
Seth Ladd
with Darren Davison,
Steven Devijver and Colin Yates

Expert Spring MVC
and Web Flow

Expert Spring MVC and Web Flow

Copyright © 2006 by Seth Ladd, Darren Davison, Steven Devijver, and Colin Yates

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-584-8

ISBN-10 (pbk): 1-59059-584-X

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Steve Anglin
Technical Reviewers: Rob Harrop, Keith Donald
Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Jason Gilmore,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft,
Jim Sumser, Matt Wade

Project Manager: Sofia Marchant
Copy Edit Manager: Nicole LeClerc
Copy Editor: Stephanie Provines
Assistant Production Director: Kari Brooks-Copony
Production Editor: Katie Stence
Compositor and Artist: Van Winkle Design Group
Proofreader: Nancy Sixsmith
Indexer: Broccoli Information Management
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section.

To my father, who brought home
that old 1200-baud modem from work and

kick-started this crazy journey.
—Seth Ladd

To Mum and Dad, for always encouraging my curiosity.
And to my wife, Lisa, for being my wife.

—Darren Davison

For Beeky and the wriggler for putting up
with the late evenings, and Bruce and Jessie

for missing out on the walks.
—Colin Yates

For Filiz.
—Steven Devijver

To my wonderful wife, Keri,
and our little bundle of joy, Annabelle.

—Keith Donald

Contents at a Glance

About the Authors . xv

About the Technical Reviewers . xvii

Acknowledgments . xviii

■CHAPTER 1 Introduction . 1

■CHAPTER 2 Spring Fundamentals . 7

■CHAPTER 3 Spring MVC Application Architecture . 21

■CHAPTER 4 Jump into Spring MVC . 41

■CHAPTER 5 The Processing Pipeline . 77

■CHAPTER 6 The Controller Menagerie . 115

■CHAPTER 7 The View Layer . 201

■CHAPTER 8 Supported View Types . 223

■CHAPTER 9 Validation . 265

■CHAPTER 10 Testing Spring MVC Applications . 283

■CHAPTER 11 Introduction to Spring Web Flow . 309

■CHAPTER 12 Advanced Spring Web Flow . 335

■APPENDIX A Documenting Your MVC Application . 371

■APPENDIX B Ajax and DWR . 377

■INDEX . 389

v

Contents

About the Authors . xv

About the Technical Reviewers . xvii

Acknowledgments . xviii

■CHAPTER 1 Introduction . 1

Skipping Ahead . 2

How to View This Book . 2

Roadmap . 2

Target Audience . 4

For More Information . 4

Sample Applications . 5
Spring 2.0 . 5

Summary . 6

■CHAPTER 2 Spring Fundamentals . 7

Inversion of Control . 7

IoC Example . 8
Summary . 10

Dependency Injection . 11

Service Locator . 12

Dependency Injection . 14

Spring ApplicationContexts . 17

The Return of the POJO . 18

Impact on Web Applications . 19

Summary . 19

■CHAPTER 3 Spring MVC Application Architecture . 21

Layers of Abstractions . 21

Layer Isolation . 23

Java Interface As Layer Contract . 23

Layers in a Spring MVC Application . 24

Options: There’s More Than One Way to Do It . 38

Summary . 39 vii

■CHAPTER 4 Jump into Spring MVC . 41

Use Cases . 41

Service Interface . 42

Use Case #1 . 42

Use Case #2 . 45

Summary . 50

Web Components . 50

JAR Dependencies . 50

Controllers . 52

Views . 52

ModelAndView . 53

Building the Home Page Use Case . 53

Spring MVC Components . 53

Web Application Configuration . 58

Start the Application . 63

Request Handling Sequence . 63

Summary . 64

Building the Search for Flights Use Case . 65

SimpleFormController . 65

SearchFlightsController . 67

Form View . 69

Spring JSP Tags . 72

Success View . 73

Summary . 74

Now Let’s Learn How to Swim . 75

■CHAPTER 5 The Processing Pipeline . 77

Processing Requests . 77

Request Work Flow . 77

Functionality Overview . 78

Pieces of the Puzzle . 79

Summary . 114

■CHAPTER 6 The Controller Menagerie . 115

Introduction . 115

The Controller Interface and Implementations . 116

A Look at Design . 116

AbstractController . 118

Summary . 122

■CONTENTSviii

BaseCommandController . 122

Binding a Form to a Bean . 124

Summary . 148

SimpleFormController and Handling Forms 149

Redirect After Submit Pattern . 164

MultiActionController . 168

AbstractWizardFormController . 176

ThrowawayController . 193

ValidatableThrowawayController . 196

HandlerInterceptors . 196

HandlerInterceptor Example . 197

Summary . 198

Controllers Summary . 199

■CHAPTER 7 The View Layer . 201

What’s in a View . 201

Treating Views in Isolation . 202

Spring’s View Interface . 202

Implementing View . 203

Views and Controllers: Happily Divorced . 207

ViewResolvers . 208

Putting View Resolution in Context . 209

Types of ViewResolver . 210

Making ViewResolvers Known to the Dispatcher 213

A Word on Redirecting . 215

Themes . 216

ThemeSources . 217

ThemeResolvers . 218

Internationalization in the View Layer . 218

Locale Resolution . 218

MessageSource Beans . 219

View Resolution . 220

Theme Resolution . 221

Bind Support . 221

Recap of Binding and Validation Sequence 221

Bind Support in View Templates . 221

Summary . 222

■CONTENTS ix

■CHAPTER 8 Supported View Types . 223

JSP and JSTL . 223

Exposing the Model As Request Attributes . 224

Displaying the Model . 225

JSP Tag Libraries . 227

Forms . 228

Tiles . 233

Summary . 235

Velocity and FreeMarker . 235

Templating Pros and Cons . 235

Basic Configuring for Template Engines . 236

Exposing the Model . 238

The Template Language . 238

Advanced Configuration Options . 239

Forms and the SpringBind Macros . 241

Number and Date Tools . 247

Additional Velocity Views . 249

Summary . 249

XML and XSLT . 250

Defining an XSLT View . 250

Transforming the XML Source . 252

Returning XML in the Raw . 254

Other Noteworthy XSLT Features . 254

Summary . 255

PDF . 256

Configuring the Application to Use a PDF View 257

Template PDFs with FOP . 257

Excel . 258

Creating the Template . 258

Coding the View . 259

Configuring the Application . 260

JasperReports . 260

Multiformat View . 261

Populating the Report . 262

Summary . 263

Creating New Views . 263

Summary . 264

■CONTENTSx

■CHAPTER 9 Validation . 265

Programmatic Validators . 265

Declarative Validators . 267

Message Sources . 278

Validators and Business Logic . 279

Errors Interface . 279

Testing Validators . 281

Summary . 282

■CHAPTER 10 Testing Spring MVC Applications . 283

Overview . 283

Unit Tests . 283

Unit Test Summary . 302

Integration Tests . 302

Testing Summary . 308

■CHAPTER 11 Introduction to Spring Web Flow . 309

What Itch Does Spring Web Flow Scratch? . 309

The Problem with the Servlet Specification 310

The Solution . 311

Not a Golden Hammer . 314

The Big Picture . 314

Architectural Overview . 315

Inside the Spring Web Flow System . 315

Different Scopes . 316

Building Blocks . 316

Your First Flow . 319

Installing Spring Web Flow . 319

Proposed Flow Directory Structure . 319

The Purchase Product Flow Definition . 320

Implementing the First Step: View States . 320

Transitions . 320

Actions . 321

Action Bean Definitions . 322

Testing the Flow Execution . 324

Extending AbstractFlowExecutionTests . 324

Decision States . 326

■CONTENTS xi

Action States . 327

End States . 328

The Purchase Product Flow: What’s Next . 329

Spring MVC Deployment . 330

The FlowController . 330

FlowRegistry . 330

Additional Configuration . 331

View Template Resolution . 331

View Template Requirements . 331

Launching the Flow from the Browser . 332

Summary . 333

Model Conversations . 333

Allows for Extension . 334

Testable . 334

Identifying Flows (Easy, Natural Language) 334

■CHAPTER 12 Advanced Spring Web Flow . 335

Business Logic and Flows . 335

Business Logic . 335

Flow Granularity . 337

Subflows . 337

Inline Flows . 343

Summary . 345

Managing FlowExecutions . 346

Integration with Web Frameworks . 346

The FlowExecutionManager . 347

FlowExecutions . 348

FlowExecutionListener . 351

FlowExecution Repositories . 353

Continuations . 354

FlowExecutionRepository Implementations 356

Stateful FlowExecution Repositories . 356

Stateless FlowExecution Repositories . 357

Conversation Invalidation After Completion 358

States and Transitions Revisited . 358

Action States . 359

POJO Actions . 362

Exposing POJO Method Return Values . 363

Customizing View Selection with View States and End States . . . 363

Decision States . 365

■CONTENTSxii

Exception Handling . 367

State Scoped ExceptionHandlers . 369

Exception Handling Summary . 369

Summary . 369

■APPENDIX A Documenting Your MVC Application . 371

BeanDoc . 371

Installing and Building BeanDoc . 372

Running BeanDoc on Your Configuration Files 373

Other Options . 374

Controlling the Output . 374

Summary . 375

■APPENDIX B Ajax and DWR . 377

Spring and DWR . 377

A Practical Example . 378

Configuration and Code Changes . 378

Presentation File Changes . 381

Accessibility . 387

Summary . 388

■INDEX . 389

■CONTENTS xiii

About the Authors

■SETH LADD is a software engineer and professional Spring Framework
trainer and mentor specializing in object-oriented and testable web appli-
cations. He started his own company building websites at age 17, but now
enjoys having a real job. Currently working for Camber Corporation, Seth
has built and deployed systems for NEC, Rochester Institute of Technol-
ogy, Brivo Systems, and National Information Consortium. He has
architected and developed enterprise applications in Java and C for both

the server and remotely connected embedded devices. He enjoys speaking and teaching, and
is a frequent presenter at local Java user groups and at corporate developer conferences. Seth
is very thankful for living and working in Kailua, Hawaii, with his wife.

■DARREN DAVISON is a principal consultant for UPCO, specializing in J2EE
and open source Java technologies. He has been involved with Spring since
the summer of 2003, well before its 1.0 release, and he used the framework
to underpin a global intranet site for an investment bank. Darren has previ-
ously worked for multinational manufacturing and engineering companies
on e-business, infrastructure, and many web-based projects.

Away from work, Darren enjoys the never-ending journey of discovery
that is GNU/Linux. When not in front of a computer screen, he likes reading and any form of
live entertainment.

STEVEN DEVIJVER is an experienced Java developer who started developing J2EE applications in
2000. In 2003 he discovered the Spring Framework, and since then he has been one of its most
enthusiastic users. Steven is a senior consultant at Interface21, teaching hundreds of students
every year about the Spring Framework.

■COLIN YATES is a J2EE principal architect who specializes in web-based
development. He has been a freelance consultant for the past three years
and has worked in a number of environments, both structured and
chaotic. Since graduating with a software engineering degree in 1997, he
has held a number of positions, including development lead, principal
systems engineer, mentor, and professional trainer. His principal skill set
includes mentoring others, architecting complex problems into manage-

able solutions, and optimizing development processes.
Colin was first introduced to the Spring Framework in January 2003 by his mentors, Peter

Den Haan and David Hewitt, and he has never looked back. After a couple of years using the
Spring and Hibernate technology stack to good effect, in May 2005 he became one of the early
adopters of Spring Web Flow, finally finding the missing item in the web development toolbox.

xv

A self-confessed addict of the green bar that comes from following test-driven develop-
ment and XP, Colin regularly frustrates new team members by introducing a continuous
build environment.

When not hanging around the Spring support forums (http://forum.springframework.org),
Colin can be found out walking with his wife and two dogs, practicing martial arts, attending his
local church, or preparing for the arrival of his first child.

■ABOUT THE AUTHORSxvi

About the
Technical Reviewers

■KEITH DONALD is a software consultant specializing in delivering customer-driven, enterprise-
class Java applications. An experienced developer and mentor, Keith has built applications for
customers spanning a diverse set of industries, including network management, information
assurance, food services, education, and retail. He has extensive experience translating busi-
ness requirements into technical solutions.

Keith has been involved with the Spring Framework as a user and core contributor since
July 2003. He is the founder of the Spring Rich Client Project, an emerging module built on
core Spring that substantially reduces the time and effort required to build a well-architected,
enterprise-ready Java desktop application. He is also the colead of the Spring Web Flow mod-
ule, a core Spring web offering that lets developers model business processes that span many
screens in a logical manner.

Keith enjoys speaking and teaching on technical and business software-related topics,
and has a career-oriented weblog where he frequently posts articles. Contact Keith at
keith@interface21.com.

■ROB HARROP is a software consultant specializing in delivering high-performance, highly scalable
enterprise applications. He is an experienced architect with a particular flair for understanding
and solving complex design issues. With a thorough knowledge of both Java and .NET, Rob has
successfully deployed projects across both platforms. He has extensive experience across a variety
of sectors, in particular retail and government.

Rob has been a core developer of the Spring Framework since June 2004 and currently leads
the JMX and AOP efforts. In addition to his work on the Spring core, Rob leads the Spring Mod-
ules project, which is working to provide Spring integration for a variety of popular useful open
source tools. He cofounded UK-based software company Cake Solutions Limited in May 2001,
having spent the previous two years working as the lead developer for a successful dot-com
startup.

Rob is the author of five books, including Pro Spring, a widely acclaimed, comprehensive
resource on the Spring Framework. He is a member of the JCP and is involved in the JSR-255
Expert Group for JMX 2.0.

xvii

Acknowledgments

A book is never written by the authors alone. It is the product of many people’s expertise and
hard work, time, and superhuman efforts. This book belongs to everyone who had a hand in
producing it.

I’d like to first thank my wife, who has the patience of an angel. Her love and support has
been monumental through this endeavor.

My coauthors deserve huge thanks, as they have added their unique and invaluable
knowledge and insight to make this a stronger book than I could have ever produced alone.
Thanks Darren, Steven, Keith, and Colin!

No one would be reading this book if it weren’t for the talent and professionalism at Apress.
Specifically, I owe my heartfelt appreciation to Sofia Marchant and Beckie Brand for coordinat-
ing the many moving parts and making sure the book is the best it can be. A huge shout-out is
owed to Stephanie Provines, without whom we would have capitalized Spring MVC 12 different
ways. Her attention to detail was impressive and extremely valued. I specifically want to thank
Steve Anglin as well, for giving me this opportunity. And to all the people behind the scenes, I
am forever indebted to you.

I had the pleasure of having Rob Harrop perform the technical review for the book. His
advice was always accurate, helpful, and professional. Thank you, Rob, I was honored to have
you as part of the team.

Thanks to Erwin Vervaet, Dan Leuck, and Colin Sampaleanu for their expert opinions
while reviewing the book. Thanks to Kathleen Fitzgerald for the photo shoot. And finally,
thanks to the Spring Framework developers and community, from whom I have learned an
incredible amount about software development.

Seth Ladd

I thank Seth Ladd for the opportunity to coauthor this book and for writing this excellent book
in the first place. I also thank Rob Harrop for sharing his insights of Spring Web MVC and for
doing the technical review of this book. Many thanks to the core Spring developers for creating
and constantly extending this amazing framework. Thanks also go to Erwin Vervaet and Keith
Donald for creating Spring Web Flow. I also thank my family for supporting me. I especially
thank my girlfriend, Filiz, for her support, for proofreading, and for the warmth and energy
she gives to me. Thank you all.

Steven Devijver

xviii

Introduction

I can still remember the time I first realized what the Spring Framework was and how it could
help me. I was tasked with building a web application that will register new businesses with
the local government, and being a Java shop this meant the standard set of frameworks at the
time: Struts, JavaServer Pages (JSP), and Hibernate. Having built many applications with these
technologies, we dove right into development.

When beginning a new application, I always want to improve a few things from the last
product development cycle. This time around, it was time to get serious about two things, unit
testing and good object-oriented design. Sure, I had written plenty of unit tests before, but I
had never begun a project by writing tests first. And although I’ve been studying and develop-
ing with OOP for many years now, I continue to learn new techniques that help the design of
the application retain sustainability in the face of change.

So, off we went developing the application, writing tests for the domain model, creating a
service layer (a façade for the web layer to integrate with), and beginning the build-out of the
Struts layer. Each layer in the system seemed to progress nicely, but that’s exactly when we ran
into trouble.

As integration between layers began, we noticed that it became harder and harder to write
good tests for the system. The application was using the Service Locator pattern to integrate the
service layer and the web layers together. This pattern was implemented using a static lookup,
which proved impossible to change for our unit tests. The question soon became, “How do we
integrate these components such that both writing tests and running in production is simple
and efficient?”

Enter the Spring Framework.
More precisely, enter an introduction article about the Spring Framework, posted to

TheServerSide (http://www.theserverside.com). The original article has since been updated:
http://www.theserverside.com/articles/article.tss?l=SpringFramework. I still remember
printing it out, stapling it together, and sitting back down to my desk to see what all the fuss
was about. Could it really help me create easily testable applications? Could it really bring
OOP back to web development? There was only one way to find out.

I passed the article off to the boss, and I still remember his Aha moment after reading it.
We decided to go for it and use the framework to integrate the components through the new-
fangled Dependency Injection. This led to easily testing the components, which led to better
code, which led to happier clients. We then replaced our in-house Data Access Object (DAO)
framework, one thing led to another, and we had a highly tested, full-blown Spring MVC
application.

1

C H A P T E R 1

■ ■ ■

Of course, ripping out all of the Struts code and in-house cruft took time and energy, but
we found we could do it in stages, lowering the risk of the integration. We made some mistakes
and wrote lots of code, and in the end we had a better product—with a better design and a
clear vision of how we wanted to write web applications from that point onward. In other
words, we found what we were looking for in Spring MVC for our Java web applications.

My hope is that you can use this book to peer deeper into Spring MVC and learn new and
interesting ways to use the framework to enhance your applications. We found that Spring
MVC makes doing the right thing easier, and sometimes simply possible, and we hope you’ll
find as much joy using it as we do.

—Seth Ladd

Skipping Ahead
If you are the impatient type, you’ve probably skipped this chapter altogether and headed for
the code. If you’re still here, we have a recommendation for you. If you want to jump ahead
and start with building a Spring MVC application, feel free to check out Chapter 4. There you
will find elementary details on how to start building your first Spring MVC application.

We also recommend that you return to the previous chapters to learn about the theory
and background of web application creation with Spring MVC. It will help to provide the
context for the rest of the book.

How to View This Book
You should look at this book as your in-depth guide to the many features and functions of Spring
MVC, including tips and tricks to get the most out of this flexible framework. This book also con-
tains some best practices for developing well-designed and decoupled web applications.

This book is part guidebook, part tutorial, part web development manual. This book works
best as a companion to Pro Spring by Rob Harrop and Jan Machacek (Apress, 2005), because it
does not cover the Spring Framework in a general sense. It is dedicated to and focused on the
best ways to write web applications using the Spring Framework and Spring MVC.

Roadmap
This book covers a lot of ground. Use this roadmap and chapter outline for a quick overview of
what you will find inside and where.

• Chapter 1 is, well, this chapter you’re reading now. It contains an overview of the book
and its target audience, as well as where to go for more information and support.

• Chapter 2 is a refresher on the Spring Framework. If you are new to Spring, this can help
paint the picture of why the framework exists and what problems it is trying to solve.
Entire books are devoted to Spring, but this chapter can kick-start your discovery of the
framework. If you are brand-new to the framework, you should purchase a full book on
Spring, such as Pro Spring.

CHAPTER 1 ■ INTRODUCTION2

• Chapter 3 covers the architecture and design of typical Spring MVC applications. Light
on code but heavy on design, this chapter presents details on the common layers found
in web applications and some simple guidelines to build applications that take full
advantage of the Spring Framework.

• Chapter 4 shows you the goods, with a jump start on Spring MVC. The impatient will
find this a good starting point to get the feel of a real application. This chapter doesn’t
go into much detail, but it does take what you’ve learned from Chapter 3 to build some
real functionality.

• Chapter 5 goes into detail about the real workhorse of Spring MVC: the Dispatch-
erServlet. In this chapter you’ll find all the ancillary services that all web applications
require and how they can be configured and extended. Services like multipart file
upload support and Locale resolution are covered here.

• Chapter 6 outlines and explains all of the different Controller options found in the
framework. Controllers are written by you to handle incoming web requests, much like
servlets or Struts Actions. Spring MVC provides a rich menagerie of Controllers to help
with many different use cases and requirements.

• Chapter 7 introduces the view layer. Here you will find a tour of how views are managed
and how they are integrated into a full Spring MVC application. Darren Davison, com-
mitter on Spring’s view technologies, contributed both Chapters 7 and 8.

• Chapter 8 builds upon its predecessor and informs you how to integrate the popular
view technologies with Spring MVC. JSP, Velocity, FreeMarker, and XSLT are just a few of
your options for rendering the view, all covered in this chapter.

• Chapter 9 covers the Validation Framework. It also introduces Valang, a new and exciting
validation system to make writing custom validation rules quick and easy. Steven Devijver,
the author of Valang and Spring Framework committer, contributed Chapter 9.

• Chapter 10 provides examples of and discussion on testing your Spring MVC applica-
tions, including Spring’s handy mocks and stubs for the Servlet API. We take the view
that testing should be quick and painless, so we use a combination of simple unit tests
and mock objects to write tests that run inside your IDE (and outside of your container).

• Chapters 11 and 12 cover the cutting-edge Spring Web Flow, a framework for writing
conversational use cases on the web. This project, originally developed by Erwin Vervaet
and brought into the Spring Framework fold by Keith Donald, allows you to declaratively
build use cases that span multiple requests. Colin Yates provided these chapters.

• Appendix A introduces an excellent tool for documenting your Spring applications. The
BeanDoc tool, written and maintained by Darren Davison, is like Javadoc for your bean
definition XML files. This handy and easy tool integrates with your build to produce
HTML documentation complete with images of the dependencies between beans.
This appendix was contributed by Darren Davison, author of BeanDoc.

• Appendix B provides a bit of a sidebar; it introduces one way to integrate AJAX tech-
nologies into your Spring-powered web application. Darren Davison explains how to
integrate DWR, or Direct Web Remoting (http://getahead.ltd.uk/dwr), with your
Spring MVC applications.

CHAPTER 1 ■ INTRODUCTION 3

Target Audience
Even though this book’s title contains the word expert, you don’t need to be an expert in Java
or Spring to take advantage of it. However, to get the most out of this book, you should be
familiar with Java and have created at least one web application with it.

You won’t find discussions on basic Servlet API constructs or how to set up and configure
your favorite servlet container. Many great books and resources—including countless web
resources—already exist for this. We assume that you have at least a passing knowledge of
what the Servlet API provides and how to deploy a Java web application. We also assume you
are a competent Java developer, familiar with the language and its APIs.

Although you need not be a Spring Framework expert, it helps if you have investigated it
to get a feel for what it is and what it brings to the table. We merely provide an introduction to
the framework in this book. We recommend that you have a reference resource handy to turn
to when we mention a Spring concept that you might not be familiar with.

If you are familiar with Java web programming and curious how Spring MVC stacks up
against other request/response web frameworks, then this book will certainly help you deter-
mine that.

If you have built a few web applications with Spring MVC, we believe this book can still
offer you great value. We provide many little tips and tricks, including some best practices
for making the most from the web architecture in general. This book also covers some of the
motivations for the designs of the components of Spring MVC, providing valuable insight into
why the elements were built that way and how they connect.

For More Information
When you run into a situation that this book can’t cover, you’ll find that the Spring Framework
has a vibrant and supportive community ready to help you out. The Spring community is
made up of Java developers who take OOP, testability, and good design seriously, so you’ll be
in good company.

• The Spring Framework’s home page, http://www.springframework.org, is the place to
get news about the framework and links to many resources found on the web. Use this
as a jumping-off point to downloads, forums, CVS, and issue tracker services.

• The Spring Framework Support Forums, http://forum.springframework.org, are your
first choice when you want to ask a question or have a problem. Here you can choose
from many forums, including those dedicated to Spring MVC and Spring Web Flow, and
even one on architectural issues. These forums are active and helpful.

• The user mailing list is largely deprecated in favor of the support forums. However, you
can access the archives via Spring’s SourceForge page, http://sourceforge.net/projects/
springframework. There you will also find the developers’ mailing list, useful if you want
to track development issues.

• You will find that the excellent Reference Manual, available from
http://www.springframework.org/documentation, is up-to-date and quite full of content.
Spring is one open-source project that does not skimp on its bundled documentation.

CHAPTER 1 ■ INTRODUCTION4

• Spring uses JIRA for its issue and bug tracking, found at http://opensource2.
atlassian.com/projects/spring/secure/Dashboard.jspa. You can use this site to
register new bugs you have found or to check whether someone else has discovered
the issue first. This site also has the roadmap for future versions of the framework.

• For more on Spring Web Flow, that project has a very active Wiki page found at http://
opensource2.atlassian.com/confluence/spring/display/WEBFLOW/Home. There you will
find more tutorials, documentation, and links to articles on this up-and-coming project.

With the Spring Framework, there is no shortage of support options available, including
many other books and professional consulting organizations and individuals.

Sample Applications
Sometimes looking at raw code is the only way to make the light bulb go off. If you’re stuck
and want to see how others might do it, Spring comes with many sample applications with full
source code. These are excellent opportunities to investigate real working apps to see exam-
ples of Spring MVC and its integration with the rest of the application.

The sample applications can be found in the samples directory of the Spring Framework
distribution or CVS repository.

Table 1-1. Sample Web Applications

Name Description

countries Demonstrates paged list navigation, locale and theme switching, localized
view definitions, page composition through view definitions, and
generation of PDF and Excel views.

imagedb Demonstrates BLOB/CLOB handling, native JDBC connection handling,
multipart file uploads, and Velocity integration.

jasperdemo Demonstrates using JasperReports as the view technology.

JPetStore Full application with all layers, using either Spring MVC or Struts for the
web layers. Also demonstrates different remoting options.

PetClinic Demonstrates integration with JDBC, Hibernate, Apache OJB, and Oracle
TopLink. Also demonstrates JMX integration.

webapp-minimal Minimal web application structure, including build scripts.

Spring 2.0
This book was written while Spring 2.0 was under development, so everything mentioned here
will work with 2.0 or earlier. Nothing is 2.0 specific, so don’t worry if you are using an earlier
version of the framework.

The biggest addition to Spring’s web capabilities with Spring 2.0 is the formal bundling
of Spring Web Flow and Spring Portlet support. Spring MVC stays largely the same as previous
versions, but does gain a few helpful simplifications and shortcuts. The changelog for the lat-
est version is currently found at http://static.springframework.org/spring/docs/current/
changelog.txt.

CHAPTER 1 ■ INTRODUCTION 5

Summary
With so many options available for web frameworks, many of them perfectly fine solutions, it
might come down to which framework is simply more enjoyable to work with. We believe that
using Spring MVC will not only lead you to better designs and code, but also inspire fun devel-
oping with it. It really is a joy to apply good OOP design techniques and to write applications
that are easily tested.

We have found that using Spring MVC has enhanced our ability to develop and deliver
quality applications, and we want you to have the same level of success that we have enjoyed.
So go forth, use Spring MVC, and bring OOP back to web programming!

CHAPTER 1 ■ INTRODUCTION6

Spring Fundamentals

The Spring Framework has pumped new life into Java development. In the period immedi-
ately following the dot com bubble burst, Java applications were facing an uncertain future.
The initial promises of J2EE had been thoroughly debunked, .NET was poised to offer a strong
alternative, and the industry was generally sobering. Companies began to expect more appli-
cation for less money and effort, and it wasn’t certain that the J2EE platform would be able to
deliver.

After the release of Rod Johnson’s Expert One-on-One J2EE Design and Development (Pro-
grammer to Programmer) (Wrox, 2002) and its eventual evolution into the Spring Framework,
the Java landscape had a new beacon of hope. The Spring Framework encapsulates a refresh-
ing new beginning to Java development. First and foremost, it has enabled the return of the
plain old Java object (POJO) to enterprise development. The framework combines best prac-
tices learned from actual deployments, with best-of-breed third-party utilities, to deliver a
complete package.

Before we dive into Spring MVC and Web Flow, we feel it important to touch on a few very
important concepts from the Spring Framework that we will rely on for the rest of the book.
The Spring Framework has a unique, lightweight/full-featured duality, and we won’t attempt
to glance over the framework in this chapter. That job has been performed quite successfully
by other works such as Pro Spring, or the Spring documentation. We wish to reintroduce only
the core principles we believe to be important. If you are new to Spring, or need a refresher,
there are many great resources available. Refer to Pro Spring, by Harrop and Machacek (Apress,
2005), or the online Spring Framework documentation (http://www.springframework.org).

Inversion of Control
You might hear the terms Inversion of Control and Dependency Injection used interchangeably,
but in fact they are not the same thing. Inversion of Control is a much more general concept,
and it can be expressed in many different ways. Dependency Injection is merely one concrete
example of Inversion of Control.

Inversion of Control (or IoC) covers a broad range of techniques that allow an object to
become a passive participant in the system. When the IoC technique is applied, an object will
relinquish control over some feature or aspect to the framework or environment. Some exam-
ples of control include the creation of objects or the delegation to dependent objects. IoC can
remove these concerns from objects with Dependency Injection and aspect-oriented pro-
gramming, respectively.

7

C H A P T E R 2

■ ■ ■

IoC Example
Many systems of medium to large scale require some sort of a security system. Performing
authorization, authentication, and accounting is a concern of the application that typically
cuts across the entire object model.

A first attempt at implementing security might place the authorization calls directly
inside the domain object, effectively forcing the object to control security itself. This can lead
to a bloated object model implementation, because now the security code has become inter-
laced across the system, obscuring the business logic (Listing 2-1).

Listing 2-1. Simple POJO with Control of Security

public class BankAccount {
public void transfer(BigDecimal amount, BankAccount recipient) {

SecurityManager.hasPermission(this, Permission.TRANSFER,
SecurityContext.getCurrentUser());

recipient.deposit(this.withdraw(amount));
}

public void closeOut() {
SecurityManager.hasPermission(this, Permission.CLOSE_OUT,

SecurityContext.getCurrentUser());
this.open = false;

}

public void changeRates(BigDecimal newRate) {
SecurityManager.hasPermission(this, Permission.CHANGE_RATES,

SecurityContext.getCurrentUser());
this.rate = newRate;

}
}

Listing 2-1 shows a simple BankAccount class with typical business logic methods
(transfer, closeout, changeRates). These method implementations are cluttered with nearly
duplicate security-related checks, obscuring the original intent of the business logic. In addi-
tion, the SecurityManager calls add a dependency that will be difficult to work with when we
unit test this class.

To remove the clutter and simplify the implementation, the BankAccount should let go of
this security responsibility altogether (Listing 2-2). In effect, the control over security should
be turned inside out from the object to the surrounding framework.

CHAPTER 2 ■ SPRING FUNDAMENTALS8

Listing 2-2. Simple POJO with Security Concerns Relinquished

public class BankAccount {
public void transfer(BigDecimal amount, BankAccount recipient) {

recipient.deposit(this.withdraw(amount));
}

public void closeOut() {
this.open = false;

}

public void changeRates(BigDecimal newRate) {
this.rate = newRate;

}
}

This Inversion of Control has freed the object from the cross-cutting constraint of security
authorization. The end result is a removal of duplicate code and a simplified class that is
focused on its core business logic.

So how do we get the security checks back into the system? You can add the authorization
mechanism into the execution path with a type of IoC implementation called aspect-oriented
programming (AOP). Aspects are concerns of the application that apply themselves across the
entire system. The SecurityManager is one example of a system-wide aspect, as its hasPermission
methods are used by many methods. Other typical aspects include logging, auditing, and trans-
action management. These types of concerns are best left to the framework hosting the
application, allowing developers to focus more on business logic.

An AOP framework, such as Spring AOP, will interject (also called weaving) aspect code
transparently into your domain model at runtime or compile time. This means that while we
may have removed calls to the SecurityManager from the BankAccount, the deleted code will
still be executed in the AOP framework. The beauty of this technique is that both the domain
model (the BankAccount) and any client of the code are unaware of this enhancement to the
code.

To explain a little more, it helps to talk about a concrete implementation of AOP
as applied by Spring. The Spring Framework uses what is called proxy-based AOP. These
proxies essentially wrap a target object (the BankAccount instance) in order to apply aspects
(SecurityManager calls) before and after delegation to the target object. The proxies appear as
the class of the target object to any client, making the proxies simple drop-in replacements
anywhere the original target is used.

■Note Spring also supports AspectJ, which is implemented not with proxies but with compile-time
weaving. Weaving is a more capable AOP implementation and a nice alternative to the more simple proxy
solution.

CHAPTER 2 ■ SPRING FUNDAMENTALS 9

Figure 2-1 illustrates the sequence of calls when a BankAccount is closed out, using proxy-
based AOP to perform the security checks.

Figure 2-1. Call sequence with AOP SecurityManager

As you can see from the preceding diagram, the SecurityManager calls are handled by the
proxy before it delegates to the real BankAccount class.

For more information on aspect-oriented programming, we recommend Ramnivas
Laddad’s AspectJ in Action (Manning Publications, 2003) or Adrian Colyer’s Eclipse AspectJ:
Aspect-Oriented Programming with AspectJ and the Eclipse AspectJ Development Tools (Eclipse/
Addison-Wesley, 2004). For more information on how Spring supports and implements AOP,
consult Pro Spring.

Summary
When you apply an AOP solution to your system, you are actually applying a form of IoC. For
instance, introducing security aspects to your object model is merely inverting the responsi-
bility from the object layer to the framework layer.

The Spring Framework provides a robust implementation of AOP. Every time you use the
declarative transaction management, you are using AOP. Thus, you are using another form of
IoC. In this form, the object model becomes a passive participant in transaction management,
relinquishing control over when to commit or roll back to the framework.

To summarize, Inversion of Control is the broad concept of giving control back to the
framework. This control can be control over creating new objects, control over transactions, or
control over the security implementation. Aspect-oriented programming is one technique to

BankAccountProxyBankTellerCustomer

3: hasPermission

4: closeOut

2: closeOut
1: close account

Implements
BankAccount

SecurityManager Bank Account

CHAPTER 2 ■ SPRING FUNDAMENTALS10

implement IoC. Dependency Injection is another technique to implement, which we will dis-
cuss in the following section.

Dependency Injection
The concept of Dependency Injection is core to the Spring Framework. A specialization of Inver-
sion of Control, Dependency Injection is a technique that frameworks use to wire together an
application. The framework performs the work of connecting an application’s dependencies
together, removing the wiring logic and object creation from the application code completely.

We will contrast Dependency Injection with an older technique named the Service Loca-
tor pattern. We will show how the Service Locator pattern harms the testability and flexibility
of an application. We then show how Dependency Injection, and Spring’s implementation, fix
this issue.

In nearly all applications there are at least two participants, and these two participants
are required to somehow collaborate. The trick is to connect these two objects without locking
in the connection or requiring a certain environment to even exist for the connection to be
made.

For our example, we will consider the following use case. A cash register must obtain up-
to-date prices for items being purchased. The prices are stored and calculated inside a large
legacy system, but the cash register is physically located at the point of sale. The CashRegister
object must have a reference to the price database to perform its work.

We begin by defining the interface to represent the cash register. It has one method,
calculateTotalPrice, which takes a shopping cart and returns the total price for all items
in the cart.

public interface CashRegister {
public BigDecimal calculateTotalPrice(ShoppingCart cart);

}

Next, we define the interface for the service that will provide the real time price lookup.
This interface has one method, lookupPrice, to return the price for an item.

public interface PriceMatrix {
public BigDecimal lookupPrice(Item item);

}

Finally, we will create the implementation of the CashRegister interface. It simply creates
its own dependency, an instance of PriceMatrix.

public class CashRegisterImpl implements CashRegister {
private PriceMatrix priceMatrix = new PriceMatrixImpl();

public BigDecimal calculateTotalPrice(ShoppingCart cart) {
BigDecimal total = new BigDecimal("0.0");
for (Item item : cart.getItems()) {

total.add(priceMatrix.lookupPrice(item));
}
return total;

}
}

CHAPTER 2 ■ SPRING FUNDAMENTALS 11

There are three major issues with the preceding implementation. The first is that every
instance of CashRegisterImpl has a separate instance of PriceMatrixImpl. If it is costly to cre-
ate or maintain that object, then this is a waste of system resources. With heavy services (those
that are remote or those that require connections to external resources such as databases) it is
preferable to share a single instance across multiple clients.

The second and most important issue is that the CashRegisterImpl now has concrete
knowledge of the implementation of PriceMatrix. The CashRegisterImpl class should not
know the details of the implementation of its dependency interfaces. By explicitly creating
the instance of PriceMatrixImpl, the CashRegisterImpl has tightly coupled itself to the con-
crete implementation class.

The third issue with the preceding implementation is a direct result of the tight
coupling to the implementation class. By explicitly creating its own dependent objects, the
CashRegisterImpl creates a difficult test situation. One of the most important tenets of writing
unit tests is to divorce them from any environment requirements. The unit test itself should
run without connecting to outside resources. If we were to test the calculateTotalPrice
method as is, we would have no choice but to require a fully functioning PriceMatrixImpl.
Not only would this slow down our unit test runs, it would now couple our tests to resources
we can’t control. What if the price returned by lookupPrice changes over time? Our unit tests
would have to stay in sync with the physical resource, increasing the burden of maintaining
the tests.

If we can’t interact with a real PriceMatrix, how do we test our calculateTotalPrice
method? We will create a stub instance of PriceMatrix, one where we can control the condi-
tions and outcomes of the method calls. This technique is called a mock, and it is very useful
in unit tests. For a full explanation of mock objects and their uses, refer to JUnit in Action by
Husted and Massol (Manning Publications, 2003). In the meantime, it is sufficient to think
about a mock object as a fake object that looks like a particular class, but whose behavior is
controlled by the test author.

As you can see, we have noticed three deficiencies of the above implementation. The
responsibility of creating the object is left to the method, prohibiting the use of a shared
PriceMatrixImpl. The method is also difficult to test, as we need to somehow insert a mock
object in place of the real thing. Most importantly, the client code is now aware of implemen-
tation details of its dependency, creating two tightly coupled classes.

To address the first issue, we will remove the explicit instantiation of the PriceMatrix
dependency. This frees the CashRegisterImpl from the burden of object creation and from the
knowledge of any physical implementation details. More importantly, the PriceMatrixImpl is
no longer located inside the CashRegisterImpl instance. By moving the dependency out of the
client object, it is no longer solely owned by CashRegisterImpl, and can now easily be shared
among all classes. The question then becomes, how do we now locate the dependency?

Service Locator
Enter the Service Locator pattern, our first attempt at fixing the method. The Service Locator
pattern encapsulates the actions taken to obtain a reference to the object required. This
shields the client from knowing how, or even where, to obtain a reference to the object.

This pattern emerged as a workaround from using Java Naming and Directory Interface
(JNDI) to obtain references to other Enterprise JavaBeans (EJBs) in a J2EE application. Using
JNDI to obtain a simple object reference can be cumbersome and can require a lot of defen-

CHAPTER 2 ■ SPRING FUNDAMENTALS12

sive programming. To protect the client, and to reduce code duplication, the Service Locator
pattern was born. It usually manifests itself as a static method, returning a single instance of
the requested object.

We can now change our initial code to the following:

public class CashRegisterImpl implements CashRegister {

private PriceMatrix priceMatrix;

public CashRegisterImpl() {
priceMatrix = ServiceLocator.getPriceMatrix();

}

public BigDecimal calculateTotalPrice(ShoppingCart cart) {
BigDecimal total = new BigDecimal("0.0");
for (Item item : cart.getItems()) {

total.add(priceMatrix.lookupPrice(item));
}
return total;

}

}

Using this Service Locator, the class no longer has to manage object creation. The location
of the actual instance of PriceMatrix is now independent of the client class. In a managed
environment, such as J2EE servers, this point is critical. The act of obtaining the resource is
now hidden from the client so that it may get on with the work at hand. The first problem we
had with the original implementation has been solved.

The other benefit of using this Service Locator is that our client has no knowledge of the
concrete implementation of PriceMatrix. This shields the client, allowing the implementation
of PriceMatrix to evolve independently of CashRegisterImpl.

The third problem, the lack of testability, is unfortunately still with us, even after the change
to the Service Locator. Creating a unit test for the preceding method is extremely difficult, because
the implementation relies on a functioning PriceMatrix object. The test should be written with a
mock PriceMatrix, but there is no way to insert the mock object during testing.

The Service Locator pattern, implemented here as a static method, falls down in a test
scenario. The static ServiceLocator.getPriceMatrix is difficult to change during a test run.
The locator method has to be told to return a mock PriceMatrix during the test, and a real
PriceMatrix during deployment.

This situation has illustrated the need to swap different implementations of
PriceMatrix without affecting the client. To effectively do this, the client (in this case, the
calculateTotalPrice method) must not actively participate in the construction or retrieval of
the resource. The resource must be given to the client.

CHAPTER 2 ■ SPRING FUNDAMENTALS 13

Dependency Injection
Instead of the lookup call to the Service Locator, the framework can provide a reference of
type PriceMatrix to the CashRegisterImpl class. This reduces the active work the client has
to do to obtain a reference to zero, making it a passive client of the framework.

The responsibility for object creation and object location has been inverted, from the
class to the framework. This wiring of dependencies is Dependency Injection in action.

Spring supports Dependency Injection in two main ways, and both are extremely simple.
In fact, both use plain old Java idioms.

■Tip There is a third way, called method-based injection, which takes advantage of Spring’s AOP support.
It’s more complicated, however no less useful, so it is not mentioned here. Consult the documentation or
Pro Spring for more information on method-based injection.

The first type of Dependency Injection we will cover is constructor-based injection. This
concept merely means the dependency is provided via the constructor at object creation time.
For instance, to use constructor-based injection on our CashRegisterImpl object, the class
would look as shown in Listing 2-3.

Listing 2-3. Constructor-Based Dependency Injection

public class CashRegisterImpl implements CashRegister {
private PriceMatrix priceMatrix;

public CashRegisterImpl(PriceMatrix priceMatrix) {
this.priceMatrix = priceMatrix;

}

public BigDecimal calculateTotalPrice(ShoppingCart cart) {
BigDecimal total = new BigDecimal("0.0");
for (Item item : cart.getItems()) {

total.add(priceMatrix.lookupPrice(item));
}
return total;

}
}

That’s it! The framework is responsible for obtaining the reference to a PriceMatrix object
and then calling the constructor of the CashRegisterImpl and providing the PriceMatrix
object.

The class is obeying what is commonly called the Hollywood Principle. In other words,
the framework’s contract is “Don’t call me; I’ll call you.” Even more technically, the contract is
“Don’t ask for the resource; I’ll give it to you.”

CHAPTER 2 ■ SPRING FUNDAMENTALS14

Another type of Dependency Injection that’s more popular with Spring is setter-based injec-
tion; just what it sounds like, it uses setter methods to inject the dependency. To use setter-based
injection, the constructor will be removed and replaced with a simple JavaBean-compliant setter,
as shown in Listing 2-4.

Listing 2-4. Setter-Based Dependency Injection

public class CashRegisterImpl implements CashRegister {
private PriceMatrix priceMatrix;

public setPriceMatrix(PriceMatrix priceMatrix) {
this.priceMatrix = priceMatrix;

}

public BigDecimal calculateTotalPrice(ShoppingCart cart) {
BigDecimal total = new BigDecimal("0.0");
for (Item item : cart.getItems()) {

total.add(priceMatrix.lookupPrice(item));
}
return total;

}
}

The framework simply calls the setter with the PriceMatrix instance, and now CashRegister
has everything it needs. By not using the constructor, the CashRegister object can now be cre-
ated without the immediate availability of a PriceMatrix, making its life cycle a bit more flexible.

Which type should you use, constructor-based injection or setter-based injection? This
is purely a matter of taste. The Spring Framework does not mandate one method or the other.
In fact, you may even use both methods on the same bean. Those who prefer constructor-
based injection claim that it enforces a correctly initialized object due to the intrinsically
self-validating nature of constructors. A potential downside to constructor-based injection is
the risk of a proliferation of constructors to accommodate different use cases. As use cases
grow, each requiring different sets of dependencies, so shall grow the number of constructors.

Those who prefer setter-based injection argue that it is more flexible (able to mix and
match for different situations) or that it is self-documenting. For instance, compare the fol-
lowing two bean definition examples in Listings 2-5 and 2-6, and consider which tells you
more about the relationship between the object and its dependencies.

Listing 2-5. Example A

<bean id="addressService" class="org.example.addr.AddressServiceImpl">
<constructor-arg ref="zipCodeService" />
<constructor-arg ref="uspsValidator" />
<constructor-arg ref="googleMapService" />

</bean>

CHAPTER 2 ■ SPRING FUNDAMENTALS 15

