
John Carnell
with Rob Harrop,
Edited by Kunal Mittal

Pro Apache Struts
with Ajax

Pro Apache Struts with Ajax

Copyright © 2006 by John Carnell, Rob Harrop, Kunal Mittal

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-738-5

ISBN-10 (pbk): 1-59059-738-9

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Java™ and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc., in the
United States and other countries. Apress, Inc., is not affiliated with Sun Microsystems, Inc., and this book
was written without endorsement from Sun Microsystems, Inc.

Lead Editor: Steve Anglin
Technical Reviewer: John Fallows
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser,
Keir Thomas, Matt Wade

Project Managers: Beth Christmas, Elizabeth Seymour
Copy Edit Manager: Nicole Flores
Copy Editors: Ami Knox, Bill McManus
Assistant Production Director: Kari Brooks-Copony
Production Editor: Lori Bring
Compositor: Diana Van Winkle, Van Winkle Design
Proofreader: April Eddy
Indexer: Michael Brinkman
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219,
Berkeley, CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com,
or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code/
Download section.

To my wife, Janet: Thank you for the love, the patience, and the time I needed
to complete this book (and every other book I have worked on). Without your love

and wisdom, my life would be a shadow of what it is now. You are everything to me.
To my son, Christopher: Every experience I have had or will have will never compare

with the first time I held you in my arms. Everyday, I revel in the miracle that you are.
—John Carnell

This book is dedicated to my secondary school English teacher, Neville McGraw,
for sparking my abiding interest in literature and teaching me the

importance of the written word.
—Rob Harrop

Contents at a Glance

About the Authors . xv

About the Editor . xvi

About the Technical Reviewers . xvii

Acknowledgments . xviii

Preface for This Edition . xix

Preface from Previous Edition . xx

■CHAPTER 1 What We Do Wrong: Web Antipatterns Explained 1

■CHAPTER 2 Struts Fundamentals . 31

■CHAPTER 3 Form Presentation and Validation with Struts 75

■CHAPTER 4 Managing Business Logic with Struts . 123

■CHAPTER 5 Architecting the Data Access Tier with ObjectRelationalBridge . . . 173

■CHAPTER 6 Building Flexible Front-Ends with the Tiles Framework 225

■CHAPTER 7 Dynamic Forms and the Struts Validator Framework 255

■CHAPTER 8 Speeding Struts Development with XDoclet 289

■CHAPTER 9 Logging and Debugging . 317

■CHAPTER 10 Velocity Template Engine . 359

■CHAPTER 11 Extending the Struts Framework . 391

■CHAPTER 12 Struts and Ajax . 421

■APPENDIX A JavaEdge Setup and Installation . 433

■APPENDIX B Struts Development Tools . 441

■APPENDIX C Struts and Strecks . 473

■INDEX . 477

v

Contents

About the Authors . xv

About the Editor . xvi

About the Technical Reviewers . xvii

Acknowledgments . xviii

Preface for This Edition . xix

Preface from Previous Edition . xx

■CHAPTER 1 What We Do Wrong: Web Antipatterns Explained 1

What This Book Is About . 3

What This Chapter Is About . 4

Challenges of Web Application Development . 4

Enterprise Services . 6

Application Services . 7

An Introduction to Patterns and Antipatterns . 8

Web Application Antipatterns . 9

Concern Slush . 10

Tier Leakage . 13

Hardwired . 16

Validation Confusion . 18

Tight-Skins . 20

Data Madness . 22

Antipatterns, JOS Frameworks, and Economics . 24

The JavaEdge Application . 27

Summary . 28

■CHAPTER 2 Struts Fundamentals . 31

The JavaEdge Application Architecture . 32

The Design . 33

Using Struts to Implement the MVC Pattern . 34

Getting Started: The JavaEdge Source Tree . 37

The Power of the Command Pattern . 48

vii

Constructing the Presentation Tier . 52

The JavaEdge Home Page . 53

Bean Tags . 57

Logic Tags . 67

Iteration Tags . 68

Conditional Tags . 69

Movement Tags . 71

Summary . 73

■CHAPTER 3 Form Presentation and Validation with Struts 75

Problems with Form Validation . 75

Using Struts for Form Validation . 77

Implementing Form Validation with Struts . 79

The struts-config.xml File . 80

Struts ActionForm Class . 81

Prepopulating an ActionForm with Data . 87

Another Technique for Prepopulation . 91

Prepopulating a Form the Correct Way . 92

Validating the Form Data . 93

The Struts HTML Tag Library . 103

Setting Up a Struts HTML Form . 104

Using Text and TextArea Input Fields . 107

Drop-Down Lists, Checkboxes, and Radio Buttons 108

Building More Dynamic ActionForms . 111

ActionForms and Business Logic . 118

Summary . 122

■CHAPTER 4 Managing Business Logic with Struts . 123

Business Logic Antipatterns and Struts . 124

Concern Slush and Struts . 125

Tier Leakage and Struts . 130

Separating Business Logic from Struts . 132

Implementing the Design Patterns . 134

Implementing the Business Delegate Pattern 135

Implementing the Service Locator Pattern . 141

The Service Locator Revisited . 149

EJBs and Struts . 154

Handling Exceptions in the Action Class . 160

Exception Handling in Struts 1.0.x . 161

■CONTENTSviii

Exception Handling in Struts 1.1 and Later 163

Rewriting the ApplicationException Class . 164

Setting Up the struts-config.xml File . 164

Writing a Custom ExceptionHandler . 167

Summary . 171

■CHAPTER 5 Architecting the Data Access Tier with
ObjectRelationalBridge . 173

Developing a Data Access Strategy . 174

The JavaEdge Data Access Model . 176

Value Objects . 182

The JavaEdge Value Objects . 184

Using an O/R Mapping Tool . 187

Setting Up the Object/Relational Mappings 190

Which Sequence Manager to Use? . 201

OJB in Action . 208

Retrieving Data: A Simple Example . 212

Retrieving Data: A More Complicated Example 215

Storing Data Using OJB . 217

Deleting Data with OJB . 219

Bringing It All Together . 219

Summary . 223

■CHAPTER 6 Building Flexible Front-Ends with the Tiles Framework . . 225

What Is the Tiles Framework? . 227

Enabling Struts Version 1.1 to Use Tiles . 228

Configuring the Tiles Plug-In . 229

The tiles-defs.xml File . 231

Adding the Tiles TLDs . 231

Your First Tiles Template . 232

What Are Tiles Definitions? . 235

Tiles Definitions: A JSP-Based Approach . 236

Overriding the Attribute Values in a Tiles Definition 238

Using Dummy Values in Your Tiles Definition 239

Disadvantages of JSP Tiles Definitions . 239

Anatomy of the tiles-defs.xml File . 240

Inheritance Using Tiles Definitions . 241

Extending a Tiles Definition . 244

Modifying the template.jsp File . 245

■CONTENTS ix

Adding the New Definition to tiles-defs.xml 246

Modifying the .homePage Definition . 247

Mapping Tiles Definitions to Action Forwards . 248

Summary . 252

■CHAPTER 7 Dynamic Forms and the Struts Validator Framework. 255

Introducing Dynamic Forms . 256

Defining the postStoryForm Struts Form Bean 256

Writing the PostStoryDynaForm.java Implementation 258

Some Thoughts About BeanUtils and the Preceding Code 263

The Jakarta Commons Validator Framework . 266

Validator Framework Setup . 266

Implementing the Required Fields Validation 268

The maxlength Validation Rule . 270

Use the Validator Framework Within an ActionForm Class 273

Writing Your Own Validation Rules . 275

Implementing the Vulgarity Rule . 275

Adding the Vulgarity Rule to the validator-rules.xml File 279

Struts Validation and Potential Long-Term Consequences 281

Implementing the Vulgarity Rule in a Form 282

An ActionForm Without Java . 283

When to Use the Validator Framework . 284

Summary . 285

■CHAPTER 8 Speeding Struts Development with XDoclet. 289

Installing XDoclet . 291

What Exactly Is XDoclet? . 292

From XDoclet to Source, and All the Steps in Between 295

The Available XDoclet Tags . 297

Anatomy of an XDoclet Tag . 298

Integrating Ant and XDoclet . 299

Using Merge Points . 302

XDoclet and Struts . 303

Declaring Struts Form Beans . 304

Declaring Struts Actions . 304

XDoclet and Java Inheritance . 306

Declaring Application Exceptions . 306

Building struts-config.xml Using <webdoclet..../> 308

XDoclets and the Validator Framework . 309

Generating the Validator Tags from Ant . 313

Summary . 315

■CONTENTSx

■CHAPTER 9 Logging and Debugging . 317

Why Use Logging? . 318

Log Message Levels . 319

Simple Web Application Logging . 319

Logging with ServletContext . 319

Using Commons Logging . 320

The Java 1.4 Logging API . 325

Apache log4j . 328

Using log4j with Commons Logging . 330

Log Inheritance . 334

Logging Performance . 337

Logging Best Practices . 338

JBoss and log4j . 342

Integrating Logging into JavaEdge . 343

Logging in the Web Tier . 349

Debugging Struts Applications Using JBoss and Eclipse 351

Debugging the JavaEdge Application . 353

Hot-Deploy . 355

Debugging the Struts Framework . 356

Summary . 356

■CHAPTER 10 Velocity Template Engine . 359

What Is a Template Engine? . 359

Getting Started . 360

Velocity and VelocityContext Classes . 362

Velocity Template Language . 362

Variables . 363

Accessing Variables . 363

Variable Values . 364

JavaBean Properties . 369

Arithmetic . 369

Directives . 370

Macros . 379

Struts and Velocity . 381

VelocityTools . 381

Struts and Velocity . 388

Best Practices for Velocity Use . 388

Use Macros . 388

Know When to Use #parse and When to Use #include 388

Use JavaBean Property Names . 389

Summary . 389

■CONTENTS xi

■CHAPTER 11 Extending the Struts Framework . 391

Extending Action and ActionForm . 391

Providing Common Services to Your Actions 392

Hooking into the Action Execution . 397

Extending RequestProcessor . 398

Building a RequestProcessor . 399

Using RequestProcessor Instead of Filter . 400

Verifying Host Access with RequestProcessor 403

Creating Configuration Beans . 403

Building the JavaEdgeActionMapping . 404

Revisiting RequestProcessor . 405

Building a Plug-In . 409

Newsletter Service Basics . 410

NewsletterManager . 410

NewsletterTask . 415

NewsletterPlugIn . 416

Configuring the Plug-In . 419

Summary . 419

■CHAPTER 12 Struts and Ajax . 421

Ajax Dissected . 421

Ajax on Google . 422

Ajax on Yahoo . 422

Where Should I Use Ajax? . 422

Ajax and Web 2.0 . 423

Ajax and SOA . 423

Ajax Internals . 423

Ajax Request-Response Cycle . 424

XMLHttpRequest Object . 425

Ajax and Struts in Action . 426

Cities.jsp . 426

GetCitiesNamesAction . 429

CitiesDAO . 430

Summary . 432

■CONTENTSxii

■APPENDIX A JavaEdge Setup and Installation . 433

Environment Setup . 433

Installing MySQL . 433

Installing JBoss . 436

Installing Apache Ant . 436

Obtaining the JavaEdge Code and Dependencies 437

Installing the JavaEdge Database . 437

Building JavaEdge . 438

Deploying JavaEdge . 439

Summary . 440

■APPENDIX B Struts Development Tools . 441

Eclipse . 442

Eclipse Summary . 444

Eclipse Next Step . 444

NetBeans . 444

JSP, HTML, XML, and DTD Editors . 444

In-Process Tomcat Server . 446

NetBeans Summary . 446

NetBeans Next Step . 447

IBM WebSphere . 447

Creating a Struts Project . 447

Managing Configuration . 448

Creating Actions and ActionForms . 449

Web Diagrams . 451

WebSphere Summary . 451

WebSphere Next Step . 452

Borland JBuilder 2006 . 452

Web Projects . 452

Configuration File Editor . 453

JSP Editor . 454

UML Designer . 454

JavaDoc Preview . 454

Action Designer . 456

JBuilder Summary . 456

JBuilder Next Step . 457

■CONTENTS xiii

Struts Console . 457

Getting Started . 457

Editing the Struts Configuration File . 458

Editing Other Configuration Files . 460

Struts Console Summary . 460

Struts Console Next Step . 461

Exadel Studio . 461

Struts Projects . 461

Configuration File Editors . 461

XML Editor . 463

JSP Editor . 463

Web Flow Designer . 465

Exadel Studio Summary . 465

Exadel Studio Next Step . 466

XDoclet . 466

Apache JMeter . 466

Getting Started . 466

Features . 466

Creating a Sample Test . 467

JMeter Summary . 470

JMeter Next Step . 471

Summary . 471

■APPENDIX C Struts and Strecks . 473

Using Strecks . 473

@Controller and @ActionInterface . 474

@NavigateForward . 475

@BindSimple and @ValidateRequired . 475

What You Can Do with Strecks . 476

Is Strecks for Me? . 476

■INDEX . 477

■CONTENTSxiv

About the Authors

■JOHN CARNELL is the president and owner of NetChange, a leading provider
of enterprise architecture solutions and training. John has over nine years
of experience in the field of software engineering and application develop-
ment. Most of John’s time has been spent working in Object-Oriented (OO)
and Component-Based Development (CBD) software solutions.

John has authored, coauthored, and served as technical reviewer for
a number of technology books and industry publications. Some of his
works include

• Professional Struts Applications: Building Web Sites with Struts, Object Relational Bridge,
Lucene, and Velocity (Apress, 2003)

• Coauthor, J2EE Design Patterns Applied (Apress, 2002)

• Coauthor, Oracle 9i Java Programming: Solutions for Developers Using PL/SQL and Java
(Apress, 2001)

• Coauthor, Beginning Java Databases (Apress, 2001)

• Coauthor, Professional Oracle 8i Application Programming with Java, PL/SQL, and XML
(Wrox Press, 2001)

• Technical reviewer, J2EE Design and Deployment Practices (Wrox Press, 2002)

In addition to his teaching, John travels the country on a regular basis speaking at nation-
ally recognized conferences on a variety of Java development topics.

John lives in Green Bay, Wisconsin, with his wife, Janet; son, Christopher; and two dogs,
LadyBug and Ginger. John always welcomes questions and comments from his readers and
can be reached at john.carnell@netchange.us.

■ROB HARROP is a software consultant specializing in delivering high-
performance, highly scalable enterprise applications. He is an experienced
architect with a particular flair for understanding and solving complex
design issues. With a thorough knowledge of both Java and .NET, Rob has
successfully deployed projects across both platforms. He also has exten-
sive experience across a variety of sectors, retail and government
in particular.

Rob is the author of five books, including Pro Spring (Apress 2005), a
widely acclaimed, comprehensive resource on the Spring Framework.

Rob has been a core developer of the Spring Framework since June 2004 and currently
leads the JMX and AOP efforts. He cofounded UK-based software company Cake Solutions
Limited, in May 2001, having spent the previous two years working as Lead Developer for a
successful dotcom start-up. Rob is a member of the JCP and is involved in the JSR-255 Expert
Group for JMX 2.0. xv

About the Editor

xvi

■KUNAL MITTAL serves as the Director of Technology for the Domestic TV
group at Sony Pictures Entertainment. He is responsible for the technol-
ogy strategy and application development for the group. Kunal is very
active in several enterprise initiatives such as the SOA strategy and
roadmap and the implementation of several ITIL processes within
Sony Pictures.

Kunal has authored and edited several books and written over
20 articles on J2EE, WebLogic, and SOA. Some of his works include

• Pro Apache Beehive (Apress, 2005)

• BEA WebLogic 8.1 Unleashed (Wrox, 2004)

• “Build your SOA: Maturity and Methodology,” a three-part series (SOAInstitute.com,
2006)

For a full list of Kunal’s publications, visit his web site at http://www.kunalmittal.com/
html/publications.shtml.

Kunal holds a master’s degree in software engineering and is a licensed private pilot.

About the Technical Reviewers

■JAN MACHACEK started with microelectronics in 1992 and then moved on
to computer programming a few years later. During his studies at Czech
Technical University in Prague and University of Hradec Kralove in the
Czech Republic, Jan was involved in the development of distributed appli-
cations running on Windows, Linux, and Unix using each platform’s native
code and Java.

Currently, Jan is Lead Programmer of UK-based software company
Cake Solutions Limited (http://www.cakesolutions.net), where he has

helped design and implement enterprise-level applications for a variety of UK- and US-based
clients. In his spare time, he enjoys exploring software architectures, nonprocedural and
AI programming, as well as playing with computer hardware.

As a proper computer geek, Jan loves the Star Wars and The Lord of the Rings series.
Jan lives with his lovely housemates in Manchester in the UK and can be reached at
jan@cakesolutions.net.

■JOHN R. FALLOWS is a Java architect at TXE Systems. Originally from North-
ern Ireland, John graduated from Cambridge University in the United
Kingdom and has worked in the software industry for more than ten years.
Prior to joining TXE Systems, John worked as a JavaServer Faces technol-
ogy architect at Oracle. John played a lead role in the Oracle ADF Faces
team to influence the architecture of the JavaServer Faces standard and
to enhance the standard with Ajax functionality in the ADF Faces project.

John is a popular speaker at international conferences such as
JavaOne and JavaPolis, and has written numerous articles for leading IT magazines such
as Java Developer’s Journal. John is coauthor of the highly popular book, Pro JSF and Ajax:
Building Rich Internet Components (Apress, 2006).

xvii

Acknowledgments

When people pick up a book, they often think of only the effort the author put into writing
the text. However, creating any book is a team effort that involves the endeavors of many indi-
viduals. I would like to first thank Gary Cornell, who had enough confidence in my work to ask
me to work on a second edition of this book. His confidence, especially coming from someone
with his background and experiences, meant a lot.

I also want to thank the following people:

• Beth Christmas, my Apress project editor, for her tireless effort in keeping this book
on track.

• Ami Knox, my copy editor, whose keen eyes and attention to detail has made sure that
I come across as an intelligent and grammatically correct author. Thanks, Ami!

• Jan Machacek, my technical editor. Your comments and careful insight kept me honest
and made sure this book was always the best it could be.

• Rob Harrop, my coauthor. Rob, you brought a lot of energy back into this book. Your
insights and the work you did for this book will always be appreciated.

John Carnell

Many people don’t realize just how much work goes on behind the scenes when making a
book like this. First, I want to thank my coauthor, John Carnell, who has an amazing ability to
explain even the most difficult of topics to absolute beginners. Thanks also to our technical
reviewer and my colleague, Jan Machacek, undoubtedly one of the best Struts programmers in
the world. Thanks to everyone at Apress, especially Beth Christmas and Ami Knox; without the
support of such a great team, writing this book would have been an absolute nightmare. A
final word of thanks goes to my girlfriend, Sally, for putting up with me through all the nights I
spent sitting in front of the computer and for listening to all the “cool” stories about Struts.

Rob Harrop

I would like to thank John, Rob, and the entire Apress team for giving me the opportunity to
edit this book. Steve, Elizabeth, Lori, Bill, and many others who have worked behind the scenes
on this edition, I owe you one! I would also like to thank my wife, Neeta, and my pooches,
Dusty and Snowie, for letting me ignore them over the weekends and focus on this book.

Kunal Mittal

xviii

Preface for This Edition

Apache Struts 1.2.x is still the de facto Java industry-standard MVC-based Web framework
despite challenges from JavaServer Faces (JSF), Spring MVC, WebWork, Wicket, and other APIs
and frameworks.

Pro Apache Struts with Ajax is essentially a revision of the previously published Pro
Jakarta Struts, Second Edition that accounts for changes to the open source Apache Struts
MVC web framework in the following ways:

• The Struts web framework in this edition is based on final Struts 1.2.x.

• This edition acknowledges the graduation of Struts from Jakarta to Apache within the
Apache Software Foundation.

• This edition provides a new chapter that shows how to integrate Ajax (Asynchronous
JavaScript and XML) with Apache Struts.

While this book addresses the above matters, it does not address the evolving and still
nascent Apache Shale nor Struts 2.0, also known as Struts Action Framework 2.0, which com-
bines Struts 2 and WebWork. However, future Apress books likely will address these areas.

Sincerely,
Editors of this revision

xix

Preface from Previous Edition
(Pro Jakarta Struts, Second Edition)

One of the questions I always get from people when they find out I am an author is “Why did
you get into writing?” While it is fundamentally a simple question to ask, the answer is not so
clear or concise.

If I had to summarize into one sentence why I wrote this book, it would have to be for one
reason and one reason alone: I love technology and I love building things with it. I have been
coding since I was 12 years old. I have worked with dozens of technologies, and for the last
four years I have had the opportunity to build enterprise-level software using several different
open source projects.

I have been consistently blown away with the quality and functionality these technologies
bring to the table. One of my favorite open source technologies is the Apache Group’s Struts
development framework. The Struts framework is a powerful Java development framework
that really allows Java web developers to focus on building applications and not infrastruc-
ture.

When I worked on the first edition of this book, I had two goals in mind: First, I wanted to
write a book that would introduce readers to the Struts development framework, but would
not overwhelm them with all of the nitty-gritty details associated with writing Struts applica-
tions. I personally think most people, even advanced developers, learn best by doing and
seeing rather than reading through tons of details.

Second, I wanted people to see how Struts could be used to solve everyday problems they
encounter in building their own web applications. That is why there is such a focus through-
out the book on the concept of identifying common design mistakes (aka antipatterns) and
looking at how Struts can be used to solve these problems.

However, this book always sticks to the core tenet that a framework never absolves the
developer of the responsibility of designing an application. The Struts framework, like any
framework, is a tool, and like any tool can be used inappropriately. That is why this book
emphasizes the importance of good design even when using a framework like Struts. Good
code is never something that unexpectedly appears. It is something that evolves from fore-
thought and clean design.

This book has been designed with both the intermediate and advanced developer in
mind. The application being built in this book is very simple and easy to follow, so anyone
with a basic understanding of JSPs and servlets should be able to very quickly follow along.
However, at every point my coauthor and I always try to call out how simple design decisions
and design patterns can have a significant impact on the long-term health of extensibility.

In the second edition of this book, we have updated all of the material to Struts 1.1.
We have included entire chapters on many of the new Struts 1.1 features (like the Tiles and
Validator frameworks). In addition, we explore a host of other open source technologies, like
ObjectRelationalBridge, Lucene, and Velocity, that when used in tandem with Struts can sig-
nificantly reduce the amount of time and effort it takes to build common pieces of application
functionality.

xx

I guess in the end, I do not consider this book a one-way narrative where you read my
thoughts on a particular topic. Instead, this book is part of an ongoing conversation that I
have had since I fell in love with my first Commodore 64. As such, I always welcome com-
ments (both positive and negative) from my readers. If you have any questions, comments,
or just want to vent, please feel free to contact me at john.carnell@netchange.us. I hope you
enjoy reading this book, and I look forward to hearing from you.

Sincerely,
John Carnell

■PREFACE xxi

What We Do Wrong:
Web Antipatterns Explained

Everything in the universe moves to chaos. What is ordered becomes disordered, what is
created becomes destroyed. This phenomenon has long been observed in the field of physics
and carries the name of entropy.

■Definition Webster’s New World Dictionary defines entropy as a measure of the degree of disorder in
a substance or system: entropy always increases and available energy diminishes in a closed system as
in the universe.

Entropy is a phenomenon that is also observed in the field of software development. How
many times have you worked on an application whose initial code base started out neat and
organized, or met your own personal coding and documentation styles, guidelines, and stan-
dards, only to see over time the code base became more and more chaotic as the application
evolved and was maintained? You probably yourself cut corners on your standards due to time
pressures, or while making minor enhancements or bug fixes.

Entropy and the ensuing chaos it brings is the same whether it is being applied to the
laws of physics or a software development project. In a software development project, the
more entropy present within the application and its code base, the less energy available to
write software that meets end-user requirements or overall business goals. Every hour that a
developer spends dealing with hard-to-maintain and nonextensible code reduces the time
available for that developer to write useful software by one hour. This does not even include
the risk of writing buggy code when the original code is not well written in the first place.

Why are software development efforts so prone to move from an ordered state to almost
absolute chaos? There are many reasons that can be given, but all reasons often point back to
one root cause: complexity. Some other common reasons are time pressures, changing or
unclear requirements, or just pure bad habits.

The act of writing code for an application is an attempt to impose structure and order on
some process. These processes can be mundane (for example, determining whether or not
individuals have enough money in their bank accounts to make requested withdrawals) or
very complicated (for example, a missile fire control system trying to ascertain whether an
incoming airplane is a commercial airliner or a military fighter jet). We know this is a stretch
to imagine, but you get the point. 1

C H A P T E R 1

■ ■ ■

Most software development professionals have learned that the processes they try to cap-
ture in their code rarely have neatly defined boundaries. These processes are often nonlinear
in nature. They cannot be easily described in terms of discrete steps. Instead these processes
often have multiple decision points that can result in completely different outcomes.

Almost all software is constantly in a state of flux. It is almost always being changed and
updated to meet new end-user requirements. The general perception is that the functionality
of an application can easily be changed without affecting its overall quality and integrity.

The nonlinear nature of software, combined with ever-changing end-user requirements
and perceptions of software malleability, makes it extremely difficult to avoid complexity
within an application. In a software development project, the relationship between entropy
and complexity can be stated as follows: The more complexity a developer has to deal with,
the higher the level of entropy present in the application. This complexity leaves developers
with less time to do what they were hired to do: write software to solve a particular problem
faced by an organization.

Unmanaged complexity results in poorly designed software that is often full of bugs, hard
to maintain, and even harder to extend and reuse. The development team that is responsible
for maintaining the application’s code base will build workarounds and patches onto the soft-
ware until the source code is completely unmanageable. Oftentimes, the chaos surrounding
the application’s implementation and maintenance will force the organization to throw away
the code without ever realizing the full business benefits the software was supposed to give.

At this point, with all of the problems involved with implementing quality software, you
might be questioning why you would even become involved in the field of software develop-
ment.1 Things are not as bleak as they might appear. Many of us in the software development
profession do successfully deliver applications that bring value to the organizations we work for.

However, even when we are successful in building applications, we are often left with the
nagging feeling that there should be a better way of building and delivering software. It is pos-
sible to build high-quality software on time and on budget. However, in order to do this, the
software needs to be built on a solid foundation.

Software built without a plan, without a well-laid-out architecture, will soon collapse
under its own weight. However, say the word architecture to many business managers and
developers and you will see a look of pain cross their faces. The word architecture is one of the
most abused words in the software engineering lexicon.

For many business managers, the word architecture invokes images of a whole team of
software developers (often a very expensive team) going off to write code that is very intellec-
tually stimulating for them, but has no value to the business. They see a lot of development
time and resources spent without getting a well-defined Return On Investment (ROI).

For developers, the term architecture often invokes feelings of guilt and longing: guilt,
because many developers realize that there are better ways to write software; longing, because
frankly with enough time and resources a development team could put together a develop-
ment framework that would enable them to write better software.

However, the simple truth is this: Writing a development framework is hard work that
requires dedicated time from senior development resources. Quantifying the value of a devel-
opment framework to the business managers in an organization is an even tougher challenge.

CHAPTER 1 ■ WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED2

1. One of the authors of this book did so because his criminology degree did not pay nearly as well as his
computer science degree.

What This Book Is About
This book will demonstrate the use of freely available Java Open Source (JOS) development
frameworks for building and deploying applications. Specifically, we will focus on the JOS devel-
opment frameworks available from the Apache Software Foundation (http://apache.org) as
well as its Jakarta group (http://jakarta.apache.org).

While most books are heavy on explanation and light on actual code demonstration,
this book emphasizes approachable code examples. The authors of this book want to provide
a roadmap of JOS development tools to build your applications. Our intent in this book is not
to present each of the frameworks in minute detail. Frankly, many of the development frame-
works presented in this book could have entire books written about them.

This book will build a simple application using the following Apache technologies, except
for XDoclet:

Struts Web Development framework: A Model-View-Controller–based development frame-
work that enables developers to quickly assemble applications in a pluggable and extensible
manner. This book will highlight some of the more exciting pieces of the Struts 1.2 framework.
These pieces are described next.

Tiles: A new user interface framework that allows a development team to “componentize”
a screen into granular pieces of code that can be easily built and updated.

Dynamic ActionForms and Validator framework: A new set of tools for alleviating many of
the more monotonous tasks of writing web-based data collection screens.

Lucene: A powerful indexing and search tool that can be used to implement a search
engine for any web-based application.

Jakarta Velocity: A templating framework that allows a development team to easily build
“skinnable” applications, whose “look and feel” can be easily modified and changed.

ObjectRelationalBridge (OJB): An object/relational mapping tool that significantly simplifies
the development of data access code against a relational database. ObjectRelationalBridge
can literally allow a development team to build an entire application without ever having to
write a single line of JDBC code.

XDoclet: A metatag-based, code-generation tool that eliminates the need for a developer to
support the usual plethora of J2EE (web.xml, ejb-jar.xml, etc.) and Struts (struts-config.xml,
validation.xml, etc.) configuration files. It is important to note that XDoclet is not an Apache
technology. However, XDoclet has strong support for Struts and has been included as a
topic of discussion for this book.

Ant: An industry-accepted Java build utility that allows you to create sophisticated appli-
cation and deployment scripts.

In addition, this book includes a quick introduction and overview of Asynchronous
JavaScript and XML (Ajax). Ajax is a technology that addresses a very common problem in
web application development. Let me introduce this with the help of an example.2

CHAPTER 1 ■ WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED 3

2. The example described here is also a good example of the Tier Leakage antipattern.

Assume you have a web site that accepts information about a customer—typical informa-
tion like name, address, telephone number, etc. Some drop-down fields that you are likely to
have are State, City, and Country. Let’s assume that when the customer selects their Country,
you want to automatically refresh the State drop-down with appropriate values, and once
they select a State, you want to refresh the City drop-down. In a typical web application, this
requires a round trip to the server, and causes the entire page to refresh. Based on the amount
of information on the page, this might take a few seconds. In addition, you have to decide
which validations to execute at this stage (most likely none, because the user has not clicked
Save yet). With Ajax, this sort of an operation happens behind the scenes, or asynchronously,
avoiding the page refresh and improving the performance. Only the required information is
sent to the server and a small packet of information is received back and populated onto the
page.

Don’t worry if this is a little confusing at the moment. We will spend a lot of time on this
concept at the end of the book.

What This Chapter Is About
This chapter will not go into the details of the technologies just listed. Instead, it will highlight
some of the challenges in building web applications and explore some common design mis-
takes and flaws that creep into web-based application development efforts.

The truth is that, while all developers would like to write new applications from scratch,
most of their time is spent performing maintenance work on existing software. Identifying
design flaws, referred to as antipatterns throughout this book, and learning to use JOS devel-
opment frameworks to refactor or fix these flaws can be an invaluable tool.

Specifically, the chapter will explore how the following web-based antipatterns contribute
to entropy within an application:

• Concern Slush

• Tier Leakage

• Hardwired

• Validation Confusion

• Tight-Skins

• Data Madness

The chapter will end with a discussion of the cost savings associated with building your
own application development framework versus using the JOS development framework.

Challenges of Web Application Development
In the mid-nineties, the field of software development was finally achieving recognition as
being a discipline that could radically change the way business was conducted. The Internet
was quickly recognized as a revolutionary means for companies to communicate their data
and processes to not only their employees but also their customers.

CHAPTER 1 ■ WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED4

Fueling the Internet explosion was the World Wide Web and the web browser. Web
browsers offered an easy-to-use graphical interface that was based on the standards and
allowed easy access to data on a remote server. Originally, the web browser was viewed as a
means of allowing end users to access static content of a web server. Early web applications
were often nothing more than “brochures” that provided users browsing information about a
company and the products and services it offered.

However, many software developers realized that the web browser was a new application
development platform. The web browser could be used to build applications that provided
customers with direct and easy access to corporate applications and data sources. This was a
revolutionary concept because for many businesses, it eliminated the need to have a large
customer service department to handle routine customer requests. It allowed them to make
their processes more efficient and develop a more intimate relationship with their customers.

The “thin” nature of the web browser meant that software could be quickly written,
deployed, and maintained without ever touching the end user’s desktop. Moreover, the web
browser had a naturally intuitive interface that most end users could use with very little train-
ing. Thus, the Internet and the web browser have become a ubiquitous part of our computing
lives and a primary application development platform for many of today’s applications.

The transition of the web from being electronic “brochureware” to an application devel-
opment platform has not been without growing pains. Writing anything more than a small
web application often requires a significant amount of application architecture before even a
single line of real business logic is written.

The additional overhead for implementing a solid web application is the result of several
factors, such as

The stateless nature of the web: Hypertext Transfer Protocol (HTTP), the communication
protocol for the web, was built around a request/response model. The stateless nature
means a user would make a request and the web server would process the request. But
the web server would not remember who the user was between any two requests. Some
development teams build elaborate schemes using hidden form fields or manually gener-
ated session cookies that tie back to state data stored in a database. These schemes, while
meeting the functional needs of the application, are complex to implement and difficult
to maintain over the long term.

The limited functionality of a web browser–based user interface: The web originally started
as a means to share content and not perform business logic. The Hypertext Markup Lan-
guage (HTML) used for writing most web pages only offers limited capabilities in terms of
presentation. A web-based interface basically consists of HTML forms with a very limited
number of controls available for capturing user data.

The large number of users that the web application would have to support: Many times a
web application has thousands of concurrent users, all hitting the application using dif-
ferent computing and networking technologies.

The amount of content and functionality present in the web application: In equal proportion
to the number of end users to be supported, the amount of content and navigability of a
web-based application is staggering. Many companies have web-based applications in
which the number of screens the user can interact with and navigate to is in the thousands.
Web developers often have to worry about presenting the same content to diverse audiences
with a wide degree of cultural and language differences (also known as internationalization).

CHAPTER 1 ■ WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED 5

The number of systems that must be integrated so that a web application can give its end
users a seamless, friction-free experience: Most people assume that the front-end applica-
tion that a user interacts with is where the majority of development work takes place.
This is not true. Most web application development often involves the integration of
back-office applications, built on heterogeneous software and hardware platforms and
distributed throughout the enterprise. Furthermore, extra care must be taken in securing
these back-end systems so that web-based users do not inadvertently get access to sensi-
tive corporate assets.

The availability of web-based applications: Web-based applications have forced enter-
prises to shift from a batch-process mentality to one in which their applications and the
data they use must be available 365 days a year.

Early web-based development was often chaotic and free flowing. Little thought was
given to building web applications based on application frameworks that abstracted away
many of the “uglier” aspects of web development. The emphasis was on being first to market,
not on building solid application architectures. However, the size and complexity of web
applications grew with time, and many web developers found it increasingly difficult to
maintain and add additional functionality to their applications.

Most experienced software developers deal with this complexity by abstracting various
pieces of an application’s functionality into small manageable pieces of code. These small
pieces of code capture a single piece of functionality, and when taken together as a whole
form the basis for an application development framework.

■Definition An application development framework can be defined as follows: A collection of services
that provides a development team with a common set of functionality, which can be reused and leveraged
across multiple applications.

For web applications these services can be broken down into two broad categories:

• Enterprise services

• Application services

Enterprise Services
Enterprise services consist of the traditional “plumbing” code needed to build applications.
These services are extremely difficult to implement correctly and are outside the ability of
most corporate developers.

Some examples of enterprise services include

• Transaction management, to make sure any data changes made to an application are
consistently saved or rolled back across all the systems connected to the application.
This is extremely important in a web application that might have to process the
updates across half a dozen systems to complete an end user’s request.

CHAPTER 1 ■ WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED6

• Resource pooling of expensive resources like database connections, threads, and
network sockets. Web applications oftentimes have to support thousands of users
with a limited amount of computing resources. Managing the resources, like the
ones just named, is essential to have a scalable application.

• Load balancing and clustering to ensure that the web application can scale gracefully,
as the number of users using the application increases. This functionality also ensures
that an application can continue to function even if one of the servers running the
application fails.

• Security to ensure the validation of the users (authentication) and that they are allowed
to carry out the action they have requested (authorization). While security is often con-
sidered an administrative function, there are times when application developers need
to be able to access security services to authenticate and authorize an action requested
by a developer.

Fortunately, the widespread acceptance of building applications based on application
servers has taken the responsibility for implementing these services out of the hands of corpo-
rate developers. Enterprise-level development platforms, like Sun’s J2EE specification and
Microsoft’s .NET, offer all of the functionalities listed previously as ready-to-use services that
developers can use in their applications. Application servers have eliminated much of the
plumbing code that an application developer traditionally has had to write.

This book will not be focusing on the services provided by J2EE and .NET application
servers, rather it will be focusing heavily on the next topic, application services.

Application Services
The enterprise-level development platforms, such as J2EE or .NET, simplify many of the basic
and core development tasks. While the services offered solve many enterprise issues (security,
transaction management, etc.), they do not help the application architect with the often
daunting task of building web applications that are maintainable and extensible. To achieve
the goals of maintainability and extensibility, several challenges need to be overcome:

Application navigation: How does the end user move from one screen to the next? Is the
navigation logic embedded directly in the business logic of the application? Web applica-
tions, having a primitive user interface, can allow users to access and navigate through
thousands of pages of content and functionality.

Screen layout and personalization: As web applications run in a thin-client environment
(with a web browser), the screen layout can be personalized to each user. Since user
requirements are constantly changing, web developers need to adapt the look and feel
of the application quickly and efficiently. Design decisions made early in the application
design process can have a significant impact on the level of personalization that can be
built into the application at a later date.

Data validation and error handling: Very few web development teams have a consistent
mechanism for collecting data, validating it, and indicating to the end user that there is
an error. An inconsistent interface for data validation and error handling decreases the
maintainability of the application and makes it difficult for one developer to support
another developer’s code.

CHAPTER 1 ■ WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED 7

Reuse of business logic: This is one of the most problematic areas of web application
development, the reason being that the development team does not have a disciplined
approach for building its business logic into discrete components that can be shared
across applications. The developers couple the business logic too tightly to the web appli-
cation, and resort to the oldest method of reuse, cut and paste, when they want to use
that code in another application. This makes it difficult to maintain the business rules
in a consistent fashion across all of the web applications in the organization.

Data abstraction services: The majority of web application development efforts involve
integrating the front-end web application with back-office data stores. However, data
retrieval and manipulation logic is tedious code to write, and when poorly implemented,
ties the front-end application to the physical structure of the back-office data stores.

Unfortunately, most developers either do not have the expertise or are not given the time
to properly address these issues before they begin application development. With the pressure
to deliver the application, they are forced to “design on the fly” and begin writing code with
little thought to what the long-term implications of their actions are. This may result in
antipatterns being formed within their applications.

These antipatterns contribute to the overall complexity of the application and ultimately
increase the presence of entropy within the code base. Many times, developers do not realize
the impact of these antipatterns until they have implemented several web applications and
subsequently try to support these applications while developing new code.

In the following sections, we are going to introduce you to the concept of patterns and
antipatterns. We will then identify some common antipatterns in web application develop-
ment, based on the preceding discussion.

An Introduction to Patterns and Antipatterns
You cannot open a software development journal or go to the bookstore without seeing some
reference to software design patterns. While many software architects love to enshroud pat-
terns in a cloak of tribal mysticism, the concept of a software development pattern is really
quite simple.

Design patterns capture software development patterns in a written form. The idea
behind design patterns is to identify and articulate these best practices so as to help other
developers avoid spending a significant amount of time reinventing the wheel. The notion of
the design pattern did not originate in the field of software development.

Design patterns originated in the field of architecture. In 1977, an architect by the name
of Christopher Alexander was looking for a method to identify common practices in the field
of architecture that could be used to teach others. The concept of design patterns was first
applied to the field of software engineering in 1987 by Kent Beck and Ward Cunningham
(http://c2.com/doc/oopsla87.html).

However, the embracing of software development design patterns really occurred with
the publishing of the now infamous Gang of Four (GOF) book, Design Patterns: Elements of
Reusable Object Oriented Software (Gamma, Helm, Johnson, and Vlissides, Addison-Wesley,
ISBN: 0-20163-361-2). First published in 1995, this classic book identified 23 common design
patterns used in building software applications. Over a decade later, this is still one of the
most interesting books in the software space today and is still a best seller.

CHAPTER 1 ■ WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED8

The concept of the antipattern was first introduced in the groundbreaking text, AntiPatterns:
Refactoring Software, Architectures, and Projects in Crisis (Brown et al., John Wiley & Sons, ISBN:
0-47119-713-0). The book examined common patterns of misbehavior in system architecture and
project management. As you are going to explore various antipatterns associated with web appli-
cation development, it is useful to look at the original definition (from the aforementioned book)
of the antipattern:

■Definition An antipattern is a literary form that describes a commonly occurring solution to a problem
that generates decidedly negative consequences. The antipattern might be the result of a manager or devel-
oper not knowing any better, not having sufficient knowledge or experience in solving a particular type of
problem, or having applied a perfectly good pattern in the wrong context.

An antipattern is a means of establishing a common language for identifying poor design
decisions and implementations within your application. Antipatterns help identify poor
design decisions and help give suggestions on how to refactor or improve the software. How-
ever, the suggestions associated with an antipattern are only that. There is no right or wrong
way of refactoring any antipattern, because every instance of an antipattern is different. Each
instance of an antipattern will often have a unique set of circumstances that caused the pat-
tern to form. Web antipatterns focus on poor design decisions made in web-based
applications.

It is not an uncommon experience for a developer studying an antipattern to stop and
say, “I have seen this before,” or to feel a sense of guilt and think, “I have done this before.”
Antipatterns capture common development mistakes and provide suggestions on how to
refactor these mistakes into workable solutions. However, there is no single way to refactor an
antipattern. There are dozens of solutions. In this book, we merely offer you guidance and
advice, not dogmatic principles.

The web development antipatterns that are identified and discussed throughout this
book are not purely invented by the authors. They are based on our experience working with
lots of development teams on a wide variety of projects.

Web Application Antipatterns
For the purpose of this book, we have identified six basic antipatterns that most Java develop-
ers will encounter while building web-based applications. The web development antipatterns
to be discussed are Concern Slush, Tier Leakage, Hardwired, Validation Confusion, Tight-Skins,
and Data Madness.

Since the original definition of an antipattern is a literary form of communication, we will
discuss antipatterns in general. In addition, symptoms of the antipattern are identified along
with suggested solutions. However, the solutions described in this chapter are only described
at a very high level. Specific solutions for the antipatterns will be demonstrated, throughout
this book, by the application of JOS development frameworks.

CHAPTER 1 ■ WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED 9

We wrote this book with the following key points in mind:

• Most developers are not architects. They do not have the time and energy to write the
application architecture from the ground up and provide constant maintenance to it.
Therefore, practical solutions using an existing application’s framework are more valu-
able than the code snippets demonstrating one part of the application architecture. So
try to leverage other people’s code. Every feature you use in application architecture is
one less feature you have to write and maintain yourself.

• There are already several open source development frameworks ready for immediate
use. Writing architecture code might be intellectually challenging for some developers,
but it is often a waste of time, resources, and energy for the organization employing
them.

• Focus on the business logic. The job of most developers is to solve business problems.
Every time they are confronted with writing a piece of code that is not directly related
to solving a business problem, they should try to build a business case for writing
that code. An architecture without a business case is nothing more than an esoteric,
academic coding exercise.

• Keep it simple. The most extensible and maintainable systems are ones that always
focus on and strive for simplicity.

■Tip Architecture is done right when it has been implemented in the most straightforward fashion. Sim-
plicity, above everything else, will guarantee the long-term maintainability and extensibility of an application.

Now let’s discuss the different web antipatterns in more detail.

Concern Slush
The Concern Slush antipattern is found in applications when the development team has not
adequately separated the concerns of the application into distinct tiers (that is, the presenta-
tion, business, and data logic). Instead, the code for the applications is mixed together in a
muddy slush of presentation, business, and data tier logic. While development platforms like
J2EE help developers separate their application logic into distinct tiers, it is ultimately how the
application is designed that determines how well defined the application tiers are. Technology
can never replace good design and a strong sense of code discipline.

The Concern Slush antipattern makes the code extremely brittle. Changing even a small
piece of functionality can cause a ripple effect across the entire application. In addition, every
time a business rule needs to be modified or the structure of a data store changes, the devel-
opers have to search the application source code looking for all the areas affected by the
change. This leads to a significant amount of time being wasted.

CHAPTER 1 ■ WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED10

REFACTORING

Martin Fowler wrote a classic book on refactoring existing software code. The book, Refactoring: Improving
the Design of Existing Code (Fowler et al., Addison-Wesley, ISBN: 0-201-48567-2), is a must-have on any
developer’s bookshelf.

Unfortunately, he did not cover one of the most common and most unmanageable forms of refactoring:
refactoring through search and replace. One of the most common symptoms of the Concern Slush antipattern
is that when a change has to be made to a piece of code, developers have to open their editor, search for all
occurrences of that code within the application, and modify the code.

A good example of this would be when platform-specific database code is embedded in the business
tier. If a new requirement comes along that requires the application to support multiple database platforms,
developers must go through each of the business objects in their application hunting for references to the
platform-specific code and refactor the code. This can be a huge amount of work and might require extensive
retesting of the application. After all, every time code is touched, it is considered broken until a unit test
proves otherwise.

This type of “refactoring” occurs because developers oftentimes do not separate their application into
cleanly divided tiers of functionality. Instead, the application code evolves and when reuse is needed, rather
than refactor the code out into a single unit that can be called by anyone, the developers employ the oldest
form of reuse: reuse through cut and paste.

This antipattern also tends to lead to insidious bugs creeping into the application,
because invariably the developer will miss some code that needs to be modified. The bugs
resulting from these missed changes might not manifest themselves for several months after
the change to the original code was made. Hence, the development team has to spend even
more time tracking down the missed code and fixing, testing, and redeploying it.

Most of the time, the Concern Slush antipattern will emerge for one of the following reasons:

Lack of an application architect: The development team does not have a senior developer
playing the role of an application architect. The application architect’s primary role is to
provide high-level design constructions for the application. The architect establishes the
boundaries for each of the application tiers. They enforce development discipline within
the team and ensure that the overall architectural integrity of the application stays in
place.

Inexperience of the development team: Members of the development team are new to
enterprise development and write their web applications without a thorough understand-
ing of the technology they are working with. Many times the developers are used to
writing code in a procedural language (such as C or Visual Basic) and are suddenly
appointed to write web-based applications with an object-oriented language like Java.
Development team members continue to rely on their original training and continue to
write code in a procedural fashion, never fully embracing multitiered, object-oriented
design techniques.

Extreme time pressures: Team members realize their mistakes during the development
phase of a project, but they have been given an aggressive deadline to meet. They toss
caution to the wind and begin coding. They often do not realize how poorly designed
the application is until they begin the maintenance phase of the project.

CHAPTER 1 ■ WHAT WE DO WRONG: WEB ANTIPATTERNS EXPLAINED 11

