8926-
862b40aaocdoddisplaylang=en

Reflector Chapter 12 http://www.aisto.com/roeder/dotnet/

Obviously, some of these links are a little long to type, so I've summarized them all at
http://strangelights.com/FSharp/Foundations/default.aspx/FSharpFoundations.Downloads

where I'll keep them updated.

Summary

This chapter described how to install and run F# and the different ways you can work with it.
The following chapters will explain how to program with F#, starting in Chapter 3 with func-

tional programming in F#.
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Functional Programming

You saw in Chapter 1 that pure functional programming treats functions as values, relies on
recursion for looping, and does not allow changes to state. In this chapter, you'll survey the
major language constructs of F# that support the functional programming paradigm.

Identifiers

Identifiers are the way you give names to values in F# so you can refer to them later in a program.
You define an identifier using the keyword let followed by the name of the identifier, an equals
sign, and an expression that specifies the value to which the identifier refers. An expression is any
piece of code that represents a computation that will return a value. The following expression
shows a value being assigned to an identifier:

let x = 42

To most people coming from an imperative programming background, this will look like a
variable assignment. There are a lot of similarities, but there are key differences. In pure func-
tional programming, once a value is assigned to an identifier, it never changes. This is why I will
refer to them throughout this book as identifiers and not variables. You will see in the “Scope”
section later in this chapter that, under some circumstances, you can redefine identifiers and
that in imperative programming in F#, in some circumstances, the value of an identifier can
change.

An identifier can refer to either a value or a function, and since F# functions are really values
in their own right, this is hardly surprising. (I discuss this relationship in detail in the “Functions
and Values” section later in this chapter.) This means F# has no real concept of a function name
or parameter name; they are all just identifiers. You write a function definition the same way as a
value identifier, except a function has two or more identifiers between the let keyword and the
equals sign, as follows:

let raisePowerTwo x = x ** 2.0

The first identifier is the name of the function, raisePowerTwo, and the identifier that fol-
lows it is the name of the function’s parameter, x.

15
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Keywords

Most, if not all, programming languages have the concept of keywords. A keyword is a lan-
guage token that the compiler reserves for special use. In F# you cannot use a keyword as an
identifier name or a fype name (I discuss types later in this chapter in “Defining Types”). The
following are the F# keywords:

abstract 1s1

and lsr

as Ixor
assert match member
asr mod
begin module
class mutable namespace
default new
delegate null

do of

done open
downcast or
downto override
else rec

end sig
exception static
false struct
finally then

for to

fun true
function try

if type

in val
inherit when
inline upcast
interface while
land with

lor



