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INTRODUCTION

Have you ever noticed how complicated all the instrument panels looked in those futuristic
movies and TV shows from years past? The fact that Captain Kirk could operate the myriad
buttons, lights, and widgets on the Starship Enterprise was a feat in itself. Sure, the produc-
ers of Star Trek probably weren’t thinking a great deal about how usable the instruments
should appear on-screen. Instead, they created a depiction of what this monster we call tech-
nology must look like in the future: a mess of complicated processes understandable only to
a select, brilliant few. See Figure 1 for another example.

Figure 1. The classic 1980s TV series Knight Rider featured a talking car named Kitt that could
think on its own. But how would you operate a car with a dashboard as confusing as Kitt’s? 

Unfortunately, it’s not just at the movies or from prime-time TV where we get the impression
that technology is difficult to use. From radio clocks, to stovetops (see Figure 2), to comput-
ers, to the Internet, you’ll find plenty of examples of poorly designed interfaces masking
otherwise great engineering. Take a multi-disc DVD player, hook it up to a TV with multiple
video ports, and try to navigate through to the favorite scene of your movie with an all-in-
one TV/DVD/VCR remote. If you can get through it all without a few mental stumbles along
the way, and without the aid of the instruction booklet, maybe you can help the rest of us!
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Figure 2. The classic stovetop usability problem: which knobs turn on which burners?

Over the past decade, we’ve encountered the same kinds of frustrations with the Internet.
Superfluous Flash intros, slowly loading sites, obtrusive JavaScript alert boxes, complex
navigation, excessively long pages, broken links, unexpected pop-up ads, and unintuitive
forms are just a few of the usability problems we’ve seen in the brief history of the Web.
As web designers and developers (if you’re reading this book, you more than likely fall
somewhere within or near this category), we know that technology works best when we
can interact with it like it’s our best friend rather than our worst enemy. In general, we’ve
coined this concept under the term usability. But what exactly does usability mean? Is it
something more than just a sophisticated term for easy to use?

Defining Flash usability
Because this is a book on developing usable web applications with Flash, we’re going to
define usability as follows:

Usability measures how intuitive, efficient, and pleasurable the
experience of using a Flash application is, as well as how effective
the application is in achieving a user’s end goals.

INTRODUCTION
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Let’s take a closer look at what this means:

Usability should be intuitive. The more obvious you can make the features of
your web application, the better. Users should be thinking less about how to use
your application and concentrating more on how to benefit from your application.
The most intuitive interface is one that the user isn’t even aware of—an “invisible
interface.” The interface is so fluid that the user and the application become one.

Usability should be efficient. The user should be able to get from point A to
point B as efficiently as possible. Every interaction you have with your software
should be directed toward the goal you are trying to achieve. As developers, we
need to hide all of the processes that occur behind the scenes as much as possible.
Users should be presented with only what they need to know, not everything that
is actually occurring at a particular moment.

Usability should be pleasurable. The design of your application should be pleas-
ing and engaging. This means understanding good design principles, as well as
knowing how to handle user input in an elegant way. 

Usability must be effective in achieving a user’s end goals. In the end, if your
application is intuitive, efficient, and pleasurable, but doesn’t get the user to com-
plete the task at hand, you’ve failed. While keeping in mind the three previous
points, ultimately, you need to make sure that the darned thing actually does sub-
mit a customer order, print a patient’s medical records, or whatever it was origi-
nally designed to do!

So, is that it? Well, yes and no. For the purposes of our book, we wanted to keep the dis-
cussion of usability itself as concise as possible. Instead, we’re going to devote the major-
ity of our pages (Part Two) to showing you how we solve specific usability problems with
Flash. Think of this book as an analysis of usability case studies, rather than an A-to-Z
primer on usability. After digging into these pages, you should feel comfortable with how
to solve specific usability issues and how to approach new ones down the road. In Part Three,
we’ll focus on how to plan for usability in the design process and present a final applica-
tion that integrates all the solutions.

At the same time, we don’t want to dismiss the more theoretical study of usability. A host
of great books, websites, and people are dedicated to this ever-evolving subject and many
equally important related topics, such as user research, goal-oriented design, and task
analysis. We’ve provided an appendix to this book to point you to other resources if you’d
like to dig further into usability theory.
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Building for usability
Usability engineering is not just about good interface design. While the visual appeal of a
web application is important, the underlying structure and programming can equally con-
tribute to “good usability.” Usability doesn’t just begin and end with the user. A usable
website that’s built poorly won’t survive the kinds of revisions and feature additions that
are inherent to all living web applications. It’s akin to a magnificent-looking house that’s
being eaten through by termites. Eventually, it will fall apart and have to be redone. This is
the part that is left out of most books about usability.

In the solutions presented in this book, we won’t just talk about creating Flash applications
with user-friendly design. We’ll also introduce different techniques for designing your
code, letting you better integrate the discussed solutions into your own Flash projects.
After all, the easier it is to make your applications more usable, the more likely you’ll strive
to achieve it!

Who is this book for?
We hope you’ve gotten the idea that this is not your prototypical usability book. As we
mentioned, we’re not going to dig that deeply into theory. Likewise, this book isn’t your
usual “how-to” Flash book. We’re not going to start from the ground up. We will lay out
each usability solution in detail, but assume you already have a good familiarity with Flash.
These solutions are geared toward Flash developers who are comfortable with the Flash
development environment. You should know what buttons and movie clips are, and the
differences between, say, frame-based actions and object-based actions.

To get the most out of this book, you should have a basic knowledge of ActionScript 2.0
(AS2) and a solid understanding of object-oriented programming (OOP). The solutions
in this book will rely heavily on using AS2 classes, and we will look at some key concepts in
OOP to implement these solutions. If you are relatively new to Flash or aren’t familiar with
AS2, that’s still OK! There will be plenty of take-aways from each chapter that don’t nec-
essarily have to do with the development process. We recommend that you read this book
alongside any good AS2 programming book (see this book’s appendix). Rather than wrap-
ping them up into rigid components, we’ve made our solutions fully exposed to you and
available for download in their entirety from this book’s page at www.friendsofed.com
(just search for this book in the menu on the front page, and then go from there). We
want you to be able to take what we’ve done and enhance it in your own projects!

This book is the ultimate synthesis of a usability discussion and programming guide. We’ll
talk about how Flash can best enhance the usability of your applications. We’ll also give
you our perspective on the best way to develop these solutions, from designing the inter-
face all the way down to how to structure your ActionScript code.

So, while this book is geared toward more experienced Flashers who are well acquainted
with AS2, these solutions offer something for Flash developers at any level looking to
improve the usability of their projects.
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A note about our approach
Before we get started, we’d like to stress one very important point to you. As anyone who
has developed applications in a programming language knows, programming is an iterative
process. There are always multiple ways of approaching a solution to a problem. The solu-
tions in this book are no different.

None of the coding solutions in this book should be taken “as is.” We highly encourage
you to download our source code; examine our examples; and find ways to improve on
them to make them more scalable, reusable, and maintainable. In fact, we’re fully aware
there are more optimal implementations of the solutions we’ve provided in this book.
However, in some cases, we’ve held back from a “better” approach to a problem because
we introduce a concept inherent to the better approach in a later chapter. In other
instances, we’ve held back in order to simplify the method for discussion purposes. Our
goal is that, after reading the book, you’ll be equipped with a few different kinds of strate-
gies you can take in ActionScript programming as it relates to usability.

Be sure to check the page for this book on the friends of ED website (www.friendsofed.com)—
we will post revisions of our code examples as we (or maybe you) find ways of improving
them! 
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To get a better understanding of where Macromedia Flash stands today, it’s important to
look at its beginnings. Only after examining why many Flash-based web applications suf-
fered from poor usability design in the past can we apply the lessons learned from those
mistakes. It’s up to us, the designers and developers, to figure out how to get around these
issues and use the powerful flexibility of Flash to aid—rather than obstruct—our users.

In this chapter, we explore Flash’s history and lay out some of the advantages it has over
traditional web media. We then discuss the role it should play in the web community as a
truly powerful tool for usability. We’ll accomplish this by covering the following topics:

The brief, turbulent history of Flash

How the Flash environment changed with MX 2004 and ActionScript 2.0

Flash’s advantages (and disadvantages) compared to HTML with Flash 

Flash versus Ajax, a competing technology

Breaking the Flash usability stigma

The increasing importance of usability on the Web

The brief, turbulent history of Flash
Today, Macromedia Flash is a robust piece of software, with its own application framework
and object-oriented programming (OOP) language. With Flash’s remoting and XML parsing
capabilities, creating truly dynamic, sophisticated software in Flash is a reality. But it wasn’t
always this way. 

When it began as FutureSplash Animator, Flash was just an animation tool with modest
drawing capabilities. When Macromedia bought FutureSplash in 1996 and built upon its
authoring tool and plug-in, the web design revolution broke loose in both good and
bad ways. 

Many interactive designers began exploiting the early versions of Flash, creating magnifi-
cent, dynamic websites that juxtaposed the otherwise mundane landscape of the Web.
Beauty and aesthetics can take you only so far, though. Companies in the mid-to-late
1990s clamored for their own lengthy Flash intros until they started realizing that users
were turning away from all this glitz and glamour. For users, the initial excitement of see-
ing a new kind of technology hit the Web quickly dissipated. Long intro animations, fancy
page transitions, and complex navigation metaphors kept users from seeking the basic
information they wanted from their web experience. The added showiness of web design
meant users had to wait longer, search harder, and become more vigilant. As soon as how
things looked became more important than how things worked, many users’ patience
began to wear thin.

Flash has since become synonymous with “flashy, engaging sites” that lack true usability.
However, it’s an unfair assumption, as it has little to do with what kinds of applications
Flash’s tools can produce and everything to do with how Flash developers decided to use
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these tools. When Macromedia hired Jakob Nielsen (one of the world’s most well-known
web usability experts), it became clear that the company wanted Flash to garner the same
attention for building usable web applications as it had for merely creating fancy inter-
faces.

Shortly thereafter, Flash software noticeably became more like HTML. As you probably
know, Flash text fields can render basic HTML tags like <b>, <i>, <img>, <a>, and others.
With the release of Flash MX, a set of form components appeared on the scene that mim-
ics the behavior of many traditional HTML form widgets (e.g., select boxes, text areas, and
radio buttons). It seems as if the Flash development team figured that in order to compete
with the mainstream popularity of HTML, they had to produce components that look and
feel like HTML with the special enhancements that Flash can offer. 

While the team had the right idea, we’d like to stress that just because Flash can “act” like
HTML, that doesn’t mean it has to. Flash offers an out-of-the-box select component, but
we shouldn’t immediately resort to using it any time we want users to select from a group
of items. There may be more intuitive, pleasurable, and ultimately usable ways of solving
this problem, as you’ll see in our Chapter 6 example.

Flash MX 2004 and the release of
ActionScript 2.0

Our perception of Flash has evolved from its early days as strictly a design tool that can
create amazing visual effects, to an all-purpose web-authoring tool equally capable of
building sophisticated software and crafting stunning visuals. Flash is now synonymous
with the development of rich Internet applications (RIAs; more on this a bit later in the
chapter), and since the release of Flash MX 2004, Flash developers have been introduced
to a new underlying programming language: ActionScript 2.0 (AS2 for short). 

Sure, by Flash 5, many of the interactive capabilities of the software that we use today
were already at our disposal. Many beautifully done pieces of Flash on the Web date back
a few years. Even a few versions ago, we had about the same control over Flash’s built-in
objects as we do now. However, the transition from ActionScript to AS2 (and specifically,
the transition to a full-fledged OOP language) was what vaulted Flash into a platform that
could compete with—and outperform—traditional HTML-based applications, both from
an interface and functional design perspective (as described in the upcoming section, “The
advantages (and disadvantages) of Flash over HTML”).

A complete list of supported HTML tags in Flash can be found at
http://livedocs.macromedia.com/flash/mx2004/main_7_2/
wwhelp/wwhimpl/common/html/wwhelp.htm?context=
Flash_MX_2004&file=00001040.html.
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New features introduced by ActionScript 2.0

AS2 lets you script code outside of the Flash environment in ActionScript files (text files
marked with the .as extension). Though you could do this in ActionScript 1.0 by placing
code into external files using the #include compiler directive, with AS2, you also have
the ability to build code with some fundamental object-oriented techniques such as the
following:

Object-oriented architectural structures such as packages and classes

Object typing

Class protection (public and private keywords)

Object-oriented constructs such as interfaces and inheritance

The inclusion of these new features allows you to reuse behavior, maintain your code
more easily, and scale up functionality far more rapidly than before. These new features
also help assist other developers understand the intent of your code. 

Usability benefits of ActionScript 2.0

As the saying goes, there’s more than one way to skin a cat. In programming, you have
many ways to produce the same end-user functionality. AS2 offers you far more elegant
ways of developing your code to achieve the same result than ever before. In addition, it
eliminates the old, hard-to-manage techniques that Flash developers employed in the
past, like creating movie clips offstage as storage depots for ActionScript code, or using
timeline frames to manage states. 

Because of these new advantages, you can now start thinking about developing usability
solutions that you can easily adapt to new applications. The more modular you make your
code, the less time you’ll have to spend in the future building out the same kinds of func-
tionality over and over again! Instead, you can spend more time tweaking the behavior or
design to accomplish your usability goals. This book will provide a basic open code base
for you to use, modify, and enhance in your Flash usability development endeavors. 

The advantages (and disadvantages) of
Flash over HTML

You should know that we don’t mean to condone Flash as the be-all, end-all platform for
every usable web application. Every kind of web project brings with it a new set of ques-
tions regarding how it’s best delivered to an audience. Sometimes, Flash isn’t the answer.
There are times when a combination of Flash and traditional HTML/CSS/JavaScript pro-
vides the optimal solution. There are other times when Flash may not be part of the
answer at all. 

For example, pure Flash may not be the best route if your audience is primarily using older
browser versions or lower-bandwidth connections. The good news is that the penetration
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of Flash Player is tremendous. Recent statistics have shown that almost 98 percent of
Internet-enabled desktops have a version of Flash Player installed.1 This level of market
penetration is greater than that of many other commonly used programs such as Adobe
Acrobat Reader, Java, and Windows Media Player. Also, as computer users continue to
migrate toward high-speed Internet connections, bandwidth issues will become less and
less significant over time. 

Flash also may not be the best medium if your web application needs to be scannable to
search engines. If your site’s content must be easily found by search engines, you may
want to think about using traditional HTML programming for your site (or, perhaps, pro-
viding an HTML version of a Flash site that can then redirect itself to the Flash version).

Of course, this is a book advocating Flash usability, so we should point out that a great
many traditional Flash usability issues can be resolved with a little creativity. For instance,
we’ll show you how to enable your browser’s Back button for Flash sites (in Chapter 12),
as well as how to create effective full-browser-width liquid layouts in Flash (in Chapter 13).

Ultimately, we would like to convince you that there are certain inherent advantages Flash
brings to the table over traditional HTML design, regardless of the kind of project you’re
working on. As we discuss in this section, these advantages include Flash’s flexibility, its
excellent cross-browser and cross-platform compliance, its asynchronous processing and
state management capabilities, and its various design features that help developers
achieve elegant visual effects. Moreover, with each version of Flash that appears on the
scene, the advantages of HTML diminish even further.

Flexibility

Of course, you know about Flash’s flexibility by now. Flash has always been the delinquent,
trouble-seeking child of the web development family, unbound from the web constraints
imposed on HTML. But while Flash’s almost boundless design flexibility can allow for
annoyingly long-loading intros, obtrusive ad blasters, and confusing site layout, it can also
enable us to build tools and widgets in more beautiful and elegant ways than traditional
HTML programmers could ever hope for. 

In HTML, there’s really only a finite set of tools at your disposal. If you want to build in any
sort of interactivity, you typically create a <form /> block with form elements that we’ve
all used repeatedly by now: text fields, radio buttons, drop-down lists, and check boxes.
Any kind of usability design we create with HTML interactivity usually translates to deco-
rating these form elements, but how you interact with them remains largely the same.

In Flash, you’re presented with a blank canvas. Want to build an online store? You don’t
necessarily need to have drop-downs to select the quantities of an item you want. Instead,
you can decide that a slide meter will do a more efficient job. Or, you might allow a user to
drag and drop items into a basket area in your store. These choices, along with the drop-
down design, are all possible options in Flash, while not all are necessarily feasible in HTML. 
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This isn’t to say that you can’t build some pretty clever and beautiful applications in HTML.
In fact, you could probably build an on-the-fly calculator using JavaScript events and
something similar to a slide meter using HTML and JavaScript or a third-party source.
However, such an element isn’t going to be nearly as easy and reusable as it would be if
you built it in Flash. Flash is simply a better tool for building innovative solutions that
aren’t going to be bound to the traditional constructs HTML brings with it.

Cross-browser and cross-platform compliance

Design once and you’re done! Flash has the distinct advantage of not having to rely on
how a browser interprets its code to render. HTML and CSS are certainly making progress
in developing a series of web standards that most browsers are adopting, but there are still
many years of work ahead before all major browsers fully adhere to strict XHTML/CSS
standards. 

From a development perspective, browser dependence can wreak havoc on your design
goals and timelines. You have to consider not only what your target browsers are, but also
how your application should look and feel on browsers that don’t fully support your code.
Also, it forces you to waste time considering whether a particular bug is really a bug on
your end or an incorrect interpretation of your code on the browser’s end. If you’ve had
experience with browser compatibility issues, you’re probably familiar with code forking,
or building multiple sets of code to achieve the same desired functionality and appearance
on different browsers.

With Flash, you have the luxury of knowing that the resulting application will function and
look just about the same on all browsers and operating platforms, as long as users have
the latest Flash plug-in installed. In this way, Flash is a lifesaver when it comes to having to
comply with users’ many different browser types and versions.

Asynchronous processing and state management

HTML applications are typically synchronous processes. When you fill out an HTML form,
it’s only when you click the Submit button that all your information is sent. Moreover,
while the form submits, there’s little else you can do but twiddle your thumbs and wait for
the screen to refresh. When you want to complete a task in an HTML application, you’re
generally led through a linear workflow process that adheres to whatever the underlying
data model is. As users, we spend a significant portion of time waiting for things to
happen—time that could be better spent doing other things. 

AS2 has the unique ability to manage the state of the application on the client. This allows
you even greater flexibility when it comes to creating seamless Flash applications. While
JavaScript can be used to manage an application’s state to some degree, it’s certainly not a
common practice. It’s far more efficient to handle application state on the server side, and
code maintainability becomes a bigger issue the more you intertwine JavaScript with
HTML.

Flash offers a far more robust set of tools that allow for asynchronous activity. If you ask
Flash to, say, give you information on three new products in a store’s inventory, Flash can
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spit back the information as the items are processed. In HTML, your options are to either
wait for all three processes to return or ask for one piece of information at a time.

Things are rapidly changing, however. The benefits of asynchronous processing in Flash are
now being ported over to the HTML world. For example, you may be familiar with emerg-
ing web technologies such as Asynchronous JavaScript and XML (Ajax), which can produce
rich, seamless web applications similar to those created in Flash. (We’ll talk more about
Ajax shortly.)

Robust design capabilities

By now, we’ve all become accustomed to the typical effects interlaced within most main-
stream Flash applications. We can make objects fade out and fade in. We can make items
grow, shrink, bounce, speed up, slow down, drag, hover, stick, slide—you get the idea. 

Just as you can use effects to create captivating visual presentations in Flash, you can also
use them to enhance the user-friendliness of your applications. Good usability design is
often a matter of deciding when these effects are appropriate and how best to create
them. Subtle, elegant visual changes to a button rollover can be pleasing to the eye. The
way in which a text window responds as you scroll through it can be made to look jerky, or
smooth and forgiving. With Flash, you have a laundry list of available effects that you can
implement to provide that extra “wow” factor and seamless design when a user interacts
with your applications.

Flash can achieve these elegant effects better than HTML-based technologies because, first
and foremost, Flash is a design and animation tool. It’s very easy to increase frame rates to
give Flash movies a smoother look and feel. It’s also easy to change the way objects move
or transition from one visual state to another in ActionScript because Flash objects inher-
ently contain those properties.

There isn’t a really good parallel to Flash design in the HTML world. A combination of
HTML, JavaScript, and CSS can partially get us there. But these languages aren’t suited for
creating elegant tweening techniques. We can create some elegant visual designs with CSS,
but concepts like tweening and animation aren’t a native component to these languages.

Flash 8 now comes with an even more robust framework to enhance the visual appeal of
your projects. Here are just a few key improvements: 

Bitmap filters let you add effects to your objects that once were achievable only by
importing images created in a graphics program like Adobe Photoshop. Filters like
drop shadows, glows, blurs, and bevels are available at the click of a button! 

Text rendering capabilities far superior to those in any previous release of Flash.
Flash 8 provides customizations for anti-aliased text so that it appears much
sharper and is optimized for animation and readability. 

The Custom Easing feature, which makes it much simpler to tween objects in Flash
in more complex mathematical ways than ever before. You can adjust tweens with
a graphical interface rather than relying on complex math calculations.

FLASH: THEN, NOW, LATER

7

1


