The Definitive Guide to
SOA: BEA Aqualogic®
Service Bus

Jeff Davies
with Ashish Krishna and David Schorow

Apress’

The Definitive Guide to SOA: BEA AquaLogic® Service Bus
Copyright © 2007 by BEA Systems, Inc.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-59059-797-2
ISBN-10: 1-59059-797-4
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

AquaLogic® and all other AqualLogic-based marks are trademarks or registered trademarks of BEA
Systems, Inc. in the US and in other countries. Apress, Inc. is not affiliated with BEA Systems, Inc.

Lead Editor: Steve Anglin

Technical Reviewer: Jayaram Kasi

Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,
Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Jeff Pepper, Paul Sarknas,
Dominic Shakeshaft, Jim Sumser, Matt Wade

Project Manager: Elizabeth Seymour

Copy Edit Manager: Nicole Flores

Copy Editors: Susannah Davidson Pfalzer and Heather Lang

Assistant Production Director: Kari Brooks-Copony

Production Editor: Katie Stence

Compositor: Dina Quan and Gina Rexrode

Proofreader: Liz Welch

Indexer: Broccoli Information Management

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

Contents at a Glance

FOrBWOId xiii
Aboutthe AUTNOIS. o XV
About the Technical ReVIEWEr e Xvii
ACKNOWlBdgmMeNtS Xix
INtrOdUCHION. XXi
CHAPTER1 WhyUseaService Bus?cooiiia.. 1
CHAPTER 2 Installing and Configuring the Software 11
CHAPTER 3 HelloWorld Service........................oooiiiiiiiiin.. 21
CHAPTER 4 Message FlowBasics. ...t 51
CHAPTERS5 ACrashCourseinWSDL....................................... 67
CHAPTER 6 Message Flows.................... ..., 95
CHAPTER 7 Advanced Messaging Topics.........................oooenn. 117
CHAPTER 8 Reporting and Monitoring..................................... 173
CHAPTER 9 Security Models and Service Bus.............................. 195
CHAPTER 10 Planning Your Service Landscape 205
CHAPTER 11 Versioning Services..........................cociiiiiiiiii... 233
CHAPTER 12 Administration, Operations, and Management 253
CHAPTER 13 Custom Transports ..., 281
CHAPTER 14 HowDol... 2 335
APPENDIX Aqualogic Service Bus Actions................................ 355
INDEX . 369

Contents

Foreword
About the Authors
About the Technical Reviewer
Acknowledgments
Introduction

CHAPTER1 Why Use a Service Bus?............

The Problems We Face Today.............
Point-to-Point Integrations
Tight Coupling
More Code Than Configuration

EarlyESBs. ...

Modern Solutions.
Loose Coupling
Location Transparency
Mediation
Schema Transformation
Service Aggregation
Load Balancing.
Enforcing Security
Monitoring
Configuration vs. Coding.............

Enter Aqualogic Service Bus
Loose Coupling
Location Transparency
Mediation
Schema Transformation
Service Aggregation
Load Balancing.....................
Enforcing Security
Monitoring
Configuration vs. Coding.

Won’t This Lock Me into BEA Technologies?

......................... 1

vi

CONTENTS

CHAPTER 2

CHAPTER 3

CHAPTER 4

Installing and Configuring the Software 11
Installing the Software i 12
Configuring WebLogic Workshop 12
A Quick Tour of Workshopl 13
Creating the Service Bus Domain.................................. 14
Configuring Antin EClipse ... 15
Configuring Workshop for the AqualLogic Server..................... 16
Importing the Sample Code................ 18
SUMMANY. .. 20
Hello World Service ... 21
Creating and Deploying a Web Service 21
@WEDSEIVICE. 26
@SoapBinding 26
@WLHttpTransport 27
@WebMethod. 28
Creatinga POJO TestClient. 31
Creating the HelloWorld Projectin ALSB....................... 35
Creatingthe WSDL i 37
Business Services and Proxy Services 39
Creating the Business Service................................ 40
Creating the Proxy Service.................ccooiiii ... 41
A Quick Note on the Configuration Changes Screen............. 45
Testing the Proxy Service. ..., 46
SUMMANY. . ..o 50
Message Flow Basics....................................... 51
Message Flow Qverview. ..., 51
Pipeline Pairs i 52
BranchNodes. ... 54
Route Nodes....... ... i 55
ACtIONS. 55
Goodbye World! 55
What the Heck Just Happened Here?.......................... 60
AHidden Design Flaw. ... 62

SUMMANY ... 65

CHAPTER 5

CHAPTER 6

CHAPTER 7

CONTENTS

ACrashCoursein WSDL.................................... 67
NaMESPACES.ottt 70
The Default Namespace ..., 71
TargetNamespace ...t 73
YPES> 74
Native Data Types ... 74
CustomData Types. ... 74
minOccurs and max0ceurst 75
Importing XML Schemas 76
CMBSSAYE S . ..ottt e e e 76
POTYPE> o 76
<binding>. 77
COBIVICE > . .ttt 77
POM > 78
WSDL Best Practices ...t 78
Elementsvs. TYpeS 78
The Dependency Trap.cooviiiiii e 80
Document-Centricvs. RPC. it 83
Troubleshooting WSDLs and Schemas 85
Visualizing Documents from Schemas 88
The ElementFormDefault Attribute 88
The attributeFormDefault Attribute. 92
SUMMANY. .. 94
MessageFlows.. 95
Scenario 1: User Requests a Product Catalog 95
Scenario 2: User Orders aProduct. 110
SUMMANY. ... 116
Advanced Messaging Topics.............................. 117
Synchronous Invocation...............l 117
Asynchronous Invocation................l 119
Setting up WebLogic Server................ L 120

Asynchronous Business Service 120

vii

viii CONTENTS

CHAPTER 8

CHAPTER 9

Service Types and Transport Protocols. 124
SOAPWith WSDL 125
SOAP Without WSDL 126
XMLWithWSDL ... 127
XMLWithout WSDL 131
Messaging TYPeS.o vt 131
Transport Typed Service: EJBt 157
POJO ..o 164
SOAP with Attachments 167

SUMMANY. .. 172

Reporting and Monitoring 173

MoNItoring. 173
The Temperamental Service 174

Reporting ... 188
Viewing Report Information 189
Purging Report Information 191
Reporting Providers..................... i, 192

SUMMArY. 194

Security Models and ServiceBus......................... 195

Security Paradigms with SOA Challenges. 195
Transport-Level Security 196
Message-Level Security 197
Ad-Hoc, Custom, Token-Based Security 197

ALSB Security Model. 198
Inbound Security inALSB............... ... 198
[dentity Propagation in ALSB 200
SSL Authenticationl 200
Digital Signatures and Encryption............................ 201

Using ALSB Security 201

Recommendations. 203

SUMMANY .. 204

CONTENTS

CHAPTER 10 Planning Your Service Landscape 205
The SOA Coordinate System ..., 205
The Software AbstractionScale 205

The Service DomainScale.................................. 210

The Coordinate System........................, 211
Mapping Your SOA 213
The Top-Down Approach 213

The Bottom-Up Approach................. ...t 215
SOAMapping Test 1 ... 216
SOAMappingTest2 217
Service MapsatScale.......................coil 218
Service TooliNg. 219
Architectural Transformation. 219
Communication Principles and Patterns 224
Communication Principle I............. il 225
Communication Principle Il 225
Communication Principle lll..................... 225
Communication Pattern I: Flow of Gravity 225

CHAPTER 11

Communication Pattern II: Direct Use of Enterprise Services227
Communication Pattern lll: Indirect Use of Enterprise Services. . . 228
Communication Pattern IV: Inter-Application Communications

WithinaDomain............. 229

Geared for Performance. 229
SUMMAY. ... 231
Versioning Services.. 233
Whatlsa Service?. i 233
Service Orientation 237
What Is Versioning?. ... 238
Do We Version Services or Operations? 239
Versioning Operations.coiiiii ... 240
Versioning Services.oo i 243
Constrained by Realityl 245
If Not Versions, ThenWhat?...................................... 245
TheFuture of IT 250

ix

X

CONTENTS

CHAPTER 12

CHAPTER 13

Administration, Operations, and Management........... 253
Support for Team Development 253
The Change Centercoo i 253
Conflict Managemento i, 253
UndoandRedo........... i 254
How to Resolve Conflicts 254
System Administration............l 256
Operations Settings. ... 256
Access Control Configuration 257
Deployment 258
Deployment Automation Basics. 260
Advanced Automation Technique 267
ALSB ClIUSEErS. . ..o 267
Creatinga Cluster il 270
Introducing the Node Manager 271
Controlling Managed Servers. 273
Deployingtoa Cluster. 274
Location Transparency andALSB............................ 274
SUMMArY. 279
Custom T Transports.. 281
Introduction to Custom Transports.......................ooint.. 281
Why Build a Custom Transport? 282
How Does a Custom Transport Fitinto ALSB? 283
Components of a Custom Transport.......................... 285
The Sample Socket Transport.................oiiL. 285
Capabilities of the Socket Transport. 286
Building and Installing the Sample Transport.................. 286
Using the Sample Socket Transport.......................... 290
Building a Custom Transport. ..ot 294
Overview of the Transport SDK Interfaces. 294
Overviewof Tasks................c it 296
Transport Provider Configuration XML File 297
Transport Provider Schemas................................ 298
Implementing Transport Provider User Interface Classes. 301
Deploying Service Endpoints Using the Custom Transport. 310
Implementing Transport Provider Runtime Classes. 313
Registering the Transport Provider........................... 332

SUMMArY ... 333

CONTENTS

CHAPTER 14 HowDol...? 335
SBCUMEY . ..o 335
Administration 337
Messaging and Protocols. i 343
XML, XQuery, and XSLT 350
Miscellaneous 351
SUMMANY. .. 353

APPENDIX Aqualogic Service Bus Actions........................... 355
Communication Actions 355

Dynamic Publish 356
Publish. 357
PublishTable 357
Routing Options 358
Service Callout...............c 359
TransportHeaders.o i, 359
Flow Control Actions.............. . o 359
ForEach 360

o Then. . 361
Raise Error 361
Reply .. 362
Resume 362

SKID . 363
Message Processing ACtionS.cooviiiiiiiiii i 363
ASSION .. 363
Delete ... 364
INSBIt . 364
JavaCallout 364

MFL Transform. 365
Rename. 365
Replace o 366
Validate 366
Reporting Actionso 366
L ¢ 367

LOg . 367
Report 368
INDEX .. 369

Xi

Foreword

Enterprise Service Bus (ESB) is a hot topic today. Many vendors are either building new
products in this category or dressing up their existing products to pitch them as an ESB. How-
ever, there is no clearly accepted definition of what an ESB is, or what its architecture or
programming paradigm should be. Definitions range from saying that ESB is wholly unneeded
to saying it has all the capabilities of a full integration suite with built-in BPM, data aggrega-
tion, and WSM capabilities. Architectures range from being embedded in the clients and
endpoints to being a central intermediary. Programming paradigms for the ESB range from
writing Java to being completely configuration driven and pliable with graphical interfaces.

BEA did not dress up one of their existing products and pitch it as an ESB but built an ESB
from scratch. First introduced in summer 2005, BEA's ESB has a razor sharp focus on where it
is positioned as a component in an end-to-end SOA architecture. It complements a BPM
service or a data aggregation service but serves a different and distinct role. Much of SOA is
about componentization, interconnectivity, and reuse, and the ESB component serves as an
intermediary with the clear and distinct role of providing loose coupling between clients and
services, a routing fabric, connectivity, and a central point of security enforcement that con-
tribute to the manageability of your SOA network. It can be a central intermediary or a
decentralized network of intermediaries. Also, it is completely configuration based with
browser-based graphical interfaces.

In this book, Jeff Davies introduces you to ESBs in general and BEA's AquaLogic Service
Bus in particular. He includes many examples and clear, understandable explanations of the
product and how it can be leveraged to implement a number of ESB use cases. He takes the
very practical and useful approach of picking one of the leading products in the ESB category
and doing a “show and tell” instead of delving into a lot of philosophical discussions and argu-
ments about various contrasting architectures or definitions for an ESB. The book is very
readable and instructive. As one of the architects of the first release of the product, I feel this
book is a fine introduction to AqualLogic Service Bus.

Jayaram Kasi

Director of Technical Program Management
AqualLogic Service Bus

BEA Systems

xiii

About the Authors

JEFF DAVIES, SOA architect and technical evangelist at BEA, has over 20
years of experience in the software field. Jeff has extensive experience
developing retail applications, such as Act! for the Windows and Macintosh
platforms, and a number of other commercially available applications,
principally in the telecommunications field. His background also includes
the development, design, and architecture of enterprise applications. Prior

. to joining BEA, Jeff was the chief architect at a telecommunications company
and resp0n51ble for their SOA. Now at BEA, Jeff is focused on the practical application of BEA
products to create SOA solutions.

ASHISH KRISHNA is part of the product management team for integration
and SOA products at BEA Systems; he’s responsible for BEA's integration
product. Prior to this, Ashish worked as an SOA architect and was responsible
for enabling SOA and EDA solutions at key customers for BEA. Ashish was also
part of core engineering team at BEA responsible for architecture and design
of various components for BEA's ESB. Before BEA, Ashish was a founding
engineering staff member of ECtone, a Silicon Valley start-up that was later
acquired by BEA. Ashish has a diverse background in enterprise integration and software
development, including legacy systems, EDI, and ERP integration technologies. He was a
consultant for SAP R/3 and EDI, responsible for numerous implementations at Fortune 500
companies in telecommunications, automotive, and manufacturing industries. Ashish holds a
master’s degree in aerospace engineering and a bachelor of engineering degree in mechanical
engineering. He is also a PhD candidate in mechanical engineering at Texas A&M University.

DAVID SCHOROW has over 20 years of experience working on enterprise soft-
ware. David is the chief architect for BEA Aqual.ogic Service Bus and has
guided its development and evolution. Prior to joining BEA, David was the
chief Java architect at the NonStop division of HP, overseeing the develop-
ment of a wide variety of Java projects, including the NonStop Java JVM,
NonStop SQL JDBC drivers, the port of WebLogic Server to the NonStop
platform, and other enterprise Java products. David has extensive experience
in high-performance transaction processing systems, the environments used by the most
demanding, mission-critical applications, such as airline reservations, health care, and
banking. David has a bachelor of science degree from MIT and a PhD from the University
of California, Berkeley.

Xv

About the Technical Reviewer

JAY KASI has been an infrastructure architect since 1988, working for Hewlett Packard,
Commerce One, and BEA Systems. He has architected the kernel of a relational database
management system, system-level high-availability capabilities, a messaging and routing
fabric for B2B electronic commerce, and ESBs at both Commerceone and BEA. He has also
worked as a distributed OLTP architecture consultant. He was one of the key architects of
ALSB and has been with the project since inception. He is now the director of program
management for ALSB and is working on a variety of integrations with other products.

Xvii

Acknowledgments

There are many people who have helped me to make this book a reality. I want to thank my
wife for her love and understanding as I spent hours on my computer mumbling incoherently
about “namespaces” and the like. There is no finer wife in the world. Similarly, I'd like to thank
my children, Eric and Madeline, for putting up with my highly distracted nature while writing
this book. Of course, I'd like to thank my parents and my aunt and uncle for enabling me to get
to this point in my life with their constant love and support.

I'd like to thank Jay Kasi at BEA for his help and tutelage while writing this book. I have
never met a person with such a deep understanding of any software product in my life. Many
times when I was stuck on a problem, Jay would quickly look at the code and deliver an exact
analysis of the problem within moments.

I'd also like to thank the many folks who helped review the book and provided me with
technical answers to the more unusual scenarios. Specifically, I want to recognize (in alpha-
betical order) Deb Ayers, Stephen Bennett, Naren Chawla, George Gould, David Groves, Dain
Hansen, Gregory Haardt, Karl Hoffman, Ashish Krishna, Usha Kuntamukkala, Saify Lanewala,
Michael Reiche, Kelly Schwarzhoff, Jeremy Westerman, Mike Wooten, and Bradley Wright.

Finally, I'd like to thank the great mentors in my life, Mark Russell and Gerry Millar. They
taught me everything from how to tie a neck-tie to how to “listen to what they are feeling.”
They both taught me that it’s the people who are important; the software is incidental. That’s a
hard but invaluable lesson for a natural-born geek. Thank you.

Jeff Davies

The BEA Aqual.ogic Service Bus team is full of innovative people. Their contributions and
drive to be the best are reflected in the product. I would like to thank the team for all the hard
work. It would not have been possible to write this book without their efforts in producing a
world-class product, and I know firsthand, as I was part of the engineering team for the first
customer ship (FCS) back in 2005.

Iwould like to thank my wife Sumina, and my daughter, Isheeta, for their support and
patience especially in letting me work on this book at late hours, on holidays, and especially
during our month-long vacation to India—our first in four years!

Ashish Krishna

Chapter 13 explains the Transport SDK; this useful extensibility mechanism was designed and
implemented by Greg Fichtenholtz, a senior engineer on the ALSB team. It is his design that
enables ALSB to be used in new and different environments not addressed in the original
implementation. The usefulness of the Transport SDK is because of his good design work.
Greg is only one member of a very talented team that created the ALSB product; however,
their names are too numerous to mention (and I'd be afraid of leaving someone out). This
group, with its engineering prowess and creative energy, works under the management of
Ashok Aletty, who fosters a productive, cooperative, and enjoyable atmosphere; these people

Xix

XX

ACKNOWLEDGMENTS

are responsible for making AquaLogic Service Bus such a fantastic product. I consider myself
fortunate to have the opportunity to work with such a great team on this exciting product.

I'd also like to thank my sister, Stephanie Schorow, for her thorough review of an early
draft of the chapter. She is the real writer of the family—Chapter 13 is much more readable
because of her efforts.

Lastly, I'd like to thank my wife, Mona, and my son, Marcus, for their understanding and
support when working on this book required my nights and weekends (and cancelling a ski

trip).
David Schorow

Introduction

Service-Oriented Architecture (SOA) is rapidly becoming the new standard for today’s enter-
prises. A number of books have appeared in bookstores that discuss various aspects of SOA.
Most (if not all) are high-level discussions that provide some strategies for you to consider but
very little tactical information. As a software engineer, I am able to grasp these abstract con-
cepts fairly quickly, as I'm sure you are. However, the devil is always in the details. I know that
once I begin to implement a new technology, I will discover a whole new dimension of bugs,
design issues, and other problems that are never discussed in those strategic books.

SOA is not a technology—it is architecture and a strategy. In order for you to implement
your own SOA, you need to learn not a single new technology but a whole series of differing
technologies. I thought I knew XML pretty well before I began walking the path to SOA. It
didn’t take long for me to figure out that there was a lot more to XML than I had previously
thought. I had to learn the details of XML, XML Schema, WSDL, XQuery, and XPath before I
could begin to make informed design judgments.

While I enjoy reading about new strategies, I enjoy realizing them in code just as much.
Code keeps you honest. A lot of things work very well on paper, but once you start flipping
bits, the truth will emerge in all of its intolerant glory. What I really wanted to read was a
detailed book on SOA development. Since I could not find one, I wrote one. I wrote this book
under the assumption that there were thousands of other software developers like myself—
people who enjoyed writing code and loved to put theory into practice.

This book is a mix of theory and working code samples. One reason there are so few books
on writing real code for an SOA is because few SOA platforms exist that the average developer
can download and use. Most SOA (specifically ESB) vendors keep their software locked away,
demanding that you purchase it before you can use it. This is like purchasing a car you have
never seen or driven based solely on the description provided to you by the salesperson.

Fortunately, BEA Systems provides an enterprise class ESB that anyone can download for
free. This book will walk you through many detailed examples of connecting the ALSB to
legacy systems, show common design patterns for web services, and generally increase both
your development and architectural expertise in ESB and SOA.

What Is Aqualogic?

AqualL.ogic Service Bus is a single product in the AquaLogic product family. The AquaLogic
family includes many products with diverse functionalities; see the BEA web site for a com-
plete listing (www.bea.com).

XXi

XXii

INTRODUCTION

How This Book Is Organized

This book comprises 15 chapters in total. We've written most of the chapters so that they may
be read individually. However, we do recommend reading Chapters 2 and 3 so that you can
set up your development environment and understand the basic principles of an enterprise
service bus.

Chapter 1, “Why Use a Service Bus?,” describes the functions and benefits of an enterprise
service bus.

Chapter 2, “Installing and Configuring the Software,” guides you through installing and
configuring the AquaLogic Service Bus and a development environment. By installing the
software as described in this chapter, you will be able to run all of the sample code con-
tained in this book.

In Chapter 3, “Hello World Service,” following the grand tradition of programming books,
we write a web service, test it, and integrate it with the AquaLogic Service Bus. Along the
way, we provide a quick tour of AquaLogic Service Bus Administration console.

In Chapter 4, “Message Flow Basics,” you'll learn what message flows are, how to create
them, and how they are used in AquaLogic Service Bus.

Chapter 5, “A Crash Course in WSDL,” introduces you to Web Services Description Lan-
guage (WSDL), the language of modern web services. Creating (or just reading) WSDL
requires a fair bit of skill beyond simple XML. This chapter teaches you the core of what
you need to know about WSDLs and leaves out the fluff!

In Chapter 6, “Message Flows,” we really put AquaLogic Service Bus through its paces,
with sample code for almost every feature available.

Chapter 7, “Advanced Messaging Topics,” covers just about every weird integration issue
and use of ALSB that you will ever see.

Chapter 8, “Reporting and Monitoring,” shows you that there is more to ALSB than just
messaging. It can keep you informed about the health of your enterprise and provide
automated alerts and sophisticated status reports of services and the servers that host
them.

Chapter 9, “Security Models and Service Bus,” presents a topic that is often discussed but
seldom understood. This chapter will provide you with a solid understanding of how to
implement security within your service bus.

Chapter 10, “Planning Your Service Landscape,” discusses the considerable planning
required to move to SOA. In this chapter, we introduce a methodology that will simplify
this planning process and provide you with a taxonomy by which you can quickly classify
your services.

Chapter 11, “Versioning Services,” is possibly the most controversial chapter in the book!
Forget everything you've heard about versioning web services and brace yourself for some
heresy!

INTRODUCTION

Chapter 12, “Administration, Operations, and Management,” will teach you some best
practices for how to keep your service bus running, because there is more to a service bus
than development.

Chapter 13, “Custom Transports,” explores the Transport SDK. While AquaLogic Service
Bus provides many useful transport protocols out of the box, it also contains an API that
allows you to create your own customer transports, so it can integrate with any legacy
system.

Chapter 14, “How Do L. . . ?,” answers some common questions about using AquaLogic
Service Bus in the real world.

The Appendix, “Aqualogic Service Bus Actions,” is a quick reference for the actions sup-
ported by AquaLogic Service Bus.

—Jeff Davies

xxiii

CHAPTER 1

Why Use a Service Bus?

Enterprise Service Buses (ESBs) are all the rage in modern software development. You can'’t
pick up a trade magazine these days without some article on ESBs and how they make your
life wonderful. If you're a software development veteran, you'll recognize the hype immedi-
ately. ESBs aren’t going to be the magic answer for our industry any more than were XML, web
services, application servers, or even ASCII. Each of the aforementioned technologies started
life with a lot of fanfare and unrealistic expectations (the result of the inevitable ignorance we
all have with any emerging technology), and each technology ended up becoming a reliable
tool to solve a specific set of problems.

The same is true for the ESB. Putting the hype aside, let’s focus on a bit of software history
so we can better understand the problems that the ESB is designed to address.

The Problems We Face Today

Software development is a tough business. We expect modern software systems to have expo-
nentially more functionality than we expected from them only a few years ago. We often
develop these systems with ever-dwindling budgets and sharply reduced timeframes, all in an
effort to improve efficiency and productivity. However, we cannot lament these issues. These
very issues drive us to deliver software that’s better, faster, and cheaper.

As we've raced to develop each generation of software system, we've added significantly to
the complexity of our IT systems. Thirty years ago, an IT shop might have maintained a single
significant software system. Today most IT shops are responsible for dozens, and sometimes
hundreds, of software systems. The interactions between these systems are increasingly com-
plex. By placing a premium on delivering on time, we often sacrifice architecture and design,
promising ourselves that we'll refactor the system some time in the future. We've developed
technologies that can generate large quantities of code from software models or template
code. Some of the side effects of this race into the future are a prevalence of point-to-point
integrations between software applications, tight coupling at those integration points, lots
of code, and little configuration.

CHAPTER 1 WHY USE A SERVICE BUS?

Point-to-Point Integrations

Software development today is tactical and project oriented. Developers and architects fre-
quently think in terms of individual software applications, and therefore their designs and
implementations directly reflect this thinking. As a result, individual applications are directly
integrated with one another in a point-fo-point manner.

A point-to-point integration is where one application depends on another specific appli-
cation. For example, in Figure 1-1, the CustomerContactManager (CCM) application uses the
Billing application interface. You can say that the CCM application “knows” about the billing
application. You also hear this kind of relationship referred to as a “dependency,” because
one application depends on another application to function correctly.

==Component=:= . ~
CustomerContactManager E com Uses biling f
Billing
=<component==
'\: hilling uses com 2 E

BillingSystem

CCM

Figure 1-1. Early point-to-point integrations

Figure 1-1 illustrates a trivial IT environment, one that has only two applications and two
point-to-point integrations. Just to be clear, the first integration allows the CCM system to
call the Billing system. The second integration point allows the Billing system to call the CCM
system. When your IT department is this small, point-to-point integration is fairly easy to
manage.

Figure 1-2 expands on the problem a bit. The IT shop is now home to 8 software systems
and a total of 11 integration points. This illustrates a common pattern in integration: the num-
ber of integration points grows faster than the number of systems you're integrating!

Even Figure 1-2 is, by modern standards, a trivial IT system. A midsized service provider
where Jeff once worked had 67 business systems and another 51 network systems. One hun-
dred eighteen software systems integrated in a point-to-point manner is unmanageable. We
know of telcos that have 12 or more billing systems. Having duplicates of certain software sys-
tems (such as billing) or having a large number of software systems in general is quite
common; large companies can acquire smaller companies (and therefore acquire the software
systems of the smaller companies) faster than most IT shops can integrate the newly acquired
systems.

CHAPTER 1 WHY USE A SERVICE BUS?
oe uses hiling
o uses hiling
==Component== E
CustomerCareWebSite
<=COMPpanetits== E o P
| CustomerContactManager wg—cl
Billing
weh site|used oo ‘
==component== . ==component==
(7 Cus‘tumerCareE OO USES S50 .%) hilling uzes ccm Billing$ temgl
CustomerCare CEM
|
II
e |
/ oo uses pe| e :
CC uzes 0g P || oo l]SE@E!
| o,
I| “n.\‘_.
| "\.\
| .
— ~ '_I Rty
\ E L | - - —
Orde E/ntry P,l:oﬂf.l Catalog Servicel ventory
oe use{s{p.e"" e |
| 7 | C~ | I
<<comp0nerﬂ=={| ==component== E <<comp0nent>>£| ==component==
OrderEntry ProductCatalog Pricing Servicelnventory

Figure 1-2. Increasing point-to-point integration

Tight Coupling

Tight coupling is often a byproduct of point-to-point integrations, but it’s certainly possible to
develop tightly coupled applications no matter what your integration environment looks like.
There are two types of coupling, tight and loose. Loose coupling is desirable for good software
engineering, but tight coupling can be necessary for maximum performance. Coupling is
increased when the data exchanged between components becomes larger or more complex.
In reality, coupling between systems can rarely be categorized as “tight” or “loose.” There’s a
continuum between the two extremes.

Most systems use one another’s APIs directly to integrate. For Enterprise JavaBeans (EJB)
applications, you commonly create a client JAR file for each EJB application. The client JAR file
contains the client stubs necessary for the client applications to call the EJB application. If you
make a change to any of the APIs of the EJB application, you need to recompile and deploy the
EJB application, recompile the client JAR, and then recompile and redeploy each of the client
applications. Figure 1-3 illustrates this set of interdependencies between the software compo-
nents and the file artifacts that realize them.

3

CHAPTER 1 WHY USE A SERVICE BUS?

==Camponet== ==gtifact== D
CustomerContactManager —— |~ _:;nar%est_::_ | ccm.ear
inclydes
W
(7 ==artifact==
. - T T 7 7 7 7 77 |billing_client.jar
Billing ==tmanifests=
==Component== gl ==gHifact==
BillingSystem = — — — 7 7 7| billingear
==manifest==

Figure 1-3. EJB coupling model

Tight coupling results in cascading changes. If you change the interface upon which other
components depend, you must then recompile the client applications, often modifying the
client code significantly.

It's a common (and false) belief that you can use interfaces to reduce the coupling
between systems. Interfaces are intended to abstract out the behavior of the classes that
implement the interfaces. They do provide some loosening of the coupling between the client
and the implementation, but their effect is almost negligible in today’s systems. This is not to
say that interfaces aren’t useful; they most certainly are. But it’s important to understand the
reasons why they’re useful. You still end up tightly coupled to a specific interface. For example:

package com.alsb.foo;
public interface SampleIF {

public int getResult(String argl);
}

A client that depends on this interface is tightly coupled. If you change the getResult()
method to take another argument, all clients of the interface must be recompiled. It’s precisely
this level of intolerance to change that tightly couples the code. The problem isn’t so much in
the design of the interface, but with the technology that implements the interface.

More Code Than Configuration

Every medium-to-large sized enterprise runs a lot of code these days. We have so much code
as an industry that we needed to invent tools to manage it all. We have source code control
(SCC) systems that provide document management of our code. In the last few years we've
seen the rise of source code knowledge bases.

CHAPTER 1 WHY USE A SERVICE BUS?

Early ESBs

Early ESBs were primarily concerned with making web services available to service con-
sumers. Their implementation was clunky (as new technologies usually are) and didn’t
embrace many open standards, simply because those standards didn’t exist at the time. Fur-
thermore, the developers of early ESBs could only try to predict how web services would affect
enterprise computing and IT organizations.

The early ESBs were “ESBs” in name only. As the industry has matured, so has our under-
standing of the role of an ESB in modern architecture. Today’s ESBs must go far beyond simply
“service enabling” functionality. An ESB must also provide robust solutions for today’s IT
challenges.

Modern Solutions

The IT industry is constantly evolving. Our understanding of the issues that surround the
management of large IT systems matures on a daily basis. Modern ESBs are simply the latest
tools to help us manage our IT problems. They benefit from real-world examples of how
Service-Oriented Architecture (SOA) is changing the face of today’s advanced corporations.
Although early ESBs could only address a handful of the following issues, modern ESBs need
to address them all.

Loose Coupling

You might have heard that web services provide you with loose coupling between systems.
This is only partially true. Web services, by the very nature of Web Services Description Lan-
guage (WSDL) and XML Schema Document (XSD), can provide some loose coupling because
they formalize a contract between the service consumer and the service provider. This is a
“design by contract” model, and it does provide tangible benefits. If you're careful, you can
create a schema that’s platform neutral and highly reusable.

However, if you take a look at any WSDL you'll see that the service endpoints are written
into the WSDL, as you can see in Listing 1-1.

Listing 1-1. HelloWorld Service Defintion

<service name="HelloWorldService">
<port binding="s1:HelloWorldServiceSoapBinding"
name="HelloWorldPortSoapPort">
<s2:address location="http://www.bea.com:7001/esb/Hello World" />
</port>
</service>

By specifying a specific machine and port (or a set of machines and ports), you're tightly
coupling this service to its physical expression on a specific computer. You can use a Domain
Name Server (DNS) to substitute portions of the URL, and therefore direct clients into multi-
ple machines in a server farm. However, DNS servers are woefully inadequate for this, due to
their inability to understand and manage the status of the services running on these servers.

5

CHAPTER 1 WHY USE A SERVICE BUS?

So, loose coupling isn’t achieved by WSDL or web services alone. A more robust solution is
to provide some mediation layer between service clients and service producers. Such a media-
tion layer should also be capable of bridging transport and security technologies. For example,
a service might be invoked through a traditional HTTP transport mechanism, but it can then
invoke lower-level services through Java Message Service (JMS), e-mail, File Transfer Protocol
(FTP), and so on. This approach is often effectively used to “wrap” older services and their
transports from the newer service clients.

Location Transparency

Location transparency is a strategy to hide the physical locations of service endpoints from the
service clients. Ideally a service client should have to know about a single, logical machine and
port name for each service. The client shouldn’t know the actual service endpoints. This allows
for greater flexibility when managing your services. You can add and remove service endpoints
as needed without fear of having to recompile your service clients.

Mediation

An enterprise service bus is an intermediary layer, residing between the service client and the
service providers. This layer provides a great place for adding value to the architecture. An ESB
is a service provider to the service clients. When clients use a service on the service bus, the
service bus has the ability to perform multiple operations: it can transform the data or the
schema of the messages it sends and receives, and it can intelligently route messages to vari-
ous service endpoints, depending on the content of those messages.

Schema Transformation

The web service published by the service bus might use a different schema from the schema
of the business service it represents. This is a vital capability, especially when used in conjunc-
tion with a canonical taxonomy or when aggregating or orchestrating other web services. It’s
quite common that a service client will need to receive its data using a schema that’s signifi-
cantly different from that of the service provider. The ability to transform data from one
schema to another is critical for the success of any ESB.

Service Aggregation

The service bus can act as a facade and make a series of web service calls appear as a single
service. Service aggregation follows this pattern, making multiple web service calls on behalf
of the proxy service and returning a single result. Service orchestration is similar to service
aggregation, but includes some conditional logic that defines which of the lower-level web
services are called, and the order in which they’re invoked.

Load Balancing

Due to their position in any architecture, ESBs are well suited to perform load balancing of
service requests across multiple service endpoints. When you register a business web service
with AquaL.ogic Service Bus (ALSB), you can specify the list service endpoints where that
business service is running. You can change this list, adding or removing service endpoints
without having to restart the ALSB server.

CHAPTER 1 WHY USE A SERVICE BUS?

Enforcing Security

You should enforce security in a centralized manner whenever possible. This allows for a
greater level of standardization and control of security issues. Furthermore, security is best
enforced through a policy-driven framework. Using security policies means that the creation
and application of security standards happens outside the creation of the individual web
services.

Monitoring

An ESB plays a vital role in an SOA. As such, you must have a robust way to monitor the status
of your ESB, in both proactive and reactive manners. The ability to proactively view the per-
formance of the service bus allows you to help performance-tune the service bus for better
performance. Tracking the performance over time can help you plan for increasing the capac-
ity of your ESB.

Reactive monitoring allows you to define alerts for specific conditions. For example, if a
specific service doesn’t complete within a given timeframe, the ESB should be able to send an
alert so that a technician can investigate the problem.

Configuration vs. Coding

A modern service bus should be configuration based, not code based. For many engineers
the importance of that statement isn't immediately obvious. It took us some time before we
appreciated the configuration-oriented capability of ALSB. Most software systems in use today
are code based. J2EE applications are a great example of this. In a J2EE application you write
source code, compile it into an EAR or WAR file, copy that EAR or WAR file onto one or more
J2EE application servers, then deploy those applications. Sometimes it’s necessary to restart
the J2EE server, depending on the nature of your deployment.

Configuration-based systems work differently. There’s nothing to compile or deploy. You
simply change the configuration and activate those changes. We would argue that your tele-
phone is configuration based; you configure the telephone number you want to call, and your
call is placed. There’s no need to restart your phone. Similarly, network routers and switches
are configuration based. As you make changes to their configuration, those changes take
effect. There’s no need for a longer software development life cycle to take place.

Configuration and coding are two different strategies. Neither is superior to the other in
all situations. There are times when the J2EE approach is the right approach, and times when
the configuration-based approach is best.

Enter AquaLogic Service Bus

BEA released AquaLogic Service Bus in June 2005. ALSB runs on Windows, Linux, and Solaris
platforms. ALSB is a fully modern ESB and provides functionality for each of the capabilities
expected from today’s enterprises, described in the following sections.

Loose Coupling

Aside from the loose coupling benefits from WSDL and XSD, ALSB adds the ability to store
WSDL, XSD, eXtensible Stylesheet Language Transformation (XSLT), and other information

7

CHAPTER 1 WHY USE A SERVICE BUS?

types within the ALSB server as “resources.” These resources are then made available through-
out the ALSB cluster of servers, allowing you to reuse these resources as needed.

The benefit of this might not be immediately clear, so we’ll give an example. Many com-
panies define and manage enterprise-wide data types using an XML schema. Because ALSB
can store an XML schema as a resource in the service bus, that schema can easily be reused by
any number of WSDLs or other XSDs. This enables you to create and enforce enterprise-wide
standards for your data types and message formats.

Location Transparency

One of the capabilities of ALSB is to register and manage the locations of various web services
within the enterprise. This provides a layer of abstraction between the service client and the
service provider, and improves the operational aspect of adding or removing service providers
without impact to the service clients.

Mediation

One of the roles for which ALSB is specifically designed is that of a service mediator. ALSB uses
the paradigm of “proxy services” and “business services,” where the proxy service is the serv-
ice that ALSB publishes to its service clients, and the business services are external to ALSB. In
between the proxy service and the business service is the layer where service mediation takes
place. Schemas can be transformed, as can the data carried by those schemas. Intelligent or
content-based routing also takes place in this mediation layer.

Schema Transformation

Schema transformation is a central capability of ALSB. ALSB provides a number of ways to
transform schemas, depending on your specific needs. You can use XSLT to transform XML
data from one schema to another. Similarly, you can use XQuery and XPath to perform XML
schema transformations. Additionally, ALSB supports the use of Machine Format Language
(MFL) to format schemas to and from non-XML formats.

Service Aggregation

ALSB doesn’t match a single proxy service to a single business service. Instead, ALSB allows
you to define a many-to-many relationship between proxy services and business services.
This approach allows for service aggregation, orchestration, and information enrichment.

Load Balancing

Because ALSB registers the service endpoints of all business services, it’s ideally situated for
operating as a load balancer. This is especially true because ALSB is configuration based, not
code based. As a result, you can add or remove service endpoints from a business service and
activate those changes without having to restart your service bus.

CHAPTER 1 WHY USE A SERVICE BUS?

Enforcing Security

ALSB, as a service mediator, is ideally situated to enforce the security of the web services
because it operates on the perimeters of the enterprise. ALSB is designed to enforce security
through the use of explicit security policies. Using ALSB, you can propagate identities, medi-
ate, and transform between different security technologies, such as Basic Authentication,
Secure Sockets Layer (SSL), and Security Assertion Markup Language (SAML).

Monitoring

ALSB provides a robust set of features around monitoring. The service bus console allows you
to look proactively at the state of your entire ESB.

For reactive monitoring, ALSB allows you to define alerts for conditions that you define.
You can send these alerts via Simple Network Management Protocol (SNMP) traps to third-
party monitoring programs, such as Hewlett Packard’s OpenView or AmberPoint’s SOA
Management System. Also, alerts can be delivered via e-mail to specified recipients. We’ll
discuss monitoring more fully in Chapter 8.

Configuration vs. Coding

ALSB is a configuration-based service bus. You don't write Java code for ALSB, although ALSB
can recognize and make use of Java code in some circumstances. Instead, you configure
ALSB through its web-based console.

One handy feature of the ALSB console is the Change Center. Your configuration changes
don't take effect when you make each change. Instead, your configuration changes are
grouped together, similarly to a database transaction, and only take effect when you tell ALSB
to activate your changes. This is a critical capability, because many times you'll make multiple
changes that are interdependent.

Of course, creating these changes by hand can be an error-prone process. As a result,
ALSB allows you to make changes in one environment (a development or a test environment)
and then export those changes as a JAR file. You can then import that JAR file into your pro-
duction environment as a set of configuration changes, and activate them as if you had
entered those changes directly into the Change Center by hand.

Won’t This Lock Me into BEA Technologies?

ALSB is entirely standards based. You configure ALSB through the use of XQuery, XPath, XSLT,
and WSDLs. The only aspect of ALSB that might be deemed “proprietary” is the implementa-
tion of the message flows (see Chapter 4). However, these message flows are simply graphical
constructs for common programming logic, and they’re easy to reproduce in just about any
programming language. The real heavy lifting in ALSB is done using the open standards for
functionality, and WebLogic Server for reliability and scalability.

Because ALSB is standards based, it’s designed to integrate with and operate in a hetero-
geneous architecture. Using ALSB as a service bus doesn'’t preclude you from using other
technologies in any way. ALSB is used to integrate with .NET applications, TIBCO, SAP, Oracle,
JBoss, WebSphere, Siebel, and many more. BEA didn’t achieve this level of heterogeneity by
accident; it’s all part of its “blended” strategy: using open standards and open source to
achieve the maximum amount of interoperability.

9

10

CHAPTER 1 WHY USE A SERVICE BUS?

Why Buy an Enterprise Service Bus?

We come across this question frequently. The truth is that an ESB contains no magic in it at all.
It's possible to build your own ESB from scratch. In fact, one of the authors has done it twice
before joining BEA. There’s nothing that the engineers at BEA can write that you cannot write,
given enough time, money, and training. This principle holds true for all software. You don’t
have to use Microsoft Word to write your documents; you could create your own word proces-
sor. The same holds true for your web browser. HTML standards are publicly available, and
you could use your engineering time to develop your own browser.

Naturally, few of us would ever consider writing our own word processor or web browser.
It’s a far better use of our time and money either to buy the software or to use an open source
version. This is especially true if your company isn’t a software company. If you work in an IT
shop for a company whose primary line of business isn’t software, you'll recognize the fact
that building software from scratch is a difficult sell to your executive staff. There simply is no
return on investment for such development efforts. Your time and skills are better spent solv-
ing problems specific to your company.

There are a number of benefits to purchasing ALSB. First is the fact that it comes from a
dyed-in-the-wool software company. BEA has been in business for more than a decade and
has a long history of delivering innovative, successful products. Furthermore, BEA supports
those products for many years. BEA’s first product was Tuxedo, a product that BEA still sells
and supports to this day, though it’s gone through many versions to keep it current with
today’s technologies.

A number of open source ESBs are available today. Most are in the early stages of develop-
ment and functionality. Although we love open source and advocate its use in many areas, we
would be hesitant to use an open source ESB. An ESB will become the central nervous system
of your enterprise. You should exercise caution and diligence when selecting an ESB. You want
one with a proven record of success, from an organization that works hard to keep itself ahead
of current market demands.

ALSB is built on BEA's WebLogic Server technology. This gives you enterprise-quality
reliability and scalability. On top of this, Aqualogic is built on open standards for maximum
interoperability in a heterogeneous environment. It’s an ESB that will carry your company into
the future.

Summary

In this chapter we reviewed the features and functions that a modern ESB should have, and
we've described each feature’s importance to the organization. ALSB implements all these fea-
tures, and possesses many more advanced features that we'll cover in this book. But we've
talked enough about ALSB. It’s time to start to demonstrate, in working code, exactly how to
use these features to their fullest.

CHAPTER 2

Installing and Configuring
the Software

This chapter will walk you through the installation process for ALSB and the process of con-
figuring your development environment. By the end of this chapter, you'll be able to compile
and run the sample code that comes with this book.

To begin with, you need a computer that runs Java. Specifically, it needs to run Java Devel-
opment Kit (JDK) version 1.5 or later. All the examples are written using JDK 1.5, and ALSB
requires that you have JDK 1.5 installed. Fortunately, ALSB ships with two different JDKs
that meet this requirement. One is the JRockit JDK, which is intended for use on production
systems that run on Intel (or compatible) CPUs. The second is the Sun JDK, which is recom-
mended for use with development versions of ALSB, or production versions that aren't
running on Intel-compatible CPUs.

Naturally, you need to install the ALSB software. You can download ALSB from http://
dev2dev.bea.com/alservicebus/.It’s also a good idea to download the most recent documen-
tation so you can stay informed about recent changes.

Of course, you'll need an editor to edit your sample source code. ALSB ships with
WebLogic Workshop, an IDE that’s based on Eclipse (http://www.eclipse.org), and comes
with a suite of Eclipse plug-ins that are preconfigured to make your development with ALSB
must faster.

You'll often use Ant to build your software, especially the Java web service that will act as
your “business service” (more about business services later). You'll need Ant version 1.6 or
later. Like most of the software used by ALSB, Ant is included with the ALSB installer and is
preconfigured into the WebLogic Workshop environment. The Ant home page is at http://
ant.apache.org.

Finally, you'll need two software packages for some of your more advanced work with the
service bus. The first is an FTP server that you'll use to demonstrate integrating the service bus
with legacy systems via FTP. You can use any FTP server that you like. We selected the FileZilla
FTP server, which resides at http://filezilla.sourceforge.net/. Also, you'll need access to
an e-mail server when testing the e-mail integration. Because your company might not appre-
ciate you sending test e-mails over its e-mail server, we recommend installing your own e-mail
server. We selected Java Mail Server, which is available at http://www.ericdaugherty.com/
java/mailserver. Because both FTP and SMTP are based on well-defined standards, feel free
to substitute your own FTP and e-mail servers. However, we do provide a detailed configura-
tion walkthrough of both these programs, so if you aren’'t accustomed to setting up these types
of servers, you're better off using the same ones we've used.

1

12

CHAPTER 2 © INSTALLING AND CONFIGURING THE SOFTWARE

You'll find all the software you need for this book in the Source Code/Download area of
the Apress web site at http://www.apress.com.

Installing the Software

ALSB comes with most of the software you'll need to compile and deploy the applications you
create in this book: Ant, WebLogic Workshop, WebLogic 9.x, and the JDK 1.5. Installing ALSB is
a breeze. For the most part, you can safely accept the default values provided by the installa-
tion program. However, we do recommend creating a new BEA home directory if you have a
previous version of WebLogic 9 installed. On our system we have WebLogic 8.1 installed in the
traditional BEA home directory of C\bea. We installed ALSB into C:\bea92ALSB to keep the
installations separate.

Once you have the software installed, you need to do a little configuration to complete the
setup.

Configuring WebLogic Workshop

ALSB ships with a customized version of Eclipse known as the WebLogic Workshop. This
customization is achieved by using Eclipse’s plug-in capability to extend Eclipse. Workshop
comes entirely preconfigured and ready to run. When you start Workshop for the first time, it
will ask you to select a workspace (see Figure 2-1). A workspace is a directory where your Work-
shop projects will be created. Workshop allows you to create as many workspaces as you like.
For your purposes, we recommend that you name your new workspace alsb_book, and use
that workspace as the home for all the projects you'll create in this book.

Workspace Launcher @

Select a workspace

BEA Workshop for WeblLogic Platform stores your projects in a folder called a workspace,
Choose a workspace folder o use For this session,

‘Workspace: | D:ibead2iuser_projectsiwawP_workspacesiUntitled| j Browse. ..

[Use this as the default and do not ask again

[o]4 | Cancel

Figure 2-1. Create a workspace in Eclipse.

Once you're happy with the name of your workspace, click the OK button, and the
WebLogic Workshop IDE loads. If you're familiar with the Eclipse IDE, learning Workshop will
be a breeze for you. If you're moving to WebLogic Workshop 9 from WebLogic Workshop 8, or
are otherwise unfamiliar with Workshop 9, we'll review the major capabilities of the latest ver-
sion of Workshop in the following section. Also, you'll find that the first project in Chapter 3
will walk you through the IDE in detail, making it much easier to learn the Workshop IDE as
you go.

