Practical Ruby Gems

David Berube

Apress*

Practical Ruby Gems
Copyright © 2007 by David Berube

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-811-5
ISBN-10 (pbk): 1-59059-811-3
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jason Gilmore

Technical Reviewer: Yan Pritzker

Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,
Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Jeff Pepper, Paul Sarknas,
Dominic Shakeshaft, Jim Sumser, Matt Wade

Project Manager: Richard Dal Porto

Copy Edit Manager: Nicole Flores

Copy Editor: Candace English

Assistant Production Director: Kari Brooks-Copony

Production Editor: Kelly Winquist

Compositor: Diana Van Winkle, Van Winkle Design

Proofreader: Liz Welch

Indexer: Julie Grady

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by
the information contained in this work.

The source code for this book is available to readers at http://www.apress.comin the Source Code/
Download section.

Dedicated to my parents

Contents at a Glance

About the Author
Acknowledgments

PART 1

CHAPTER 1
CHAPTER 2
CHAPTER 3
CHAPTER 4

PART 2

CHAPTER 5
CHAPTER 6
CHAPTER 7
CHAPTER 8
CHAPTER 9

CHAPTER 10

CHAPTER 11

CHAPTER 12
CHAPTER 13
CHAPTER 14
CHAPTER 15
CHAPTER 16
CHAPTER 17
CHAPTER 18
CHAPTER 19
CHAPTER 20

CHAPTER 21

CHAPTER 22

... xiii
.. XV
Using RubyGems
What Is RubyGems? 3
Installing RubyGems ... 7
Using RubyGems inYourCode 13
Managing Installed Gem Versions 25
Using Particular Gems
Data Access with the ActiveRecord Gem 35
Easy Text Markup with the BlueCloth Gem 45
Creating Web Applications with Camping 53
Creating Command-Line Utilities with cmdparse 69
HTML Templating with erubis 81
Parsing Feeds with feedtools 89
Creating Graphical User Interfaces with fxruby 95
Retrieving Stock Quotes with YahooFinance 103
Parsing HTML with hpricot 109
Writing HTML as Ruby with Markaby 115
Parsing CSV with fastercsv 121
Multiple Dispatchwithmulti 127
Serving Web Applications with mongrel 137
Transferring Files Securely withnet-sftp 145
Executing Commands on Remote Servers with net-ssh 149
Validating Credit Cards with creditcard 155
Writing PDFs with pdf-writer 159
Handling Recurring Events withrunt 167

CHAPTER 23
CHAPTER 24
CHAPTER 25
CHAPTER 26
CHAPTER 27
CHAPTER 28
CHAPTER 29
CHAPTER 30
CHAPTER 31
CHAPTER 32
CHAPTER 33

PART 3

CHAPTER 34
CHAPTER 35

Building Websites with Rails 175
Automating Development Tasks withrake 183
Manipulating Images with RMagick 191
Speeding Up Web Applications with memcache-client 199
Managing Zip Archives withrubyzip 209
Speeding Up Function Calls with memoize 215
Tagging MP3 Files with id3lib-ruby 221
Shortening URLs with shorturl 227
Creating Standalone Ruby Applications with rubyscript2exe ... 231
Cleaning Dirty HTML with tidy 237
Parsing XML with xml-simple 245
Creating Gems
Creating QurOwnGemsoiiiinnn. 255
Distributing Gemsl 261
.. 267

Contents

Aboutthe AUthOr o Xiii

ACKNOWIBdgMENtS XV
PART 1 Using RubyGems

CHAPTER1 WhatlIs RubyGems? ... 3

Why Use RubyGems? i 3

How Does RubyGems Compare to Other Packaging Systems? 6

CHAPTER 2 Installing RubyGems .. 7

Installing Ruby 7

Installing RubyGems Under Linuxand MacOS X 10

Updating Your RubyGems System After You've Installed It 11

CHAPTER 3 Using RubyGems in YourCode 13

Getting Started witha Ruby Gem 13

Working with Source Gems ...t 20

Debugging RubyGems 23

CHAPTER 4 Managing Installed Gem Versions 25

What Is Gem Versioning? i 25

Installing an Older GemVersion 26

Updating Gemsot 27

Uninstalling Gemso 28

Specifying Gem Versionsco i 29

vii

viii

CONTENTS

PART 2

CHAPTER 5

CHAPTER 6

CHAPTER 7

CHAPTER 8

CHAPTER 9

CHAPTER 10

Using Particular Gems

Data Access with the ActiveRecord Gem 35
How Does IEWork? 36
Archiving RSS News with ActiveRecord 39
CoNCIUSION 44
Easy Text Markup with the BlueCloth Gem 45
How Does IEWOrk? 45
BlueCloth-to-HTML Converter oo .. 46
bluecloth2pdf BlueCloth-to-PDF Converter 48
CoNCIUSION 51
Creating Web Applications with Camping 53
How Does IEWOrk? 53
Tracking Time with Campingt 56
CONCIUSION ...\ 68
Creating Command-Line Utilities with cmdparse 69
How Does IEWOrk? 69
A Job-Search Tool Built with cmdparse 71
CONCIUSION ...\ 79
HTML Templating witherubis 81
How Does IEWork? 81
HTML MySQL Table Viewer with erubis 83
CoNCIUSION 88
Parsing Feeds with feedtools 89
How Does IEWOrk? 89
A News Search Tool Built with feedtools 91

CONCIUSION . ..ot e e 93

CHAPTER 11

CHAPTER 12

CHAPTER 13

CHAPTER 14

CHAPTER 15

CHAPTER 16

CONTENTS
Creating Graphical User Interfaces with fxruby 95
How Does [EWOrK? . ..o 95
Dynamic MySQL Data Form with fxruby 96
CONCIUSION . ..t e 102
Retrieving Stock Quotes with YahooFinance 103
How Does IEWOrK? 103
Displaying a Stock-Market Ticker with YahooFinance 104
CONCIUSION . ..t e e 107
Parsing HTML with hpricot 109
How Does [EWOrK? 109
Screen-Scraping a Catalog with hpricot 111
CONCIUSION ... o 114
Writing HTML as Ruby with Markaby 115
How Does [EWOrK? 115
Graphical HTML Stock Charts with Markaby 116
CONCIUSION ... o 120
Parsing CSV with fastercsv 121
How Does [EWOrK? 121
Processing Census Data with fastercsv 123
CONCIUSION . ..t 125
Multiple Dispatch withmulti 127
How Does [EWOrK? 127
Formatting SQL for Legibility Usingmulti 129

CONCIUSION . ..t e 135

ix

X

CONTENTS

CHAPTER 17

CHAPTER 18

CHAPTER 19

CHAPTER 20

CHAPTER 21

CHAPTER 22

Serving Web Applications with mongrel 137
How Does EWOrk? 137
Using mongrel as a Rails Development Server 138
mongrel Running Rails as a Service onWin32 139
mongrel Running Camping ... 140
mongrel asa SmallWeb Server 140
mongrel Serving a Rails App viaApache 2.2 141
CoNCIUSION ... 143
Transferring Files Securely withnet-sftp 145
How Does It Work? 145
Sending Files via SFTP Using net-sftp 146
CoNCIUSION ... 148

Executing Commands on Remote Servers with net-ssh . . . 149

How Does It Work?o 149
Editing Remote Files with net-sshandVim 151
ConCIUSIONo 154
Validating Credit Cards with creditcard 155
How Does IEWork? o 155
Verifying Credit-Card Numbers in Batch with creditcard 156
ConCluSION 158
Writing PDFs with pdf-writer 159
How Does EWOrk? 159
Creating Reports with pdf-writer and Net/SFTP 160
CoNCIUSION 165
Handling Recurring Events withrunt 167
How Does lTWork? ... 167
Planning User-Group Meetings withrunt 169
Executing Commands on a Recurring Schedule 172

CONCIUSION ... e 173

CHAPTER 23

CHAPTER 24

CHAPTER 25

CHAPTER 26

CHAPTER 27

CHAPTER 28

CHAPTER 29

CONTENTS
Building Websites with Rails 175
How Does IEWOrk? 175
A Simple Database Application withRails 176
CONCIUSION 182
Automating Development Tasks withrake 183
How Does tWork? 183
Easy Documentation with BlueClothandrake 184
CONCIUSION 189
Manipulating Images with RMagick 191
How Does ltWork? 191
Creating Thumbnails with RMagick 192
CONCIUSION ...\ 198

Speeding Up Web Applications with memcache-client .. 199

How Does It Work? 199
Speeding Up the Ruby on Rails Session Cache with memcached 200
Accessing memcached Servers with a Graphical Client 205
ConCluSION 207
Managing Zip Archives withrubyzip 209
How Does EWOrk? 209
Reading TextfromaZipFile 210
CoNCIUSION 213
Speeding Up Function Calls with memoize 215
How Does lTWork? ... 215
Organizinga Listof MP3so i 217
CoNCIUSION 220
Tagging MP3 Files with id3lib-ruby 221
How Does It Work? o 221
Changing MP3 Tags with ID3 Mass Tagger 222

CONCIUSION ... o 225

Xi

Xii

CONTENTS

CHAPTER 30

CHAPTER 31

CHAPTER 32

CHAPTER 33

PART 3

CHAPTER 34

CHAPTER 35

Shortening URLs with shorturl 227
How Does EWOrk? 227
Shortening RSS Feeds with shorturl 228
CoNCIUSION 230

Creating Standalone Ruby Applications

with rubyscript2exe ... 231
How Does IEWork? o 231
Packaging the id3tool Script with rubyscript2exe 232
ConCIUSION 236
Cleaning Dirty HTML with tidy 237
How Does EWOrk? 237
Tidying Up HTML on the Web with tidy 240
ConCIUSION 243
Parsing XML with xml-simple 245
How Does lTWork? ... 245
Tracking OpenSSL Vulnerabilities with xml-simple 248
CoNCIUSION 251

Creating Gems

Creating QurOwnGems 255
WhatlsInsideaGem? i 255
What's @ GEMSPEC?ot 255
Building a Gem Package froma Gemspec 256
ConCIUSIONo 260
DistributingGems .. 261
Distribution Methodsl 261
CONCIUSION ...\ 266

About the Author

DAVID BERUBE is a Ruby developer, trainer, author, and speaker. He’s used both Ruby and Ruby
on Rails since 2003, when he became a Ruby advocate after he wrote about the language for
Dr Dobb’s Journal. Prior to that he worked professionally with PHP, Perl, C++, and Visual Basic.

David’s professional accomplishments include creating the Ruby on Rails engine for Cool-
Ruby.com (http://coolruby.com), a site that tracks the latest Ruby developments, and working
with thoughtbot (www.thoughtbot.com) on the Rails engine that powers Sermo’s America’s Top
Doc contest. He also worked with the Casting Frontier on the Ruby on Rails backend that is
powering their digital casting services for Los Angeles. He has worked on several other Ruby
projects, including the engine powering CyberKnowHow’s BirdFluBreakingNews search engine.

David’s writing has been in print in over 65 countries, in magazines such as Linux Maga-
zine, Dr Dobb’s Journal, and International PHP Magazine. He's also taught college courses and
spoken publicly on topics such as “MySQL and You” and “Making Money with Open Source
Software.”

Feel free to contact the author via his website at http://berubeconsulting.com or via his
email address at djberube@berubeconsulting.com.

xiii

Acknowledgments

I 'd like to thank my parents and my sisters; I can’t imagine writing this book without them.
I'd also like to thank the many friends that have supported me; in particular, I'd like to thank
Wayne Hammar and Matthew Gifford.

I'd also like to thank the vast array of professional associates I've worked with and learned
from, and in particular I'd like to thank Terry Simkin, Ted Roche, Bill Sconce, Bruce Dawson,
K.C. Singh, and Joey Rubenstein. Thanks to Peter Cooper for introducing me to the possibility
of writing this book.

Finally, I'd like to thank my editors, originally Keir Thomas and later Jason Gilmore, as
well as my technical reviewer Yan Pritzker, my project manager Richard Dal Porto, and my
copy editor Candace English.

Xv

PART 1

Using RubyGems

This section of the book introduces RubyGems and explains how you can start using them
in your code.

CHAPTER 1

What Is RubyGems?

In short, RubyGems lets you distribute and install Ruby code wherever you can install Ruby.

Specifically, RubyGems is a package-management system for Ruby applications and
libraries. It lets you install Ruby code—called gems—to any computer running Ruby. It can
resolve dependences for you, so if you want to install a given piece of software, RubyGems can
handle that for you. It can even resolve version dependencies—so that if a certain gem or your
code requires a certain version of another gem, it can take care of that. It also wraps all of this
functionality in a very easy-to-use package.

The gems come in a variety of types. For example, if you had a Web application to which
your users uploaded pictures from a digital camera, you'd likely need to resize the pictures,
which come in a variety of sizes. You could write the resizing code by hand, but it'd be consid-
erably faster to use the rmagick gem to resize the pictures—and you could add additional
features like cropping, rotation, sharpening, and so on with just a few extra lines of code, since
rmagick includes all of those features. (See Chapter 25 for more details.)

Alternatively, if you want to develop a Web application using Ruby on Rails—which is a full-
featured, very powerful Model View Controller (MVC) Web framework—you could install that
using RubyGems as well. Rails consists of a number of libraries and utilities—all of which can
be installed by RubyGems with just one command. (See Chapter 23 for more information.)

This chapter covers the features of RubyGems and how it differs from other package-
management systems.

Why Use RubyGems?

First of all, RubyGems makes it easy use to install Ruby software. For example, Instiki
(http://instiki.org/) is a wiki—a kind of content-management system—and if we wanted
to install the instiki gem, we could do so with the following command in the Linux/Mac
OS X shell or the Windows command prompt:

gem install instiki

Of course, to do that you'd need RubyGems installed, and we’ll cover that in the next two
chapters. For now, though, you can see how easy it is to install gems—just one command and
RubyGems takes care of the rest.

This can be extremely important; for example, if you had a Web application written in
Ruby and your server failed, you'd need to be able to quickly and easily install all of the soft-
ware that your application needs on a new server.

CHAPTER 1 ©° WHAT IS RUBYGEMS?

It Provides a Standard Way to Describe Ruby Software
and Requirements.

RubyGems lets you define gemspecs. A gemspec describes software—it includes the name,
version, description, and so forth. This gemspec can be built into a . genm file, which is a com-
pressed archive containing the gemspec and all of the files that the software requires.

This .gem file can be uploaded to RubyForge, which lets you install it from any Internet-
connected RubyGems installation, or it can be distributed via traditional means, like HTTP
or FTP. Because the . gem file contains a description of the program, you can also use the gem
list command to see the details of the gem or to search for similar gems. (You can find more
details on the gem 1ist command in Chapter 3 and you can find out more about building
gems in Chapters 34 and 35.)

For example, if you upgrade a version of a gem and the new version has additional
requirements, you won't need to scour the documentation for the changes—RubyGems will
automatically read the requirements from the gemspec since the format of the gemspecs is
standard.

It Provides a Central Repository of Software.

One of the aspects of RubyGems that makes it so appealing is it gives you access to RubyForge
—a central repository of Ruby software. You can find out more about RubyForge at, http://
rubyforge.org.Without RubyForge, you'd have to locate, download, and then install a gem and
its dependencies. With RubyForge, though, RubyGems can automatically locate the software
and its dependencies for you.

Although most Rubyists (Ruby programmers and enthusiasts) install gems only from the
central repository, you aren’t required you to use it—you can install gems from any location
you choose. (You can also set up your own gem server, which you’ll learn about next.) For
example, if you had to move your software from one operating system to another, your operat-
ing system’s packaging system and repository would be different, but RubyGems would stay
the same—you can use RubyForge wherever RubyGems is installed.

It Lets You Redistribute Gems Using a Gem Server.

The technology used to serve gems comes with RubyGems. You can set up your own RubyGems
server on a local network or on the Internet without much trouble; if, for example, you'd like to
cache all of the gems your development team uses on a local server to speed up downloads, you
can do that.

If you'd prefer not to use RubyForge and rather distribute gems via your own website or
gem server, you can do that too. You can find more details in Chapter 35.

CHAPTER 1 " WHAT IS RUBYGEMS?

It Handles Software Dependencies for You.

RubyGems can take care of dependencies automatically. That means that when you install a
gem, it can automatically determine what other gems are required and ask you if you'd like to
install them.

This can make your life much easier, since a significant amount of Ruby software is built
using other Ruby software—and that other Ruby software might require still more software.
Without RubyGems, you might have to spend hours installing and researching dozens of
packages to get complex software working. With RubyGems, you can just install the gem and
let it resolve dependencies for you.

It Handles Multiple Software Versions Intelligently.

RubyGems can store multiple gem versions, and software that uses RubyGems can

request particular gem software versions—so, for example, an application that requests

the ActiveRecord gem (http://rubyforge.org/projects/activerecord/) could request a gem
that’s newer or older than a given version. This is very helpful if, for example, a later version of
a gem breaks your program, or if your program requires a feature from the latest version of a
gem. (You can find more details on how to do this in Chapter 4.)

It Can Be Used Transparently in Place of Regular Ruby Libraries.

RubyGems has a facility that makes it transparent to use gem software. For example, suppose
you wanted to use the Camping (http://rubyforge.org/projects/camping/) Web microframe-
work. If you installed Camping the traditional way, you would use the Camping library in your
code like this:

require 'camping'

If you installed it via RubyGems, you use the exact same code. As you can see, using code
via RubyGems is transparent, so you can switch back and forth easily; if you distribute your
software, the user does not need to have RubyGems installed—only the required library.

Note, however, that if you want to require that a certain version of the software is installed,
you'll need to use a special RubyGems statement in your code. (See Chapter 4 for further details.)

It Lets You Use the Same Technology on Any Operating System.

RubyGems targets all platforms that run Ruby. If it runs Ruby, it runs RubyGems. A number

of other systems exist to make software installation easier; there’s everything from those that
simply install software—like Window’s MSI installation system—to full package-management
systems, like Debian Linux’s apt (Advanced Package Tool), Red Hat’s yum, or OS X’s DarwinPorts.
Such systems are generally operating system—dependent, though, as we’ll discuss next.

5

CHAPTER 1 ©° WHAT IS RUBYGEMS?

How Does RubyGems Compare to Other
Packaging Systems?

Operating system-specific packaging systems, such as apt or yum, can carry Ruby software as
well. Since Ruby software can be used by non-Rubyists, this is important. It’s also convenient if
you need just a few pieces of software. For Rubyists, though, it’s usually better to install gems
using RubyGems, since RubyGems has the best selection of Ruby software and the latest ver-
sions. Additionally, unlike RubyGems, OS-native packagers don’'t handle multiple gem
versions installed simultaneously.

However, it is possible to install a limited selection of Ruby software using other packag-
ing systems. For example, you could install the MySQL Ruby bindings via gem like this:

gem install mysql

Alternatively, you could install the same library via apt-get under Ubuntu Linux like this:
apt-get install libmysql-ruby1.8

Finally, you could install it via DarwinPorts under OS X like this:
port install rb-mysql

Note that those three commands require you to be logged in as root—if you prefer, you
can prefix each command with sudo, which will execute that single command with the root-
user privileges.

In some cases you can install software via apt or another packaging system. Such systems
usually have a very limited selection of Ruby packages, but if they happen to include all of the
software you need, you may be able to use them. Consult the documentation that comes with
your Linux distribution or other packaging system.

Note, though, that installing gems from your OS distribution is not recommended. It
means you have to use the version of the software in your OS’s repository, and often this lags
significantly behind the RubyGems versions. Using the gem installer, as we do throughout this
book, will automatically give you access to the most recent gem versions.

Of course, you can always skip package-management systems entirely—you can install
Ruby software by running an install script manually or by copying files into the 1ib directory
of your Ruby installation. If you want to do so, download the software you want from its
homepage and consult the included README or INSTALL file.

CHAPTER 2

Installing RubyGems

Y)u'll need the RubyGems system to follow the examples from this book. The RubyGems
system lets you use a vast array of Ruby software packages—including all of the gems we cover
in this book. In general, it’s fairly easy to install RubyGems. Of course, before you can install
RubyGems, you need to install Ruby—we’ll cover both in this chapter. Finally, we'll explain
how you can update a RubyGems system you've already installed.

Note If you already have RubyGems installed, you can skip this chapter.

Installing Ruby

To follow the examples in this book, and before you install RubyGems, you must have the
Ruby programming language interpreter and libraries installed on your machine.

Mac OS X comes with Ruby preinstalled; if you have Mac OS X installed, you can skip
straight to the section, “Installing RubyGems under Linux and Mac OS X.” Many Linux distri-
butions include Ruby, so we'll cover how you can check if your computer has Ruby installed.
Windows does not install Ruby by default, so if you are running Windows, skip straight to
“Installing Ruby on Windows Using the One-Click Installer.” (If you're using Windows, the
One-Click Installer will install both Ruby and RubyGems at once.)

Is Ruby Already Installed on Your Computer?

If you're not sure if you need to install Ruby, run the following command at the OS X/Linux
shell or the Windows command prompt:

ruby -v

If you receive a “command not found” error, you don’'t have Ruby installed. You should get
a message like the following:

ruby 1.8.4 (2006-04-14) [1386-mswin32]

CHAPTER 2 "' INSTALLING RUBYGEMS

The version number is the number immediately after the “ruby”—in this case, 1.8.4. Note
that to use the RubyGems system (as well as to use a lot of other software that uses Ruby),
you'll need version 1.8.4 or later. If you have a lower version, you should upgrade—look for
appropriate instructions for your operating system to upgrade your installation.

Installing Ruby on a Linux System

We'll briefly cover three methods of installing Ruby on Linux. The first, apt, is a package man-
ager for Debian-based distributions, such as Ubuntu. The second, yum, is a package manager
for Red Hat-based distributions. These both offer an easy way to install Ruby. If your system
does not support either apt or yum, you can install Ruby by compiling the source code your-
self, which is slightly more complicated. We'll cover that method last.

Installing Ruby on Debian Linux Distributions with apt

apt is a popular package-management system for Debian Linux and Debian-based distribu-
tions, such as Ubuntu Linux, Lindows, Xandros, and others. It bears some similarities to
RubyGems; for instance, it can download, install, and remove software from the command
line. (apt can also be used on non-Debian distributions, but it does not come installed by
default.)

If you'd like to use apt to install Ruby, you can do so as follows:

sudo apt-get install ruby*

This will automatically download and install Ruby, and you can proceed to the “Testing
Your Ruby Installation” section of this chapter.

Note The last two apt-get commands install required libraries for installing RubyGems; if you don’t plan
on installing RubyGems, those aren’t absolutely necessary to run Ruby.

Installing Ruby on Red Hat Linux Distributions with yum

yum is another package-management system—it’s very similar to apt. It’s available on all
versions of Fedora Core. If you'd like to use yum to install Ruby, you can do so as follows:

yum install ruby

This will download and install Ruby and the required libraries for you, and you can pro-
ceed to the “Testing Your Ruby Installation” section of this chapter.

CHAPTER 2 "' INSTALLING RUBYGEMS

Installing Ruby on Linux from the Ruby Source

You'll need to have gcc and make installed to compile Ruby; if you don’t have them installed,
consult your distribution’s documentation for the installation instructions. First download
and uncompress the latest Ruby source tarball from ftp://ftp.ruby-lang.org/pub/ruby/,
then compile and install Ruby with the following shell commands:

./configure
make

make test
make install

Once you've done so, your Ruby installation should be ready and you can proceed to the
“Testing Your Ruby Installation” section of this chapter.

Installing Ruby on Windows Using the One-Click Installer

The Ruby One-Click installer is very easy to use. It is a precompiled, self-contained Windows
installer. It'’s developed by Ruby Central (http://rubycentral.org/), and provides Ruby in the
only real way to distribute software for Windows, which is as a binary—after all, Windows does
not have any method to compile software by default. (This is true under some Linux distribu-
tions as well.)

The installer is very simple, as you can imagine from the name—you won't have to launch
multiple programs or type commands into the Windows prompt, so it fits in well with the
Windows way of doing things.

You can download the One-Click Installer from http://rubyinstaller.rubyforge.org/.
Once you've done so, run the program by double-clicking on the icon. You'll be asked a few
questions, but if you select the default options you should be all set. Proceed to the “Testing
Your Ruby Installation” section of this chapter.

DOWNLOADING FILES WITH WGET

While the most familiar way to download files under Windows is to use a Web browser, there are other
options. A popular Linux utility, wget, comes in Win32 form—you can get it at http://users.ugent.be/
~bpuype/wget/.
waget lets you download files from the command line in just one command. Not all Windows users are
comfortable using the command prompt, but once you become comfortable, many people find it easier to use.
Once you’ve downloaded and installed wget, you can use it to download Ruby from the command
prompt like this:

wget http://rubyforge.org/frs/download.php/11926/ruby184-20.exe

This would save you a number of clicks and the hassle of launching a Web browser.

10

CHAPTER 2 "' INSTALLING RUBYGEMS

Testing Your Ruby Installation

How can you be sure that Ruby works? Let’s try a very simple test. You can rerun the version
command discussed earlier by typing the following command in the Windows command
prompt or the Linux/OS X shell:

Tuby -v

You should get a display similar to the following:

ruby 1.8.4 (2006-04-14) [1386-mswin32]

If you'd like to test an actual line of code, you can do so as follows:
ruby -e "puts 'hello world!""

You should get the following output:

hello world!

Once you've verified that you have Ruby installed, you can install RubyGems; we’ll cover
that next. If you used the Windows One-Click Installer, it already installed RubyGems for you,
so you can skip straight to “Testing Your RubyGems Installation.”

Installing RubyGems Under Linux and Mac 0S X

It’s fairly easy to install RubyGems on Linux, and you can use the same procedure to install
RubyGems on Mac OS X. On those systems, use the following shell commands to download
and install RubyGems:

curl -0 http://rubyforge.org/frs/download.php/11289/rubygems-0.9.0.tgz
tar -xvzf rubygems-0.9.0.tgz

cd rubygems-0.9.0.tgz

ruby setup.rb

Once you've done so, set an environment variable, RUBYOPT, using a line in your .profile:
export RUBYOPT=rubygems

This environment variable causes RubyGems to be run whenever Ruby is run. You can get
an similar effect by including the line require "rubygems" in all of your Ruby scripts, but since
most Ruby scripts using RubyGems are written assuming that you have RUBYOPT set, that’ll
require you to modify all of the programs you download—no small task. You can also run your
Ruby script with the -rubygems option, but that’s a lot of extra typing.

CHAPTER 2 "' INSTALLING RUBYGEMS

Note You shouldn’t have any negative effects from setting the RUBYOPT variable—even if some of your
scripts don’t use RubyGems. (Keep in mind that the Windows installer sets the RUBYOPT variable for you
unless you explicitly tell it not to.)

At this point, you should have a working RubyGems system, so you can install and use
gems. You can now check your installation by following the directions in the next section of
this chapter.

Testing Your RubyGems Installation

First let’s pull up a list of installed gems. You can use the following command at the Linux/OS X
shell or the Windows command prompt:

gem --version

You should get the following response:

X.y.z

Note that x.y.z will be replaced by the appropriate directions for your operating system.
If you get a “command not found” error, you've done something wrong and you’ll want to fol-
low the appropriate instructions again for your operating system; you'll also want to make
sure you installed Ruby before you installed RubyGems. Also check that if you already had
Ruby installed, it’s a version later than 1.8.4. If not, you'll want to install a more recent version.

At this point, you have a working RubyGems install—you can now try all of the examples
in this book.

Updating Your RubyGems System After You’ve
Installed It

Once you've installed RubyGems, you can update it easily. You can use the same command on
any operating system. Typing the following command at the Linux/OS X shell or the Windows
command prompt will update RubyGems:

gem update --system

This will automatically download and install the latest update of the RubyGems system;
you can then use whatever updates have been made available. To check for RubyGems
updates, visit http://rubygems.org/.

11

CHAPTER 3

Using RubyGems in Your Code

In this chapter you'll learn how you can use RubyGems in your code. You'll learn about
installing individual gems; see a practical example of using them; get debugging tips; and
consider a few miscellaneous issues, like unpacking gems so they can be edited, freezing
gems so they don’t change, and using plugins and engines under Rails.

Getting Started with a Ruby Gem

Before we use a gem, we must install it. The instructions in this chapter assume you have the
RubyGems system already installed; if you don't, refer to the previous chapter.

Gems are usually downloaded automatically, since the gem program can fetch gems from
the Internet. In fact, you can install most gems with a single command:

gem install gemname

Replace gemname with the name of the gem you want to install. Of course, to do that, you
need to know what the gem is called. To demonstrate this and other aspects of gem use, we're
going to follow a small demo project.

Suppose you are developing an ecommerce application, and you want a quick way to find
out if a credit card number is valid without actually charging the card; that way, you can have
immediate feedback in your user interface if a customer mistypes the number.

To find a gem that fits our criteria, we could do aWeb search to determine if there are any
gems with the functionality we need. However, we can first search the gem repository directly
using the gem 1ist command. We can guess that a gem dealing with credit will start with the
word credit; let’s search the repository and see what we get. We can do that with the following
shell or Windows Prompt command:

gem list -r credit
k REMOTE GEMS *

creditcard (1.0)
These functions tell you whether a credit card number is
self-consistent using known algorithms for credit card numbers.

A few things to note: the -1 switch tells the gem command not to search the local reposito-
ries, since we'd probably know if we installed a gem that fits our needs. If you omit the -r
switch, it'll search both local and remote gems. If you replace -r with the -1 switch, you'll

search local gems only. 13

14

CHAPTER 3 © USING RUBYGEMS IN YOUR CODE

The credit part of that command tells the gem command to search for gems whose
name starts with credit. Note that this is part of a regular expression, so if you say gem 1ist
-r .*credit, you'll search for any gem whose name contains credit anywhere in the string.

Also note that you do not need to specify a search criteria; gem list -1 will give you a
complete list of remote gems, and gem list -1 will tell you all of the gems you've installed
locally. (You can save a copy of the remote gem list using your operating system’s redirection
support: gem 1list -r > remote gem list.txt will save alist of all remote gems available into
remote gem list.txt.)

Now that we know the name of the gem, we can install it. Here’s the command that will
install the creditcard gem:

>gem install creditcard
Successfully installed creditcard-1.0.0

You'll likely need to run this command as root under Linux/OS X. Once you've installed
the gem, you can create an application to use it.

Using the creditcard Gem

The creditcard gem verifies that credit card numbers are valid. At first glance, it might seem
like the gem actually runs cards through a credit card processor; it doesn't. It also does not
verify that the account exists, that the expiration date is correct, or that there is sufficient
available balance in the account to make a charge; all of those require actually charging the
card via a payment gateway or merchant account, which takes time and isn’t done until an
order is complete.

Note Keep in mind that any given gem won’t always solve your problem—you might need to look around
a bit to find one that fits, and even when you find it you'll likely need to do some work to get it to solve your
particular problem. At times, it may be more work fitting the gem into place than it would be to solve the
problem from scratch, particularly if the gem were badly designed—in that case, you’d be better off using
custom code.

However, it does verify that a number isn’t invalid; it checks the internal checksum of the
card number, and that can be done immediately as a user is entering card information. As a
result, the creditcard gem can help ensure that users entered cards correctly and do not make
any typos. Let’s write a simple app to use the creditcard gem to test credit card numbers.

require 'creditcard’

if ARGV[0]
credit _card number=ARGV[0]
if credit card number.creditcard?
puts "Credit card number is valid " <«
"with type #{credit card number.creditcard type}."
else

CHAPTER 3 © USING RUBYGEMS IN YOUR CODE

puts "Credit card number is not valid."
end
else
puts "Please enter a valid credit card number."
end

That'’s pretty simple code for some fairly complex functionality; the statement “require
creditcard” gives us the ability to use the full functionality of that gem quite easily on any
string.

Note You can download all of the code from this book from the Source Code/Download section of
http://www.apress.com/ instead of typing it in.

The ARGV array is a Ruby global variable that contains the command-line arguments to the
program. Our program expects you to pass a credit card on the command line, so if there
aren’t any, the program will print “Please enter a valid credit card number.” It'll then call the
creditcard? method. This returns true if the string is a valid credit card, and false otherwise.
This method takes an optional parameter—if we called it credit_card_number.creditcard?
visa, it would return true only if the number were a valid Visa credit card number, and false if
it were an invalid credit card number or a non-Visa credit card number. The other method we
use is the creditcard_type method; it’s also an extension to the String class. That method
returns the credit card type, and the preceding listing uses it to print out the credit card type.

Note that no special creditcard objects are created; the creditcard gem extends the
String class directly. This is not possible in most languages; however, in Ruby this is called
monkeypatching, and is common. Also note that both methods end in a question mark. This is
a Ruby convention indicating that the method returns a true or false value. The question mark
has no special syntactic value—it’s just an indication to the programmer. (The other symbol
commonly used at the end of method names is the exclamation mark, which means that a
method modifies the receiver in place.)

Let’s test the program. We'll start by checking that a completely bogus input doesn’'t work:

ruby creditcard_check.rb not-a-number

Credit card number is not valid.

It’s good so far. Now let’s try with a correctly formatted number that isn’t a valid card:

ruby creditcard_check.rb 0000-0000-0000-0000

Credit card number is valid with type unknown.

15

16

CHAPTER 3 © USING RUBYGEMS IN YOUR CODE

The numbers in Table 3-1 are test card numbers used to debug payment gateways, termi-
nals, and merchant accounts. They are numerically correct, but aren’t attached to any charge
account. We can use them to test our script.

Table 3-1. Test Credit Card Numbers

Card Type Test Number

Visa 4111-1111-1111-1111
MasterCard 5431-1111-1111-1111
American Express 341-1111-1111-1111
Discover 6011-6011-6011-6611
Diners Club 3530-1113-3330-0000

Let’s grab the test numbers from the table and see how well they work:

ruby creditcard check.rb 4111-1111-1111-1111

Credit card number is valid with type visa.

Tuby creditcard check.rb 5431-1111-1111-1111

Credit card number is valid with type mastercard.

Tuby creditcard check.rb 341-1111-1111-1111

Credit card number is valid with type american_express.

ruby creditcard check.rb 6011-6011-6011-6611

Credit card number is valid with type discover.

>ruby creditcard check.rb 35301113333300000

Credit card number is invalid.

You can see that the gem detects valid test cards without a problem. In a production envi-
ronment it may be wise to test with a few real cards as well. You can also see that it supports
both card numbers formatted with dashes and those without, and a fair number of card types.

