
Pro Java EE 5
Performance
Management and
Optimization

■ ■ ■

Steven Haines

Haines_6102FRONT.fm Page i Friday, April 14, 2006 7:51 AM

Pro Java EE 5 Performance Management and Optimization

Copyright © 2006 by Steven Haines

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13: 1-59059-610-2

ISBN-10: 978-1-59059-610-4

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Steve Anglin
Technical Reviewers: Mark Gowdy, Dilip Thomas
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser,
Keir Thomas, Matt Wade

Project Manager: Beth Christmas
Copy Edit Manager: Nicole LeClerc
Copy Editors: Heather Lang, Nicole LeClerc
Assistant Production Director: Kari Brooks-Copony
Production Editor: Laura Cheu
Compositor: Susan Glinert
Proofreader: Liz Welch
Indexer: Broccoli Information Management
Artist: Kinetic Publishing Services, LLC
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski
Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section.

Haines_6102FRONT.fm Page ii Friday, April 14, 2006 7:51 AM

This book is dedicated to my wife, Linda, and my son, Michael.
Your love has been my inspiration and the purpose of life.

Thank you for loving me the way that you do!

Haines_6102FRONT.fm Page iii Friday, April 14, 2006 7:51 AM

v

Contents at a Glance

About the Author . xv

About the Technical Reviewer . xvii

Acknowledgments . xix

Introduction . xxi

PART 1 ■ ■ ■ Fundamentals
■CHAPTER 1 An Introduction to Application Performance Management 3

■CHAPTER 2 Quantifying Performance . 25

■CHAPTER 3 Performance Measurements . 47

■CHAPTER 4 Implementing Performance Measurements . 73

PART 2 ■ ■ ■ Application Life Cycle
Performance Management

■CHAPTER 5 Performance Through the Application Development
Life Cycle . 125

■CHAPTER 6 Performance Tuning Methodology . 155

■CHAPTER 7 Tuning an Application Server . 177

■CHAPTER 8 High-Performance Deployments . 207

■CHAPTER 9 Performance and Scalability Testing . 223

Haines_6102FRONT.fm Page v Friday, April 14, 2006 7:51 AM

vi

PART 3 ■ ■ ■ Performance Management
in Production

■CHAPTER 10 Java EE Performance Assessment . 255

■CHAPTER 11 Production Troubleshooting Methodology s 299

■CHAPTER 12 Trending, Forecasting, and Capacity Planning 317

■CHAPTER 13 Assembling a Performance Management Plan 337

PART 4 ■ ■ ■ Tips and Tricks
■CHAPTER 14 Solving Common Java EE Performance Problems 351

■CHAPTER 15 Next Steps . 373

■INDEX . 381

Haines_6102FRONT.fm Page vi Friday, April 14, 2006 7:51 AM

vii

Contents

About the Author . xv

About the Technical Reviewer . xvii

Acknowledgments . xix

Introduction . xxi

PART 1 ■ ■ ■ Fundamentals

■CHAPTER 1 An Introduction to Application
Performance Management . 3

Impact of Poor Performance . 4

Complications in Achieving Application Performance 6
Evolution of Java Applications . 6

Layered Execution Model . 7
Prebuilt Frameworks . 9

Java EE Expertise . 10

Development Tools . 10

Service-Oriented Architecture and Web Services 11

Application Performance . 13

Java EE Performance Problems . 14

Application Performance Management . 15

APM in Architecture . 15

APM in Development . 16

APM in QA . 17

APM in Preproduction. 18

APM in Production . 19

Haines_6102FRONT.fm Page vii Friday, April 14, 2006 7:51 AM

viii ■C O N T E N T S

The Role of the Java EE System Administrator . 19

Application Server Topology Configuration . 20

Application Server Tuning . 20

Application Deployment . 21

Application Production Integration . 21

Capacity and Scalability Assessment . 22

Trending, Forecasting, and Capacity Planning 22

Application Production Troubleshooting and Triaging 23

Summary . 24

■CHAPTER 2 Quantifying Performance . 25

Defining Performance . 25

End-User Response Time . 26

Request Throughput . 26

Resource Utilization . 27

Application Availability . 29

Before Quantifying Performance Requirements . 29

SLA Stakeholders . 29

SLA Properties. 29

Measuring Performance . 30

Acquiring Data. 31

Interpreting Data . 32

Costs of Measuring Performance . 35

Mitigating the Cost of Performance Monitoring . 37

Improving Performance . 37

Building a Performance Test Plan . 38

Know Your Users. 38

Performance Testing Phases . 40

Summary . 45

■CHAPTER 3 Performance Measurements . 47

Performance Measurement Prerequisites . 47

Performance Monitoring and Management
Using Java Management Extensions (JMX) . 50

JMX Architecture . 51

JSR 77 Architecture . 53

Obtaining Application Server Metrics . 56

Haines_6102FRONT.fm Page viii Friday, April 14, 2006 7:51 AM

■C O N T E N T S ix

Obtaining Application Metrics . 58

Custom Instrumentation. 59

Automatic Instrumentation . 62

Obtaining JVM Metrics . 64

Aggregating Data . 66

Correlating Data . 67

Visualizing Data . 70

Summary . 71

■CHAPTER 4 Implementing Performance Measurements 73

Reading Application Server Metrics . 74

Implementing Code Instrumentation . 94

Instrumentation Engine . 97

Test Application . 109

Instrumentation Command Interface . 114

Summary . 121

PART 2 ■ ■ ■ Application Life Cycle
Performance Management

■CHAPTER 5 Performance Through the Application Development
Life Cycle . 125

Performance Overview . 125

Performance in Architecture . 126

SLAs . 127

Object Life Cycle Management . 129

Application Session Management. 130

Performance in Development . 132

Unit Testing . 133

Unit Performance Testing . 140

Performance in Quality Assurance . 149

Balanced Representative Load Testing . 150

Production Staging Testing . 151

Identifying Performance Issues . 151

Summary . 154

Haines_6102FRONT.fm Page ix Friday, April 14, 2006 7:51 AM

x ■C O N T E N T S

■CHAPTER 6 Performance Tuning Methodology . 155

Performance Tuning Overview . 155

Load Testing Methodology . 156

Load Testing Design . 157

Load Testing Process . 158

Wait-Based Tuning . 159

Tuning Theory . 160

Tuning Backward . 162

JVM Heap. 163

Wait-Based Tuning Conclusions . 164

Tuning Example . 164

Application Bottlenecks . 172

Summary . 176

■CHAPTER 7 Tuning an Application Server . 177

Application Server Requirements . 178

Biggest Bang: Quickly Grabbing the 80 Percent 180

Tuning the JVM Heap . 180

Tuning Thread Pools. 197

Tuning Connection Pools . 198

Tuning Caches . 198

Fine-tuning: Realizing the Remaining 20 Percent 199

Tuning EJB Pools . 199

Precompiling JSPs . 200

Tuning the JMS . 202

Understanding Servlet Pooling and the Impact of
Non-Thread-safe Servlets. 202

Tuning Prepared Statement Caches . 203

Configuring Advanced JDBC Options . 204

Summary . 205

■CHAPTER 8 High-Performance Deployments . 207

Deployment Overview . 207

Formal Deployment Topology . 209

Haines_6102FRONT.fm Page x Friday, April 14, 2006 7:51 AM

■C O N T E N T S xi

Software Clusters . 211

Technical Requirements . 212

Architecting Clusterable Applications . 213

Horizontal and Vertical Clusters . 214

Disaster Recovery . 215

Realizing the Logical Configuration . 217

Hardware Infrastructure . 219

Load Testing Strategy . 221

Summary . 222

■CHAPTER 9 Performance and Scalability Testing . 223

Performance vs. Scalability . 224

Capacity Assessment . 227

Graduated Load Tester . 227

Capacity Assessment Usage Mappings . 229

Measurements . 230

Building a Capacity Assessment Report . 234

Executive Summary . 234

Test Profile. 235

Capacity Analysis . 236

Degradation Model . 237

Impact Analysis . 238

Analysis and Recommendations . 239

Sample Capacity Assessment Report . 240

Executive Summary . 240

Test Profile. 241

Capacity Analysis . 243

Degradation Model . 245

Impact Analysis . 248

Final Analysis and Recommendations . 250

Summary . 251

Haines_6102FRONT.fm Page xi Friday, April 14, 2006 7:51 AM

xii ■C O N T E N T S

PART 3 ■ ■ ■ Performance Management
in Production

■CHAPTER 10 Java EE Performance Assessment . 255

Performance Assessment Benefits . 256

Performance Assessment Overview . 257

Prerequisites . 257

Process . 258

Analysis . 258

Mitigating Performance Overhead . 258

Platform Recording . 259

Application Recording . 261

Preproduction Strategy . 262

Preparing the Production Environment . 263

Assessing Usage Patterns . 264

Evaluating Critical Mass . 265

Determining User Load . 265

Recording Metrics. 265

Production Strategy . 266

Recording at the Right Intervals . 267

Environmental Subsets . 268

Staged Recording . 269

Metric Recording. 270

Metric Analysis . 271

Environment . 271

Application Server. 279

Application . 287

SQL Report . 295

Summary . 297

■CHAPTER 11 Production Troubleshooting Methodology 299

Performance Issues in Production . 300

Prerequisites . 301

Haines_6102FRONT.fm Page xii Friday, April 14, 2006 7:51 AM

■C O N T E N T S xiii

Production Support Methodology . 302

Roles of Support Personnel . 302

The Production Support Workflow . 304

Triggers . 305

Level 1 Support . 306

Level 2 Support . 308

Level 3 Support . 309

Level 4 Support . 311

Benefits of a Formal Production Support Methodology 313

Summary . 315

■CHAPTER 12 Trending, Forecasting, and Capacity Planning 317

Trends . 318

Usage Patterns . 319

Heap Usage Patterns . 321

Resource Utilization Patterns. 323

Response Time Patterns . 326

Forecasting . 327

Capacity Planning . 330

Forecast Risk Analysis . 331

Capacity Assessment . 332

Capacity Plan. 333

Summary . 335

■CHAPTER 13 Assembling a Performance Management Plan 337

Evolution of the Performance Management Plan 338

Performance Management Infrastructure . 341

Performance Management Process Document . 342

Application Performance Management Document 343

Performance Test Infrastructure . 345

Performance Deployment Infrastructure . 345

Production Support Infrastructure . 346

Capacity Planning Infrastructure . 347

PMP Life Cycle . 347

Summary . 348

Haines_6102FRONT.fm Page xiii Friday, April 14, 2006 7:51 AM

xiv ■C O N T E N T S

PART 4 ■ ■ ■ Tips and Tricks

■CHAPTER 14 Solving Common Java EE Performance Problems 351

Out-of-Memory Errors . 352

Causes of Out-of-Memory Errors . 352

Resolving Memory Leaks . 358

Artificial Memory Leaks . 359

Thread Pools . 364

Thread Pools That Are Too Small . 364

Thread Pools That Are Too Large . 366

JDBC Connection Pools . 366

JDBC Prepared Statements . 367

Entity Bean and Stateful Session Bean Caches . 368

Stateless Session Bean and Message-Driven Bean Pools 370

Transactions . 370

Summary . 371

■CHAPTER 15 Next Steps . 373

Tools of the Trade . 373

Load Tester . 373

Performance Profilers. 374

Performance Analysis Tools . 376

24×7 Unattended Monitoring . 376

End-User Experience Monitors . 377

Online Communities . 378

Developing a Performance Management Plan . 379

Summary . 379

■INDEX . 381

Haines_6102FRONT.fm Page xiv Friday, April 14, 2006 7:51 AM

xv

About the Author

■STEVEN HAINES is the author of three Java books: The Java Reference Guide (InformIT/Pearson,
2005), Java 2 Primer Plus (SAMS, 2002), and Java 2 From Scratch (QUE, 1999). In addition to
coauthoring and contributing chapters to other books, as well as providing technical editing
for countless software publications, he is also the Java Host on InformIT.com. As an educator,
Haines has taught all aspects of Java at Learning Tree University and at the University of
California, Irvine. By day, he works as a Java EE 5 performance architect at Quest Software,
defining performance tuning and monitoring software, as well as managing and executing
Java EE 5 performance tuning engagements for large-scale Java EE 5 deployments, including
those of several Fortune 500 companies.

Haines_6102FRONT.fm Page xv Friday, April 14, 2006 7:51 AM

xvii

About the Technical Reviewer

■MARK GOWDY is the manager of the systems consultants for Java Solutions at Quest Software.
He has been consulting and working in Java performance for four years and has been active in
the Java industry for over eight years. As a consultant, he has assisted Fortune 500 organizations
in finding and resolving performance issues in their Java applications.

Haines_6102FRONT.fm Page xvii Friday, April 14, 2006 7:51 AM

xix

Acknowledgments

First off, I would like to thank my personal Lord and Savior, Jesus Christ, through whom all of
this has been possible. I would like to thank my mother for her support and for helping me stay
focused on writing this book. I would like to thank my technical reviewer, Mark Gowdy, for
going the extra mile to ensure the quality of this book on an accelerated schedule. I would like
to thank John Newsom and Rini Gahir for their internal book reviews and great ideas, and I would
like to especially thank Emerald Pinkerton for her hard work and dedication in promoting this
book within Quest Software.

I want to thank the top-quality staff at Apress who have helped make all of this possible:
Steve Anglin, Beth Christmas, Stephanie Parker, Heather Lang, Nicole LeClerc, and Laura Cheu.

Many thanks to Dr. Bradstreet and the staff at ICDRC for taking care of my son and giving
us hope. God’s hands are upon all of you and the great work you are performing.

Finally, I would like to thank you, the reader, for giving this book your serious consideration.
Performance management is a new and much needed practice in Java EE, and I hope that this
book equips you to take control of the performance of your complex enterprise environments.

Haines_6102FRONT.fm Page xix Friday, April 14, 2006 7:51 AM

xxi

Introduction

This book is divided into four parts:

• Part 1: Fundamentals

• Part 2: Application Life Cycle Performance Management

• Part 3: Performance Management in Production

• Part 4: Tips and Tricks

In the first part, we explore the nature of application performance and define what is meant
by “performance management.” Specifically, Chapter 1 sets the stage by reflecting on the state
of the Java EE market, provides insight into why performance management is so difficult in a
Java EE application, and defines the role of the Java EE administrator. Chapter 2 defines how we
quantify and measure performance and explores the costs of measuring application performance.
Chapter 3 is dedicated to the details you need to gather to assess the health of your applications’
performance and the mechanisms used to gather them. Chapter 4 concludes the part by diving
deep into the underlying technologies used in gathering performance information.

The second part, Application Life Cycle Performance Management, addresses every
performance-related task that you perform prior to deploying your application into a
production environment. Specifically, Chapter 5 addresses how to ensure the performance of
your applications during the architecture phase and the performance testing steps required
in application development, QA, and production staging to manage performance as applica-
tions are developed. Chapter 6 provides an overview of the wait-based tuning approach for
applications and application servers. Chapter 7 looks deep under the hood of an application
server, at the important metrics to consider when tuning your application server, showing
you how to realize 80 percent of your tuning impact with 20 percent of your tuning efforts.
Chapter 8 discusses high-performance deployments and deployment strategies that can be
employed to maximize performance while considering high-availability and failover require-
ments. Chapter 9 concludes this section by discussing performance and scalability testing,
specifically how to assess the capacity of your environment.

Once your applications are running in a production environment, you have a new set of
challenges to address. Part 3, Performance Management in Production, discusses performance
from a production standpoint. Chapter 10 proposes using a performance assessment periodically
performed against your production environment to assess its health and identify tuning points
in both your applications and environment to improve performance. Chapter 11 presents the
theory behind a formal production support workflow to help you efficiently resolve production
issues when they occur. Chapter 12 looks to the future of your application by providing strate-
gies to trend analysis, forecasting, and capacity planning. Chapter 13 concludes this part by
helping you assemble a full life cycle performance management plan.

Haines_6102FRONT.fm Page xxi Friday, April 14, 2006 7:51 AM

xxii ■I N T R O D U CT I O N

The book concludes with Part 4, Tips and Tricks, which includes a chapter on common
performance problems and next steps. Chapter 14 presents common performance issues that
I have encountered in Java EE environments over the past two years troubleshooting produc-
tion performance issues for companies ranging from government organizations to Fortune 500
companies, as well as strategies to resolve these issues. Chapter 15 closes the book by providing
references to additional resources, an action plan, and a guide to your next steps in implementing
performance management in your organization.

Although this book builds on itself, chapter by chapter, you can read any chapter individ-
ually to address your needs. Where appropriate, the chapters cross-reference other areas in the
book for additional information. For example, if your role is production support, then you might
start directly in Part 3 and refer back to Parts 1 and 2 as needed for additional information.

Performance management is a serious practice that has been greatly neglected in the Java
EE space, and we are counting the costs in lost revenue, credibility, and productivity. My hope
is that this book will empower you to take control of the performance of your applications and
enable you to focus on more important things than troubleshooting performance issues—namely,
providing your customers with the high-quality applications that they deserve.

Haines_6102FRONT.fm Page xxii Friday, April 14, 2006 7:51 AM

■ ■ ■

P A R T 1

Fundamentals

Haines_6102.book Page 1 Thursday, April 13, 2006 6:57 AM

3

■ ■ ■

C H A P T E R 1

An Introduction to Application
Performance Management

John was driving home from work on Saturday night; it was late by most people’s reckoning,
but not by his these days. He’s the director of development at Acme Financial Services, and his
team has been laboring for two years to migrate the company’s legacy mainframe business-to-
business transaction processor to a Java EE environment. Acme facilitates the transfer of funds
from one bank to another. One bank stops earning interest the second the funds are transferred,
while the other starts earning interest as soon as it receives them. Working in business banking,
Acme’s transferring millions of dollars from point to point: they have no room for failure, because
missing funds can add up to hundreds of thousands of dollars in only a couple hours.

Over the past four months, John and his team have worked nights and weekends revali-
dating the architecture, testing the thousands of use cases that it must support, and ensuring
that not one cent is lost in a transaction.

“Honey, you’re home!” his wife exclaimed at seeing him arrive bleary-eyed at the early
hour of 11:00 PM.

“It’s been a hard few months, but it’s finally over. I’ll have more time for you and the kids,
I promise. The guys really put in extra effort to make our deadline. Everything is installed and
tested, so when the Eastern European market opens in a few hours, we’ll be ready for them.”
He spoke with the confidence derived from months of building architecture, careful design,
detailed implementation, and testing. “We did everything right and have nothing to worry
about. Let’s just get some sleep; we can celebrate in the morning.”

At 4:18 AM, his wife was shaking him awake.
“John, it’s Paul on the phone for you, and it sounds important!”
“Hi Paul, what’s up?” he said with as much clarity as he could.
“John, you have to come in. We’re having problems, and I mean big problems! Japan, uh,

you’ve got to come in!”
“Slow down. Tell me what’s going on, one thing at a time.” Whenever Paul got excited John

could make neither heads nor tails of what he was saying.
“John, the servers are crashing. The market opened about fifteen minutes ago, and ten

minutes ago the first server crashed. We brought it back up, and then the next two went down.
We’re bringing servers up just to watch them fall down. What’s going to happen when Western
Europe opens in a couple hours and our load triples?”

“Okay, hold on, I’m on my way. I’ll be there in twenty minutes. . . .”

Haines_6102.book Page 3 Thursday, April 13, 2006 6:57 AM

4 C H A P T E R 1 ■ A N I N T R O D U C T I O N T O A P P L I CA T I O N P E R F O R M A N C E M A N A G E M E N T

What happened at Acme Financial? Are they facing a unique issue? Did they simply fail to
test their application well enough, or is the problem larger?

Unfortunately Acme’s case is more the rule than the exception. In my line of work, I trouble-
shoot and diagnose production problems in the enterprise environments of companies like
Acme all over the world, ranging from small shops with a handful of developers to Fortune 500
companies employing hundreds, even thousands, of developers. The same situation comes up
at each company: developers built and tested an application that is either under duress and not
meeting its service level agreements or crashing on a weekly, daily, or even hourly basis.

This chapter will consider the definition and implications of quantifiable performance in
a Java Platform, Enterprise Edition 5 (Java EE) environment, some hazards to and pitfalls in
ensuring quality, and the role of the Java EE systems administrator in this process. The chapter
will also briefly outline numerous details within these topics, to be explored in further detail
later in the book, such as particular functions of a skilled Java EE systems administrator.

Forrester reported that among companies with revenue of more than $1 billion, nearly 85
percent reported experiencing incidents of significant application performance degradation.1

Furthermore, in the Network World and Packeteer survey that Forrester references, respon-
dents identified the application architecture and deployment as being of primary importance
to the root cause of application performance problems.2 This means that nearly 85 percent of
applications are failing to meet and sustain their performance requirements over time and
under increasing load. Formal performance requirements are detailed in service level agree-
ments. A service level agreement, or SLA, is a contract that explicitly defines the terms of service
that a vendor will provide to an end user. For an application provider, an SLA prescribes the
amount of time in which a unit of work must be completed. For example, logging in on a Web
site must be completed in less than five seconds.

SLAs can be defined internally by a business to ensure the satisfaction of its end-user expe-
rience, such as the speed of at which a Web search engine retrieves results, or it can be a legally
binding contract, such as a business-to-business e-commerce application. In the former case,
users have been occasionally tolerant of a sluggish application in the past, but increasingly,
users now demand better performance, and daily raise the bar on acceptable speeds. A few
years ago, a Web request serviced within seven seconds was considered acceptable, and a user
would continue to utilize that service. Today however, when a simple request does not respond
within three seconds, the user frequently reinitiates the request (thinking there is a problem)
or leaves the site for a quicker responding competitor. Even seven seconds is not an option
anymore.

In the case of an SLA serving as a legally binding contract, a company uses a provider’s
services under the promise that those services will, in fact, satisfy the SLA as defined in the
contract. The penalty for violating that can be severe, including financial restitution for
damages incurred because of the violation or the dissolving of the contract altogether.

Impact of Poor Performance
The impact of poor performance can be quantified in three areas:

1. Jean-Pierre Garbani, "Best Practices in Problem Management," Forrester, June 23, 2004.
2. Denise Dubie, "New apps can be a real pain in the net," Network World, July 21, 2003, http://

www.networkworld.com/news/2003/0721appmgmt.html.

Haines_6102.book Page 4 Thursday, April 13, 2006 6:57 AM

C H A P T E R 1 ■ A N I N T R O D U C T I O N T O AP P L I C A T I O N P E R F O R M A N C E M A N AG E M E N T 5

• Lost productivity

• Lost customer confidence and credibility

• Lost revenue

Poorly performing applications can impact productivity in two ways. First, when internal
applications (for example, an intranet application) perform poorly, companies are paying their
employees to wait for applications to respond. I once worked for a computer hardware manu-
facturer deciding on the hardware components that would go into the machines and building
software bundles to install on them. We used a manufacturing plant to assemble and verify
their quality. When a problem was discovered, the line lead would shout, “Stop the line!” All
assembly workers would cease building the computers, and we were then called in to trouble-
shoot and fix problems. Meanwhile the assembly workers sat idle, being paid an hourly wage
to watch us troubleshoot problems, and at the end of the day, the number of computers
produced was reduced. The loss of productivity for idle workers had to be applied to the manu-
facturing cost of our computers (our overhead), which cut into our profitability. Similarly,
when your employees accomplish less work in the day because of poorly performing applications,
it directly impacts your financial overhead and profitability.

Second, when an issue arises in an internal application, those responsible for trouble-
shooting the problem, who in many cases are developers, must divert their attention from
other tasks. This diversion may mean that new features targeted for the next release of a product
may be dropped or the delivery schedule may be impacted. Either way, the internal performance
issue affects your competitiveness.

Also, poorly performing applications that service other corporate entities directly impact
the confidence that they have in both your corporate and personal reputations. When you
claim that you can perform a service in a specified amount of time and fail to do so, then losing
your credibility is only natural. Consider an employee who commits to delivering a report to
you every Friday, but he consistently delivers it Monday afternoon. You grow accustomed to
his tardiness, but you know that if you have a task that must be completed by a specific time
that he is not the one to give it to. Similarly, a corporation that relies on your services will
undoubtedly seek out your competition if your services are not reliable. And as the individual
who guarantees and promises these services to your customer, you lose their respect.

Finally, applications that perform poorly can directly affect your revenue by causing you
to lose customers. Take one of my own recent purchases for example. Because I travel exten-
sively for my company, I am writing this book, and airplane seats are shrinking on a daily basis,
I researched personal digital assistants (PDAs) to which I can connect an external keyboard.
Being a technical geek, I did all of my research online, found a couple of models that I was inter-
ested in, and then started comparing vendors. My success criteria for selecting a PDA vendor
were customer feedback, reputation, availability, and finally price. My search returned 14 vendors,
and I connected to their sites to gather information. Two of these vendors did not respond
within an acceptable period of time. (My tolerance for something like this is about ten seconds.)
I simply skipped those vendors and moved on to the next one on my list. Regardless of how you
define performance criteria, your users’ perception of your application is really all that matters—
and there are ways to mitigate the poor perception of performance, such as a progress bar or a
running countdown. I may very well have missed the vendor with the best reputation, price,
and delivery schedule, because its application did not perform acceptably or appropriately use
mitigating features. This needlessly lost sale is a reality facing businesses at present.

Haines_6102.book Page 5 Thursday, April 13, 2006 6:57 AM

6 C H A P T E R 1 ■ A N I N T R O D U C T I O N T O A P P L I CA T I O N P E R F O R M A N C E M A N A G E M E N T

Regardless of whether you are developing business-to-business, business-to-consumer,
or internal applications, you need to address the performance and reliability of these applications.
The impact of a poorly performing application can vary from mild to severe, but it can always
be measured if you take the time to analyze it. Only a proactive approach of implementing a
formal, performance-based methodology will maximize your chances of success.

Complications in Achieving Application
Performance
If 80 percent of all production Java EE applications are failing to meet their performance
requirements, then achieving Java EE application performance must be complicated, but why?
This section explores some of the reasons Java EE application performance considerations can
be overwhelming.

Evolution of Java Applications
As technology evolves so does the way that we use that technology. Consider the evolution of
computer hardware. Today’s desktop computers are exceedingly faster and have more memory
and storage capacities than they did a decade ago, but how much faster is Microsoft Windows
XP than Windows 3.1? The speed difference is minimal, but its capabilities and appearance are
far superior. Instead of allowing faster hardware to run existing operating systems faster, the
extra processing capabilities have been used to develop more robust operating systems and, as
a result, have greatly improved productivity.

The evolution of Web applications has followed a similar progression. The first Web sites
served static content: when a vendor added new products to his catalog, he was required to
update the physical HTML files that rendered it. This requirement quickly became a manage-
ment nightmare, so databases were incorporated with scripts built to generate HTML pages
from database content. Tools and frameworks evolved to accomplish dynamic Web content
generation more efficiently and soon standards emerged.

In 1997, Sun released the servlet specification which enabled developers to build Java
programs that used existing code and a robust set of classes to generate HTML pages. But diffi-
culties arose in implementing presentation details inside a Java servlet (for example, changing
a font size meant changing Java code, recompiling it, and redeploying it to a servlet container),
so Sun released the JavaServer Pages (JSP) specification in 1999. JavaServer Pages enable us to
build HTML-looking documents that contain embedded Java code to generate dynamic content.
At run time, JSPs are translated into servlet source code, compiled, and loaded into memory.
Therefore simple changes to presentation details could be accomplished on the fly without
requiring a real person to recompile and redeploy the servlet.

Shortly after, it became apparent that complicated business logic hindered the readability
and maintainability of JSPs. Understanding that servlets were very good at implementing
application business logic and JavaServer Pages were equally good at generating HTML pages,
we, as an industry, began implementing a variation of the Model-View-Controller (MVC)
design pattern. In MVC architecture, JavaBeans represent data (Model), JSPs performed the
presentation (View), and servlets represent application business logic (Controller). This delega-
tion of programmatic responsibility resulted in more vigorous and maintainable applications.

Haines_6102.book Page 6 Thursday, April 13, 2006 6:57 AM

C H A P T E R 1 ■ A N I N T R O D U C T I O N T O AP P L I C A T I O N P E R F O R M A N C E M A N AG E M E N T 7

As business requirements utilized new technological capabilities, Sun introduced the
concept of Enterprise JavaBeans (EJB) to provide transactional integrity and a strong delegation
of responsibilities within the business tier. Servlets are now only responsible for application
flow and logic, while Enterprise JavaBeans are responsible for business logic and object persis-
tence. Using Java to build enterprise applications presented both positive and negative effects,
and by analyzing those effects we discovered best practices that led to a collection of design
patterns. These patterns are equipped to solve more complicated problems, which allowed
business requirements to evolve.

Web applications evolved into portals with user-customizable content subscription, a
single sign-on, and an advanced user-security model. The next wave of evolution came with
the advent of Service-Oriented Architecture (SOA) built on top of Web services. SOA facilitated the
integration of disparate systems, including interoperability between applications written in
different programming languages and running on different operating systems.

The more that Java EE developers increase what we can do, the more users require of us.
This brief historical overview of Java’s dynamic Web-content generation evolution demonstrates
that as our technology improves, our business requirements evolve to use that technology. Java
Web-based applications written in 1997 were infinitely simpler than today’s. As the complexity
of the code increases, our capability to easily identify performance problems decreases.

Layered Execution Model
The first complication in Java EE application performance is the inherent architecture of the
Java EE platform, which necessitates a layered execution model. The benefit gained by embracing
Java EE as a deployment platform is hardware and operating system independence. To utilize
these benefits, we write our applications to adhere to formal specifications and deploy them to
an application server running in a Java Virtual Machine (JVM) on an operating system on a
physical computer (hardware). In its simplest form, a Java EE application requires all of these
components running on a single machine, shown in Figure 1-1. We refer to this complexity of
a single application server instance as vertical complexity.

Figure 1-1. A Java EE application requires a layered execution model.

Haines_6102.book Page 7 Thursday, April 13, 2006 6:57 AM

8 C H A P T E R 1 ■ A N I N T R O D U C T I O N T O A P P L I CA T I O N P E R F O R M A N C E M A N A G E M E N T

Because of this layered model, the location of a performance problem can be in the appli-
cation code, in the application server configuration, in the JVM configuration, in the operating
system configuration, or in the hardware itself. To ensure proper performance of your application
and diagnose performance problems, you need to master of each of these layers and understand
how to attain their ideal configurations. To further complicate matters, most significant Java
EE applications do not run inside of a single application server instance but, rather, run in a
distributed environment. In a distributed environment, the same layered execution model is
spread across multiple machines. Then too, for your application to accomplish anything beyond
simple dynamic-content Web page generation, it will need to interact with other systems such
as databases and legacy systems. Figure 1-2 puts all of these components together.

Figure 1-2. Significant Java EE applications require multiple application server nodes and
interactions with other external systems such as databases and legacy systems.

When your users complain that your application is running slow, identifying the root cause
is a daunting task, because the problem can be in any layer in any tier on any application server
instance or in an external dependency. We refer to this distributed complexity as horizontal
complexity. Horizontal complexity issues can manifest themselves when your application is
subjected to a significant load: the nature of certain performance problems is to arise only outside
the context of a single JVM. Large loads cause seemingly small issues to become large issues.

Haines_6102.book Page 8 Thursday, April 13, 2006 6:57 AM

C H A P T E R 1 ■ A N I N T R O D U C T I O N T O AP P L I C A T I O N P E R F O R M A N C E M A N AG E M E N T 9

The combination of horizontal and vertical complexities equates to more moving parts in
your application environment than a typical Java EE developer can be expected to handle.
Because the proper deployment of a Java EE application requires mastery not only of an appli-
cation server environment, but of the application server topology as well as detailed skills in
the configuration of each external dependency, the best operational model is not a single
individual, but a team of skilled individuals specializing in each respective arena.

Prebuilt Frameworks
As you may surmise from the previous discussion, the generation of a robust MVC enterprise
application is not a trivial task. As a result, several organizations built application frameworks
that simplify the demands on the application: the application integrates its business logic into
the framework, and the framework manages the application flow and logic. Most of these
frameworks have open source licenses, with the more popular ones being Apache Software
Foundation’s Jakarta Struts and Velocity, and the Spring Framework.

Prebuilt frameworks offer a number of benefits:

• Productivity increases because most of the mundane work of building infrastructure
is removed.

• Large open source development communities offer rapid development.

• Wide adoption means that many developers have tested the framework before you, and
those who wrote the code have already handled initial troubleshooting.

• Implementation of application enhancement requests is quick. Because prebuilt frame-
works are targeted at solving generic problems, changes to your application
requirements will most likely already be supported.

While these benefits should persuade you to adopt an existing application framework,
incorporating someone else’s code into your application has dangers. Unless you spend the
time to become an expert on the internal workings of the prebuilt framework, troubleshooting
subsequent problems is difficult because using that framework introduces a black box into
your application. A black box is a component or piece of functionality that you understand how
to use but not necessarily how it works: you provide the inputs to the black box, it performs its
functions, and it returns its results to you. Therefore when a problem arises you have another
layer in your layered execution model to analyze to discover the root of your problem.

Furthermore, if the framework does, in fact, have a performance issue that impacts your
business, then you either must fix it yourself or request that the framework provider fix it. In the
former case, if your changes are not committed back to the formal framework repository, then
you could have problems upgrading to future releases of the framework. In the latter case, your
issue might take weeks or months to reach an acceptable resolution.

I fully support implementing prebuilt frameworks in new development efforts, but I also
recommend that you spend the time up front to understand the architecture of the framework
that you choose. This way, if a performance problem does occur, you will be better equipped to
troubleshoot it. Furthermore, I suggest you research the existing frameworks and choose a
popular one that best fits your business requirements. The popularity of the framework will
help you when it comes time for acquiring bug fixes and obtaining troubleshooting guidance.

Haines_6102.book Page 9 Thursday, April 13, 2006 6:57 AM

10 C H A P T E R 1 ■ A N I N T R O D U C T I O N T O A P P L I CA T I O N P E R F O R M A N C E M A N A G E M E N T

Java EE Expertise
Understanding how to use a technology is a far cry from being an expert at using it. In this
respect, Java EE is especially dangerous as its specifications define recommended approaches
to application design, but they do not force any particular implementation. This was done by
design, because although a full MVC Web architecture is more scalable and robust than a
stand-alone servlet, it may not be the best tool to solve a problem. The flexibility of Java EE
empowers you with all of the capabilities to develop a small, lightweight application or a large
enterprise-scale application; the choice is yours.

However, a Java EE developer can develop a functional application that performs adequately
in unit tests, but falls apart under heavy loads. Having the knowledge to build the application
does not necessarily mean having the experience to build it to meet your business require-
ments. Because Java EE has been gaining in popularity over the years, particularly as a platform
for enterprise applications, more and more developers are moving over to Java EE and becoming
acclimated as quickly as possible. Many of these developers may bring bad habits from other
programming languages, and some learn enough to build an application, but not enough to
comprehend the impact of their implementation decisions.

Java EE is a relatively new technology, so it is not as easy to find a seasoned Java EE architect as
it is to find a seasoned C or C++ architect. This shortage in Java EE experts can directly impact
the performance of your applications if you do not take precautions to ensure that someone
with rock-solid experience leads your team. A competent developer can become competent in
any language and environment given proper time to acclimate; just be sure that your architects
and team leads are already well acclimated before your project begins.

Development Tools
Development tools are evolving in two ways that may negatively impact the performance of
Java EE applications. I emphasize the word “may,” because, while a good tool can work miracles, a
good tool in the hands of an unknowledgeable person can wreak havoc on your environment.

First, tools are being developed to relieve many of the mundane activities performed by
Java EE developers. This will undoubtedly improve productivity as long as the developer
understands the impact of decisions made inside the tool. During the days of early Windows
programming there was a debate between Visual Basic and C. C and C++ programmers argued
that Visual Basic programmers did not know how to program, while Visual Basic programmers
flaunted their productivity; they could build a robust application in a quarter of the time that a
seasoned C++ expert could. The underlying problem was that Visual Basic covered up many
details about how the resultant application worked, so that someone who was not familiar with
the fundamental structure of a Windows application (for example, the message pump, window
messages, or threading models) could develop an application that satisfied the functionality
of the business requirements, but performed atrociously. On the other hand, empowering a
knowledgeable person with such a tool would increase his productivity. Likewise, many of the
underlying details involved in building a Java EE application can be automated and as long as
the developer understands the implications of his inputs into that automation process, then he
will be more productive and still retain high-performance.

A second evolution to consider is the new breed of Java EE tools coming to the market to
facilitate application assembly. The idea is that an application architect will be able to assemble an
application from existing components using a graphical tool without writing a single line of
Java code. The concept is fascinating, and if these vendors deliver on their promises, then

Haines_6102.book Page 10 Thursday, April 13, 2006 6:57 AM

C H A P T E R 1 ■ A N I N T R O D U C T I O N T O AP P L I C A T I O N P E R F O R M A N C E M A N AG E M E N T 11

productivity will certainly improve. One of the biggest tools in this market is BEA AquaLogic,
a relatively new tool with unknown industry acceptance that could revolutionize enterprise
application development if it delivers on its promises. But again, this technology heightens the
risk of allowing tools to do our work for us without requiring us to understand what they are doing.

Service-Oriented Architecture and Web Services
Every time new technology enters the software industry, it is met with a combination of skepticism,
in wondering if the technology will deliver on its promises, and enthusiasm for its potential
impact on the way we develop software. In my experience, no technology has ever met all
promises and only time can tell how much impact it has on our lives. One thing is for sure: CIOs
like buzzwords and eagerly adopt best-of-breed technologies, even if they are not ready for
prime time.

Service-Oriented Architecture (SOA) is an example of a technology that has crossed over
from fad into widespread adoption, and is only now beginning to deliver on its promises. SOA
promotes the concept that software components should be written as services and expose
their functionality openly: any component needing the functionality provided by a service
simply calls the service rather than reimplementing the functionality itself. The current practical
application of SOA is in the integration of disparate systems. SOA and its implementation on
top of Web services make connecting the functionality of a .NET server with a Java EE server
and a legacy application incredibly simple. Simply drop a service in front of your functionality
and voilà—instant integration.

Please note that SOA and Web services are not the same thing. SOA is a design method-
ology or architectural concept, while Web services are a collection of technologies that enables
SOA. Web services itself is a platform- and technology-agnostic collection of specifications by
which services can be published, be discovered, and communicate with one another. SOA is
the software engineering concept through which you build applications.

From a technology standpoint, Web services are incredible. But from a management and
performance standpoint, they can be tricky if you are not prepared. You now have server plat-
forms with different operating systems running multiple applications and application servers
to comprise a single application. Figure 1-3 shows this graphically.

Figure 1-3. Developing an application from a collection of Web services integrates different
application environments, operating systems, and hardware.

Haines_6102.book Page 11 Thursday, April 13, 2006 6:57 AM

12 C H A P T E R 1 ■ A N I N T R O D U C T I O N T O A P P L I CA T I O N P E R F O R M A N C E M A N A G E M E N T

In order to effectively manage this type of environment, you need visibility at all technology
points, including

• Each operating system upon which each service is running

• Each technology component in each layer of the distributed layered execution model
that supports the service in Java EE environments

• The performance of the enabling technologies as well as the application components
that are supporting the service in non-Java EE environments

• Other external dependencies such as database and external servers that may be
hosted offsite

• The network communication behavior between your application and its services

The benefits of using Web services outweigh many of these concerns, but the inherent
complexity and verboseness of a Web services implementation are prohibitive to optimal
performance. Consider the steps that must be performed for a single Web service call:

1. The caller creates a complex XML file.

2. The caller then transmits that XML file to the service.

3. The service infrastructure translates the XML file into an instruction set that the
service understands.

4. The service implements its business logic.

5. The service infrastructure constructs a complex XML document containing the results
of the business logic implementation.

6. That resultant XML file is then transmitted back to the caller.

7. Then the results of the service call must be translated back to application-specific values.

If these are the steps involved in using a single Web service, consider the steps for an appli-
cation built by an application assembler that may access half a dozen Web services to service a
single Web request. If one Web service call translates to the construction, transmission, and
disassembly of two complex XML documents, then doing this six times requires the construction,
transmission, and disassembly of twelve complex XML documents. Regardless of how well-
written the code and fast the network, performance is going to be abysmal. So while the tech-
nology enables many sought-after capabilities, the inherent complexity of implementing that
technology necessitates careful planning and analysis in order to benefit your organization.

With all of these pitfalls, should we simply avoid using Web services? Can we count on their
adoption being minimal? Or should we take a proactive yet cautious approach to embracing the
technology?

The industry analysts have voiced their approval of the technology:

Haines_6102.book Page 12 Thursday, April 13, 2006 6:57 AM

C H A P T E R 1 ■ A N I N T R O D U C T I O N T O AP P L I C A T I O N P E R F O R M A N C E M A N AG E M E N T 13

IDC Researcher Sandra Rogers in a 2005 study predicted that the worldwide Web services
market will hit $15 billion by 2009, driven by major vendors such as IBM, Microsoft, BEA
Systems, and Sun Microsystems.3

“Gartner’s Positions on the Five Hottest IT Topics and Trends in 2005” includes a review of
Service-Oriented Architecture and predicts that by 2006 more than 60 percent of the $527
billion market for IT professional services will be based on Web services standards and
technology.4 By 2008, 80 percent of software development projects will be based on SOA.

SOA is not a fad but, rather, a technology that has the potential to greatly increase productivity
and save companies millions of dollars if implemented intelligently.

Application Performance
When someone asks you about the performance of your enterprise applications, what do you
think they mean? What does performance means to you?

Performance means different things to different people, usually based on their role in
measuring and ensuring the performance of their area of responsibility. When we break down
the development organization into groups, we call each group a stakeholder. And each stake-
holder has an area of responsibility that dictates what that person considers to be the definition of
performance.

From the perspective of an application support engineer, whose panicked life is framed by
user complaints, the primary criterion for performance measurement is application response
time. If the application responds in a reasonable amount of time, then users do not complain,
and the engineer’s efforts can be spent on more interesting tasks.

A Java EE administrator is more concerned with the supporting environment and hence
measures performance through resource utilization and availability. The Java EE administrator
determines when to add application server instances, when to change configurations, when to
add hardware, and so on. The worst time to make major architectural changes to an environ-
ment is when users are complaining; when users complain, then it is already too late. Rather it
is best to perform a capacity assessment of the environment and correlate current usage patterns
with resource utilizations to determine if the application is approaching its saturation point.
Recognizing the environment’s saturation point and being able to discern how soon it will
reach it empowers the Java EE administrator to plan application server architectural changes.
Another significant consideration in his job role is the availability of the application servers.
If the application servers are not available, then the code execution, database, and network
traffic performance levels are meaningless. For the Java EE administrator, then, good perfor-
mance implies effective resources that are readily available.

A database application programmer’s perspective is primarily concerned with the response
time of the Structured Query Language (SQL) and how quickly it services database requests as
well as different query execution plans. Creating or removing indices, and optimizing SQL
queries to meet the demand of the application against the volume of data in the database are
also of concern, particularly considering that the most optimal query for small database is not

3. IDC, “Worldwide Web Services Software 2005-2009 Forecast: Let the Races Begin,” May 2005,
http://www.idc.com/getdoc.jsp?containerId=33418.

4. Gartner, Inc., “Gartner’s Positions on the Five Hottest IT Topics and Trends in 2005,” May 12, 2005,
http://gartner.com/DisplayDocument?id=480912.

Haines_6102.book Page 13 Thursday, April 13, 2006 6:57 AM

