
A Tester’s Guide 
to .NET Programming

■ ■ ■

Randal Root and 
Mary Romero Sweeney



A Tester’s Guide to .NET Programming

Copyright © 2006 by Randal Root and Mary Romero Sweeney

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, 
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval 
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-59059-600-5

ISBN-10: 1-59059-600-5

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence 
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark 
owner, with no intention of infringement of the trademark.

Lead Editor: Jonathan Hassell
Technical Reviewer: Phil Leder
Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis, Jason Gilmore, 

Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser
Project Manager: Beth Christmas
Copy Edit Manager: Nicole LeClerc
Copy Editor: Linda Marousek
Assistant Production Director: Kari Brooks-Copony
Production Editor: Linda Marousek
Compositor: Susan Glinert Stevens
Proofreader: Kim Burton
Indexer: Valerie Perry
Artist: April Milne
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor, 
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or 
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA 
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution 
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to 
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly 
by the information contained in this work. 

The source code for this book is available to readers at http://www.apress.com in the Source Code section. 



To my husband and sweetheart, Brian. Thanks for your love and friendship, 
without which I'd never get anything done.

—Mary Romero Sweeney

To my wife, Shery, and my children, John, Sasha, and Elaine. 
All of you helped me achieve this, and I am forever grateful.

—Randal Root



v

Contents at a Glance

Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

About the Authors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

About the Technical Reviewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

Acknowledgments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii

■CHAPTER 1 Automated Software Testing with .NET  . . . . . . . . . . . . . . . . . . . . . . . . 1

■CHAPTER 2 Understanding .NET Testing Choices . . . . . . . . . . . . . . . . . . . . . . . . . . 11

■CHAPTER 3 The Basics of Storing Test Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

■CHAPTER 4 An Overview of .NET Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

■CHAPTER 5 Creating a Testing Framework  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

■CHAPTER 6 Creating Testware Components  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

■CHAPTER 7 Automation with Console-Based Testware  . . . . . . . . . . . . . . . . . . . 251

■CHAPTER 8 Introduction to Database Testing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

■CHAPTER 9 Creating Web-Based Testware  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

■CHAPTER 10 Testing COM and Web Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409

■CHAPTER 11 An Introduction to Visual Studio Team Test . . . . . . . . . . . . . . . . . . . 439

■APPENDIX A Setting Up Your Computer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477

■APPENDIX B VB .NET and C# Quick Reference  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485

■APPENDIX C Resources and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565

■INDEX  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569



vii

Contents

Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

About the Authors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

About the Technical Reviewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

Acknowledgments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii

■CHAPTER 1 Automated Software Testing with .NET . . . . . . . . . . . . . . . . . . . 1

What a Tester Needs to Know About .NET Coding  . . . . . . . . . . . . . . . . . . . 2

Why .NET Languages for Testing?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Choosing a .NET Language for a Test Project . . . . . . . . . . . . . . . . . . . . . . . 3

What Is Automated Software Testing? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Technical vs. Nontechnical Testing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

When to Automate?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Project and Personnel Issues  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Product Issues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Additional Test-Management Issues  . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Building a Team for Automated Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Test Scripts Are Software  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Goals of Good Testing Software  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Limitations of Programming Languages for Testing . . . . . . . . . . . . . . . . . 10

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

■CHAPTER 2 Understanding .NET Testing Choices . . . . . . . . . . . . . . . . . . . . . 11

Objectives  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

.NET Namespaces for Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Creating a Simple Application for Testing  . . . . . . . . . . . . . . . . . . . . . . . . . 16

First Windows Forms Testware Application. . . . . . . . . . . . . . . . . . . . 16

Using Console Applications to Create Testware  . . . . . . . . . . . . . . . . 23

Using Web Applications to Create Testware  . . . . . . . . . . . . . . . . . . . 31

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Contents



viii ■C O N T E N T S  

■CHAPTER 3 The Basics of Storing Test Data . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Objectives  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Test Results Logging and Project Planning  . . . . . . . . . . . . . . . . . . . . . . . . 40

Working with Text Files on a Test Project  . . . . . . . . . . . . . . . . . . . . . 40

Working with the Windows Registry on a Test Project  . . . . . . . . . . 59

Accessing the Windows Registry Programmatically . . . . . . . . . . . . . 60

Working with Database Files on a Test Project  . . . . . . . . . . . . . . . . 73

Database Access Basics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

■CHAPTER 4 An Overview of .NET Error Handling . . . . . . . . . . . . . . . . . . . . . . 87

Objectives  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Syntax, Runtime, and Logic Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Working with Syntax Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Working with Runtime Errors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Working with Logic Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Working with Breakpoints  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Step Into. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Step Over . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Step Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

The Debugging Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

The Locals Window  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

The Watch Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

The Autos Window  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

The Immediate and Command Windows . . . . . . . . . . . . . . . . . . . . . 100

The Call Stack Window  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

The Data Tips Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

The Just-In-Time Debugger  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Using the Try-Catch Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Try . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Catch  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Finally . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Scope Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Exception Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Making an Exception Object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Using Exception Objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Creating Your Own Exception Class . . . . . . . . . . . . . . . . . . . . . . . . . 116

Throwing Exceptions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117



■C O N T E N T S ix

Using Debug and Trace  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

The Debug Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

The Trace Class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Trace and Debug Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

TraceListeners. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Turning On Trace After an Application Is Deployed  . . . . . . . . . . . . 135

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

■CHAPTER 5 Creating a Testing Framework  . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Objectives  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Using Procedures to Create Test Utilities . . . . . . . . . . . . . . . . . . . . . . . . . 140

Planning Your Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Launching One Program from Another. . . . . . . . . . . . . . . . . . . . . . . 142

Using Function Procedures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Procedure Accessibility  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Building a Testing Framework Using a Static Class . . . . . . . . . . . . . . . . 150

VB .NET Shared Class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

C# Static Class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Adding Existing Classes to Projects  . . . . . . . . . . . . . . . . . . . . . . . . . 156

Understanding Windows Forms Classes  . . . . . . . . . . . . . . . . . . . . . . . . . 158

Adding Additional Forms to a Project . . . . . . . . . . . . . . . . . . . . . . . . 158

Displaying Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Adding Timing to Your Tests  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Basic Test Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Synchronous Timing Using the Shell() Method . . . . . . . . . . . . . . . . 168

Using the Timer Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Simple GUI Testing Using SendKeys()  . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

■CHAPTER 6 Creating Testware Components . . . . . . . . . . . . . . . . . . . . . . . . . 185

Objectives  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Defining Properties and Methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Classes and Objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Planning Your Bug-Reporter Application  . . . . . . . . . . . . . . . . . . . . . . . . . 187

Creating and Using Procedures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Adding Error Handling to Methods  . . . . . . . . . . . . . . . . . . . . . . . . . . 199

Creating Reusable Classes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

Creating Class Members  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

Creating a Class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212



x ■C O N T E N T S  

Separating Different Classes into Different Files . . . . . . . . . . . . . . . . . . . 222

Validation Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

Separating the UI and Processing Components  . . . . . . . . . . . . . . . . . . . 229

Private and Shared Assemblies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

Extending and Changing Your Components. . . . . . . . . . . . . . . . . . . 236

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

■CHAPTER 7 Automation with Console-Based Testware  . . . . . . . . . . . . . 251

Objectives  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

Using Console Applications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

Using Arguments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

Creating a Simple Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

Creating a Test Lab Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

Running One Program from Another  . . . . . . . . . . . . . . . . . . . . . . . . 269

Checking for Software Requirements. . . . . . . . . . . . . . . . . . . . . . . . 270

Installing Application Files from a Network Share  . . . . . . . . . . . . . 272

Creating a Network Share . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

Copying the Files from the Share . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

Saving Testware Reports to a Central Network Share . . . . . . . . . . 280

Completing the Application  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

Reporting Status on the Local Computer . . . . . . . . . . . . . . . . . . . . . 283

Using Batch Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

Using Windows Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

■CHAPTER 8 Introduction to Database Testing  . . . . . . . . . . . . . . . . . . . . . . . 305

Objectives  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

Database Application Testing Using the Database Explorer (or Server 
Explorer)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

Using the Database Explorer Window for Field-Level 
Integrity Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

Executing Database Queries Using the Query Designer . . . . . . . . . . . . . 312

SQL Statements for Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

Database References vs. Database Connections  . . . . . . . . . . . . . . . . . . 317

Automated Database Testing Using ADO.NET . . . . . . . . . . . . . . . . . . . . . 318

ADO.NET Basics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

Using the Connection and Command Objects  . . . . . . . . . . . . . . . . 321

Using the DataReader Object   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324



■C O N T E N T S xi

Database Testing Using the ASP.NET Data Source Controls . . . . . . . . . 332

Using the Access Data Source Control . . . . . . . . . . . . . . . . . . . . . . . 333

Working with DataGrids  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

Setting Up the DataAdapter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

■CHAPTER 9 Creating Web-Based Testware  . . . . . . . . . . . . . . . . . . . . . . . . . . 349

Objectives  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

Web Technology Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

Two-Tier Applications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

Three-Tier Applications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

N-Tier Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

Creating Web-Based Testware. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

Understanding the Default Web Page Code . . . . . . . . . . . . . . . . . . . 362

Code-Behind vs. Single-File Options  . . . . . . . . . . . . . . . . . . . . . . . . 364

Inserting Data to a Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368

Viewing Data from a Database  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

Adding Validation Code  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387

Reusing Existing Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

Debugging a Web Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396

The Trace Class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399

Deploying an ASP.NET Application . . . . . . . . . . . . . . . . . . . . . . . . . . 404

Using the Copy Web and the Publish Web Options . . . . . . . . . . . . . 408

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408

■CHAPTER 10 Testing COM and Web Services  . . . . . . . . . . . . . . . . . . . . . . . . . 409

Objectives  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409

Web Services vs. COM Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409

Understanding Web Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410

Creating a Web Service  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411

Testing Web Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417

Database Access with Web Services . . . . . . . . . . . . . . . . . . . . . . . . 422

Running Remote Testware with Web Services . . . . . . . . . . . . . . . . 423

Understanding and Testing COM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427

Referencing a COM Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427

Accessing and Testing a COM Library . . . . . . . . . . . . . . . . . . . . . . . 428

Finding Your Project’s COM Libraries . . . . . . . . . . . . . . . . . . . . . . . . 435

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436



xii ■C O N T E N T S  

■CHAPTER 11 An Introduction to Visual Studio Team Test  . . . . . . . . . . . . 439

Objectives  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439

Team Test Edition Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440

Team Test Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441

Types of Tests Available  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446

Unit Testing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446

Data-Driven Unit Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456

Creating Manual Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462

Organizing Tests and Managing Test Runs . . . . . . . . . . . . . . . . . . . 464

Creating Ordered Tests  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465

Web Testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466

Load Testing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475

■APPENDIX A Setting Up Your Computer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477

Hardware Requirements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477

Software Requirements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478

FrontPage Extensions Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479

Unsupported Operating Systems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479

Setup Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480

Uninstalling Visual Studio or Express Beta Editions  . . . . . . . . . . . . . . . . 481

Choosing Between Visual Studio 2005 or Express Editions   . . . . . . . . . 481

The Exercise Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482

Technical Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483

Business Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483

■APPENDIX B VB .NET and C# Quick Reference . . . . . . . . . . . . . . . . . . . . . . . . 485

Setting Up to Test the Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485

Programming Basics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488

Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488

Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489

Organizing Code into Classes and Namespaces . . . . . . . . . . . . . . . . . . . 489

Shared and Static . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490

The Main() Method  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492

Namespaces  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492

Directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495

Holding Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495



■C O N T E N T S xiii

Declaring Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496

Declaring Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496

Choosing Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497

Reference Types and Value Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499

Data Conversions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501

The Convert Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501

Built-In Conversion Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502

The C# Cast Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503

The VB .NET CType(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503

Implicit Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504

Working with Groups of Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504

Enumerations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504

Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506

Classes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508

Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511

Collections  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523

More on Objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524

Working with String  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527

String Can Act Like an Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527

Strings Cannot Be Changed Once Their Data Is Set . . . . . . . . . . . . 527

Adding Two Strings Together  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528

Strings Can Use Special Characters (Escape Sequences) . . . . . . . 528

C# Can Use String Literals by Adding the @ Symbol . . . . . . . . . . . 529

Programming Statements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530

Conditional Statements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530

Iteration and Jump Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536

The For-Each Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536

The For Loop (C# Only). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537

The For-Next Loop (VB .NET Only)  . . . . . . . . . . . . . . . . . . . . . . . . . . 538

The While Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539

The Do-While Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539

The Do-Until Loop (VB .NET Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . 540

The GoTo Jump Statement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541

The Continue Jump Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541

The Break or Exit Jump Statements . . . . . . . . . . . . . . . . . . . . . . . . . 542

The Return Jump Statement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543

The Scope of Variables Inside Loops  . . . . . . . . . . . . . . . . . . . . . . . . 543

Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544



xiv ■C O N T E N T S  

Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545

The Dot Operator  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545

The Parentheses Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545

The Bracket Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546

The Pre and Post Increment Operators (C# Only) . . . . . . . . . . . . . . 546

The Negation Operator (C# Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . 546

The Multiplicative Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547

The Additive Operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548

The Concatenation Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548

The Relational Operators  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549

More on the Equality Operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549

The Logical Operators  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551

The Substitution Parameter Operator . . . . . . . . . . . . . . . . . . . . . . . . 554

The Ternary Operator  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555

More on Methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556

Methods Can Return Values  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556

Some Methods Do Not Return Values  . . . . . . . . . . . . . . . . . . . . . . . 557

Methods Can Include Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 557

Value and Reference Types Affect Parameters . . . . . . . . . . . . . . . . 558

You Can Change the Way Value Type Parameters Behave  . . . . . . 560

String Parameters Behave Like Value Types . . . . . . . . . . . . . . . . . . 561

VB .NET Has Optional Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 562

Using Multiple Versions of a Method  . . . . . . . . . . . . . . . . . . . . . . . . 562

Using Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564

■APPENDIX C Resources and References  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565

Testing Books  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565

.NET Books (VB .NET and C#)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565

Journals/Periodicals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566

Recommended Testing Websites  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566

Other Recommended Websites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567

Recommended Database Design and SQL Resources . . . . . . . . . . . . . . 567

Resources on Additional Topics of Interest  . . . . . . . . . . . . . . . . . . . . . . . 568

■INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569



xv

Foreword

For many years and through my work as the Chairman and CEO of the International Institute 
for Software Testing (IIST), I have been trying to find ways to help test professionals gain the 
technical skills they need in order to test applications that use modern development technologies. 
I learned about Mary Sweeney’s ability to address this need through her first book Visual Basic 
for Testers (Apress, 2001) and, as a result, added her to our faculty. Mary has been a faculty 
member of IIST for the last two years, teaching testers topics in programming concepts and in 
testing database applications. Mary’s abilities to address technical subjects in software testing 
are unique and have been additionally proven through her writing of this book. Although I do 
not normally have the time to write forewords for books, I did not want to pass the opportunity 
to write the foreword for this book because the topic is an important one to today’s test 
professionals. In fact, this book is long overdue! 

I am especially excited about the new opportunities this book will bring to test professionals 
who really need to master the process of testing .NET applications. The fact is testing a .NET 
application today can be very difficult in that it can be extremely complex. This complexity 
makes it highly likely that, in many cases, developers will not have time to test everything in the 
application. So they will have to rely on professional testers to perform complete testing at all 
levels. Therefore, this book is a must read for every test professional working on a .NET project. 
Testing .NET applications represents a technical challenge for software developers and test 
professionals. The methods and techniques presented in this book will certainly help developers, as 
well as testers, improve the quality of their .NET applications. The hands-on nature of the book 
makes it easy for test professionals to follow. In my opinion, the authors have done a remark-
able job in bringing highly technical concepts to a level that can be easily understood by all test 
professionals. This did not come as a surprise to me based on what I know about Mary’s teaching 
style. I particularly like the exercises in each chapter. They provide a great learning adjunct to 
master this very technical subject. 

I strongly believe that this book fills a big gap in the knowledge body that test professionals 
and developers need to master in order to assure the delivery of high quality .NET applications.

Dr. Magdy Hanna, PhD
Chairman and CEO

International Institute for Software Testing
www.iist.org



xvii

About the Authors

■MARY ROMERO SWEENEY has been developing, using, and testing software 
systems for over 20 years for companies, including Boeing and Software 
Test Labs.
        She’s the author of Visual Basic for Testers (Apress, 2001) and a frequent 
speaker at major software testing conferences. Mary is a college professor and 
also performs independent consultation and training through her company 
Sammamish Software (www.sammamishsoftware.com). She has degrees in 
Mathematics and Computer Science from Seattle University, is an MCP in 

SQL Server, and is on the board and faculty of the International Institute of Software Testing (IIST).

■RANDAL ROOT owns a consulting company, Root Source (www.
rootsource4training.com), specializing in technical education. For the 
last six years, he has provided training at both businesses and schools, 
including Microsoft and Bellevue Community College. His subjects include 
Windows, web, and database programming, as well as networking and 
administration. Randal holds several Microsoft professional certifications 
including MCSE, MCP+I, MCDBA, and MCAD and has worked in the 
industry as a network administrator and programmer since the 1980s.



xix

About the Technical Reviewer

■PHIL R. LEDER was born November 1, 1979, in Bothell, WA. He is currently 
a Programmer/Systems Analyst specializing in Client Server Systems at 
Boeing’s Future Combat Systems. He graduated from Central Washington 
University with a BS in Computer Science.



xxi

Acknowledgments

The first person I’d like to thank is my coauthor, Randal Root. His energy and desire to write a 
book jolted me out of my writing lethargy and inspired me to get to it. As the project progressed, 
I realized how much nicer it is to have someone along for the ride. So thanks, Randal, for your 
hard work and friendship. 

I must thank those who contributed so much to the writing of this book. Particularly 
helpful and open to all kinds of questions despite his busy schedule was Tom Arnold, Microsoft’s 
Program Manager for Test Tools on the VSTEST software project (author of the Visual Test 6 
Bible) of Microsoft. His entire team provided feedback that proved critical, especially in writing 
Chapter 11 on the Team Test software. Thanks especially to Dominic Hopton for his scintil-
lating presentation—and gamely answering all questions no matter how trivial. Also thanks to Ed 
Glas, Group Manager for the Web and Load Testing tools in Team Test. He was also very helpful 
in taking the time to meet with us and answer questions.

Dr. Magdy Hanna and my colleagues at IIST: Thanks for your kind association. And thanks 
to our clients whose experiences contributed greatly to this book.

Thanks most especially to our hard-working technical reviewer, Phil (Mony) Leder. He put 
in many long hours above and beyond the call of duty. Good tech reviewers are hard to find 
because it’s largely a thankless task; Randal and I both knew we were lucky to have someone so 
conscientious and thorough.

Thank you, Apress, for for providing the high-quality staff necessary to put out a book of 
the caliber I insist upon.

Mary Romero Sweeney

Like Mary, I am especially thankful for my coauthor. Without her assistance and support, I would 
never have started or finished this book. Thank you Mary!

Although Mary already thanked them, I would personally like to add my thanks to Phil Leder, 
Beth Christmas, Linda Marousek, and the Apress team. Their professionalism and dedication 
was inspiring.

Lastly, a special thanks to my brother Bryon Root for his technical advice and support. 
His knowledge and technical reviews made a huge difference on this project. 

Randal Root



xxiii

Introduction

Today’s software testing environment has changed. A common trend we are seeing these days is 
advertisements for software developers and testers that look virtually the same. Today, companies 
all seem to require software test professionals with in-depth knowledge of programming languages 
and with significant database skills. Testers are constantly striving to keep up with the knowledge 
required to be effective on the complex projects we encounter regularly. 

A test engineer is expected to know at least a little about practically everything—from operating 
systems to networks to databases—in order to find bugs and report them articulately. What we 
always say to new testers is that this is a great profession for those of us who love to learn 
continuously. It’s like you’ve never left college—you must study constantly. (Of course, that 
also makes it a great profession if you like to feel constantly inadequate! Because you can never 
know enough, can you?) So, this book is for that self-motivated test engineer who is intent on 
continually upgrading his or her knowledge and now wants to learn more about automated 
software testing using .NET. 

We have also targeted this book toward nonprogramming computer professionals, such as 
those of you in Networking and IT professions. You are technical, but want to know more about 
programming in .NET in order to enhance your skills. The additional information about testing 
will only help to guide you in ways to uncover and deal with problems in systems.

Finally, this book is also for you test leads and managers who want to know what .NET can 
do for your test project. A not-so-well-kept secret of automated software testing is that the major 
tools available commercially don’t do everything you need them to do, in spite of their adver-
tisements. It’s probably unrealistic to expect any tool to be able to fully support the automated 
testing required for so many diverse applications. This includes the additional new Team Test 
software added into Visual Studio’s Team Edition software (see Chapter 11). This revolutionary 
new software will be a fabulous resource for mid- to large-size companies, but it is still not 
going to eliminate the need for testers to become more technically adept.

This is not to say that writing your own tools is always the right answer. However, supple-
menting automated tools with some scripting done by testers fluent in a traditional language 
can help a company get more out of its automated testing projects. It is our hope, in these 
pages, to help you see how you can do just that.

About This Book
This book has a specific, three-fold goal; it will teach the software test engineer the following:

• How to begin to use .NET as a testing tool, including how to create simple testing utilities 
and the basic mechanics of writing code to test an application

• What to look for in a well-written .NET program

• To understand the software development process and appreciate the efforts of the software 
developer



xxiv ■I N T R O D U CT I O N  

These chapters cover beginning to advanced topics in .NET, focusing on areas that can be 
used for software testing. 

What This Book Is Not
Since the focus of this book is software testing with .NET, we will not cover all the development 
features of the Visual Studio development environment. There are many good books for that 
already. 

This is not a software testing fundamentals book either. There are many good books available 
for that as well (see Appendix C). This book is intended to bridge the gap between those two 
types of books so that you can learn how to write code in .NET to support an automated test 
project. Even if you do not have a testing background, you should be able to read and under-
stand this book; however, some of the terms and references to testing concepts may be unclear. 
Appendix C should help you find the information you need.

Who This Book Is For
This book is for software test professionals (usually we just call ourselves testers) who want to 
increase their knowledge of testing in a .NET environment. It is designed to jump-start the 
tester into using .NET both for automated software testing and for software development of 
small programs. This book will not cover any software testing basics—the presumption is that 
all readers are familiar with fundamental testing concepts. Testing experience is helpful, but 
not required. So, IT and Networking professionals should be able to use the material to help 
them become more proficient at coding in .NET. Software test managers and leads should also 
be able to derive some information to help them understand how to interleave .NET into their 
testing projects. Although other technical professionals should be able to gain some good 
information, we want to emphasize that this book is primarily targeted toward the test engineer 
on the test bench striving valiantly to ensure software quality.

Where to Start
We have written this book to support a variety of backgrounds. We’d like to help guide you in 
where to start. 

First, everyone should read Appendix A, where you’ll find information on downloading the 
exercise files for this book and help with choosing editions and installation of required software—
including setting up your system to run web pages.

Then, if you have

• No programming experience: Start at Appendix B for an extensive programming primer, 
then move to Chapter 1 and proceed through all chapters progressively. Attempt each 
exercise to gain the most out of each chapter. 

• Programming experience, but no testing experience: Read Chapter 1 for the testing 
perspective and then see the Table of Contents section to determine where you should 
begin, depending on your area of interest. If your programming experience is in another 
language, you should at least skim the earlier chapters starting with Chapter 2. A quick 
review of the primer in Appendix B may be useful as well.



■I N T R O D U C T I O N xxv

• Programming experience and testing experience: You can skim earlier chapters as needed, 
but can probably jump directly into any chapter of interest to see what kinds of things 
you can do with .NET in a test project. Although the first few chapters are somewhat 
elementary, topics become increasingly challenging in later chapters.

A Note to Training Organizations and Teachers
A Tester’s Guide to .NET Programming is intended to help in classroom instruction on software 
testing as part of an overall software testing curriculum. This book can be used as the basis for 
an introductory- to intermediate-level course in automated software testing in either a corpo-
rate or an academic setting. A class based on this text, A Tester’s Guide to .NET Programming, is 
currently taught by both authors through Sammamish Software. For more information about 
using the book as the basis for a course, and additional materials for it, contact the authors at 
msweeney@sammmamishsoftware.com or rroot@rootsource4training.com.

The Practice Files: Answers to Exercises and Demo Code
Each chapter, beginning with Chapter 2, has exercises. Answers for these exercises, along with 
additional code demonstrating chapter topics, is available for download from the Source Code 
section of the Apress website at www.apress.com.

We will post additional topics of interest to testers learning and using .NET on the following 
website: www.sammamishsoftware.com. For comments, questions, or to report errata, contact the 
authors at msweeney@sammamishsoftware.com or rroot@rootsource4training.com.



1

■ ■ ■

C H A P T E R  1

Automated Software Testing 
with .NET

Software testing is not a new field but it’s growing up in a rather fractured way. Around the 
country and around the world, you’ll find software testing employed in a variety of ways. There 
is now Agile and Extreme software testing, and various other buzzwords and methodologies to 
accompany the traditional Black Box testing that is still deeply entrenched in many companies. 
The emphasis we have had for years on expensive commercial tools to aid our testing efforts 
has lessened as the demand for their increased capability has become virtually impossible for 
tool vendors to keep up with. Now many test organizations have turned to producing their own 
software to help in testing, often using a burgeoning list of open source tools and software. 

In 2001, when Visual Basic for Testers (Mary Romero Sweeney, Apress, 2001) was 
published, many test professionals were finding they needed to complement their manual- 
and tool-automated testing efforts with their own software utilities. In the years since then, 
we’ve found that the ability to write code and produce tests and test utilities by writing our own 
software is even more necessary for the software test community. At every conference and 
training symposium there are courses and lectures teaching testers more technical topics, 
including programming, networking, and databases.

We still, and always will, need to get tested software out the door quickly, efficiently, and 
profitably. There are many trade-offs to automating your own software tests; however, if you 
do it thoughtfully, you can help a test project immensely. If you do it incorrectly, you can slow 
it down such that you’ll run out of budget and fail to accomplish your goals. In this book, we’ll 
explore the use of .NET application software for test projects and show in what ways this specific 
type of software can support your testing goals. 

You will find enough here to get you started on a successful test project using .NET. To 
begin, you will need some discussion of automated software testing in general. In this chapter, 
you will look at some of the important management issues involved when starting automated 
testing, such as guidelines for when and when not to automate testing, what kind of personnel 
requirements you will need to address, and how to build an automated testing team. You will 
also look at some ground rules for creating good testing software, and some of the advantages 
as well as limitations of using two .NET languages, Visual Basic (VB) .NET and C#, for your test 
projects and utilities.



2 C H A P T E R  1  ■  A U T O M A T E D  S O F T W A R E  T E S T I N G  W I T H  . N E T

What a Tester Needs to Know About .NET Coding
Although .NET languages are powerful enough to accomplish some useful testing tasks, you 
must have knowledgeable testers and programmers to write the code. Unfortunately, there 
isn’t a lot of information out there yet to help test professionals adapt programming for testing 
purposes. Most of the resources are geared for software developers, not testers. 

Using .NET languages for testing requires a shift in perspective. A tester can come out of a 
standard Visual Basic course still wondering how it could ever be used on a test project. These 
courses and most books concentrate on the controls to use and the ways to create a great, user-
friendly application. A tester doesn’t care about that so much—what we want to know is how 
to quickly develop a utility or get to system information and other testing-related data using 
code. One of the differences between this book and others is that we won’t focus on learning a 
myriad of cool controls or how to develop a slick front end for an application. While these are 
great things to learn, there are plenty of other books out there that will teach you this. Instead, 
we will focus on the things a tester must know to use .NET languages as quickly as possible on 
a test project:

• How to access intrinsic .NET Framework library functions that return relevant informa-
tion about the platform, files, registry, operating system, and so on

• How to create a front end with basic controls to view test information and results as soon 
as possible

• How to access databases quickly and easily

• How to access the Windows Registry to return relevant application information

These topics are just the beginning, of course, but they represent some of the things the 
testers who have contributed time and code to this book have used to accomplish their testing 
tasks. We will cover all of these and more in the course of this text.

Why .NET Languages for Testing?
.NET languages are not testing tools; instead, they are programming languages used for soft-
ware development. Why use Visual Basic or C# for testing—why not use Perl, C, or C++? Scripting 
languages, as they are popularly called, such as Perl, Python, VBScript, Rexx, and many others, 
have a large following. Why not use those? Actually, none of those languages were created with 
testing in mind either. Still, they can be a big benefit on a testing project, especially if they are 
already installed and you have experienced personnel. We would choose to do much of the 
testware coding using any of those if we had them readily available, as well as available employees 
who were at expert level in their use. If .NET languages are already available and there are 
employees with expertise in them, then they are an excellent choice. 

If the development project is itself written in .NET, then it can make sense for the testers to 
use it in this situation. Although, a common misconception is that if you are testing a .NET 
application, you will need to use a .NET language for your test automation. That’s not true; 
however, using .NET languages on a Windows platform will provide you with all the power you 
need to do essentially anything you need to do. 



C H A P T E R  1  ■  A U T O M A T E D  S O F T W A R E  T E S T I N G  W I T H  . N E T 3

Since .NET languages are not really testing tools, how is it possible to adapt them for use in 
testing? The .NET Framework libraries have many features that can support the testing process. 
For example, there are a host of intrinsic functions that can return important information 
about the test platform and the application under test. .NET’s Shell function and SendKeys
class can also be used to run an application and manipulate its Graphical User Interface (GUI). 
The Visual Studio Database Tools allow you to connect to a database and examine its structure 
and data. You can also get very sophisticated and write essentially anything you want, such as 
a load testing application. Of course, the trade-off for a more sophisticated programming 
endeavor is that you will need both the programmers and the time. 

.NET languages can also be used to test many behind-the-scenes operations of the appli-
cation. For example, scripts can be written to access the system environmental variables and 
performance counters. Automated test scripts can verify the correct loading and retrieval of the 
information from files. The very fact that the .NET languages are powerful development tools 
makes them promising and capable tools for testing.

Choosing a .NET Language for a Test Project
.NET platforms include a lot of language options. This is because the language implementa-
tions are now just a thin layer on top of the .NET Common Language Runtime (CLR). They all 
compile down into the same Intermediate Language (IL). This makes choosing a language a 
matter of preference and not a technical decision. You can choose a language based on how 
easy it is to learn. For beginners, Visual Basic will be a good choice. Alternatively, if you already 
have done a little work in another language, such as C or Java, you can choose the .NET imple-
mentation of those languages: C++ or J#. Also a good choice, in that case, is C#, a new language 
that is developed specifically for .NET platforms and will be familiar enough to anyone who has 
programmed in a “swirly brace” language. 

It’s also true that some testers on the same team can choose to code in VB .NET, while others 
choose C#, or another language, and still be able to have their software interoperate nicely. We 
have to confess a little bias towards VB .NET, of course, having written a lot of code in it as well 
as product literature. A big advantage to using Visual Basic is that it is a popular language because 
it is easy to learn, and it happens to be the macro language for the widely-used Microsoft Office 
products and the scripting language for most of the world’s ASP web pages. Many other software 
companies use a form of Basic for their own products. This popularity means there is a wide 
base of people with a knowledge of Basic, so there should be no shortage of people able to use 
it or willing to learn it. There is also a proliferation of books and resources available for Visual 
Basic. Although they may not be written specifically for testing, once you get the hang of it, you 
will find lots of code available in user’s groups and books that you can adapt for testing purposes. 

C# has been steadily gaining in popularity since it has some of the ease of VB .NET, as well 
as a lot of similar programming constructs to languages like Java and Perl. A common miscon-
ception about C# is that it is somehow more powerful than VB .NET. However, in the end, both 
C# and VB .NET are the same. 

So, which to choose? How about both? Because they compile down into IL, components 
written in one language can be used in another. Since both Visual Basic and C# are very popular 
and simple to learn, we have chosen to include code from both of these languages in the examples 
in this book. (For reasons of space and time, we will not include J# or C++.)



4 C H A P T E R  1  ■  A U T O M A T E D  S O F T W A R E  T E S T I N G  W I T H  . N E T

What Is Automated Software Testing?
Let’s take a step back and talk about what automated testing is in general and define some 
terms. First of all, automated testing is any testing that is done using software. In other words, 
we write code to test other code. Automated testing includes the use of tools written by others 
since the tools they have written are software that tests software. Automated test scripting is the 
process of creating the program code—that is, actually writing the code that will be used to 
test. Automated test scripts, or testware, are the program code used to test the software. 

Historically, most testing has been done manually. That is, a tester sits down and runs the 
application using defined processes to try to find bugs so that they can be fixed prior to releasing 
the product. Automated software testing goes a step further. Since basic software testing has 
become more rigorous and more defined, testers have found ways to automate some of the 
process of testing software by writing software to do it. Of course, many successful testing 
projects have been completed without ever using automated test scripting. In fact, many appli-
cations are still primarily tested manually. There is just no substitute for testing the product in 
the same way that the user would and there is no substitute for the abilities of an able, experienced 
tester. So, automated testing will never (and shouldn’t) replace manual testing of an application. 
Used appropriately though, automated testing can significantly enhance the testing process.

Automated testing has received a lot of focus lately due to the ever-increasing complexity 
and size of software applications that require better and faster ways to test. Rather than replace 
testers, which might be one of the benefits a manager might expect from automated software 
testing, automated testing can enhance the testing process with increased capabilities. (In fact, 
at the start of a new test automation project, often more testers, and more technically astute 
testers, are required, not less.) There are some tedious and time-consuming, yet important, 
testing tasks that you may choose not to perform on a project due to time and budget constraints. 
For example, verifying the transfer of large amounts of files or data from one system to another 
could be prohibitive if done manually; writing code to do that makes it achievable. There are 
many benefits to enhancing a testing process with automated test scripting. Here are just a few:

• Performing tedious or repetitive manual-testing tasks, such as platform and application 
start-up, shutdown, and clean-up routines 

• Running tests in batch

• Setting a reference to a COM object or .NET class and testing its interfaces

• Attaching to a database for data verification testing

• Accessing and interrogating the Windows Registry

• Creating testing utilities that support the testing process, such as logging and start-up 
scripts

Within this book, we will explore all of these uses of automated testing and quite a few more. 

Technical vs. Nontechnical Testing
Perhaps it would make sense to think that, as the authors of this book, we would be in favor of 
all testers being technically adept. After all, both of us are not only testers, but also developers 



C H A P T E R  1  ■  A U T O M A T E D  S O F T W A R E  T E S T I N G  W I T H  . N E T 5

as well. Instead, we think requiring all testers to write code and essentially be programmers in 
their own right is a mistake. Although it is beneficial and advisable to have some programming-
proficient testers on every test team, it should not be required of all testers on the team. This is 
because, in general, the programmer and the test professional think differently. And they should. 
The tester who has technical experience as a programmer enhances the project by knowing the 
kinds of things and situations in which the software developer might be more likely to make 
mistakes. However, this technical knowledge encourages a person to think analytically and not 
generally, like a typical user or nontechnical tester would. So the technical tester may miss the 
errors that nontechnical testers would find, and vice versa. Still, there is no substitute for a 
professional, knowledgeable, nontechnical test professional with experience; her knowledge 
and thoroughness cannot be replaced by user-testing only. So you need all three kinds of 
people: technical testers, nontechnical testers, and user testers. 

When to Automate?
Not all testing situations benefit from writing your own test code. In fact, there are many times 
when it’s not a good idea to automate testing. So how do you decide whether and when to 
automate or not? The decision to automate requires analysis and the definition of boundaries 
between the automated test plan and the manual test plan. Using a programming language 
like Visual Basic or C# requires additional careful planning since writing test scripts is essen-
tially software development in its own right and can eat up plenty of time in a schedule. 

How do you determine what to test manually and what to test using automated test scripts? 
While experience is the best judge, there are also some basic questions you can ask yourself 
prior to embarking on an automated test project. The following three sections will help you 
determine whether your project is a good candidate for automated testing.

Project and Personnel Issues
Too many times test managers undertake automated testing projects without fully considering 
the abilities and availability of their personnel. Proper staffing is critical to the success of any 
project. Here are some important things to consider:

• What is the scope of the automated testing? If your goal is to fully automate all tests, then 
your scope is unrealistic. If you are trying to incorporate automated testing into existing 
projects or into a new one, then it’s best to start with small, manageable goals. For example, 
you can ask your team to write some simple utilities to support your test project using 
Visual Basic or C#. This has the added advantage of checking their experience level as 
well. Not all testers/programmers have the same capabilities!

• What is the automated testing skill level of your testing personnel? If automated testing is 
new to your personnel, then you need to allow time and budget for them to take classes 
and learn. You will need to add experienced automated testing personnel to your staff 
prior to your first project. The level of experience will determine the level of automation 
you will be able to undertake. One introductory course in programming will not be 
enough to enable your testers to undertake a large project. However, they could possibly 
use some of Visual Studio’s tools and wizards to support a test project, and perhaps 
create and use some simple test utilities.



6 C H A P T E R  1  ■  A U T O M A T E D  S O F T W A R E  T E S T I N G  W I T H  . N E T

• What is the availability of your technically skilled testers? If you do have technically 
skilled testers, are they actually available? Many projects start with some experienced 
members who get pulled off for other projects. This may seem like a no-brainer, but we 
have seen this situation occur too many times to think it is just an aberration. 

Product Issues
Not all applications to be tested are created equal. In general, when you write automated test 
code yourself, you are working behind the GUI. That is, you are harnessing just pieces of the 
software. You have to spend some time to determine if this is appropriate for your product. You 
must do a thorough analysis. The following questions are a short list of things to consider:

• Is the feature set of the application you are testing relatively stable? If not, the scripts you 
write need to change as often as the application changes. You may find yourself spinning 
your wheels if you start too soon, using up precious budget. Automated testing works 
best for products that are relatively stable in structure and components. 

• Do you plan to test the UI? Is your product GUI–based? Some automated testing tools are 
geared specifically for the GUI. If your project is to test the application’s GUI, then certain 
automated testing tools, commercial or open source, may be a better choice than others. 
.NET languages can be used for GUI testing to a certain extent, but they require a signif-
icant amount of coding to do so. For this reason, in most cases, we would not choose 
using .NET for extensive GUI–based testing.

• Does your product have areas where tests are run repetitively, greater than ten times per 
test? Any repetitive tasks are candidates for automated testing. Computers perform 
repetitive tasks well. For example, writing regression tests for high-priority bugs or 
developing a Build Verification Test (BVT) suite for verification of product robustness 
after each build are good examples of tests that will be required to be run many times.

• Will your product need to be compatible with multiple platforms? Most products need to 
run on the various versions of Windows: Windows XP, Windows 2K, Windows NT, 
Windows 95, and Windows 98. There are many other compatibility issues, of course. 
Automated testing scripts can be written to address some of these compatibility issues. 

• Is your project size and budget large enough to support an automated test piece? Last but 
certainly not least, you must consider the additional time and budget required for 
automated testing. Although automated testing adds a lot to a test project, it can, especially 
initially, be time-consuming and costly. On a relatively small test project, adding auto-
mated test capability may not be worth it.

■Note  These questions may seem a bit Microsoft-centric. It is true that .NET languages can be a tool for 
testing mostly Windows-based software systems. There are some exceptions to this, but not many.



C H A P T E R  1  ■  A U T O M A T E D  S O F T W A R E  T E S T I N G  W I T H  . N E T 7

Additional Test-Management Issues
Here are a few more management-level questions to ask yourself and your team:

• Do you have Visual Studio .NET software available to the project? If not, can you purchase the 
proper number of licenses and have them in place in time?

■Note  The .NET Framework can be downloaded and installed for free. With the Framework libraries come 
compilation tools so that it is possible to write test scripts, i.e., code, in .NET for free. In this book, we focus 
on using Visual Studio rather than taking this direction because of the simplicity of using the interface. It’s a 
lot more difficult to write the code without Visual Studio .NET unless you’re an experienced programmer. 

• Can you insert automated testing without affecting existing testing? For example, installing 
Visual Studio .NET and investigating the integration of the test scripting with other tests, 
such as manual tests or commercial tools, takes time and planning. Can you do this 
without adversely affecting your total project time and budget?

• Do you have enough time to analyze requirements as well as code, debug, and maintain 
test scripts? Development of automated test scripts is software development and requires 
all of the same considerations. It’s easy to use up time and budget.

• Who will manage the automated testing for each project and across projects? An impor-
tant consideration is to keep and maintain the work done on a project for future use. For 
example, scripts for logging test results (covered in Chapter 5) can be used in any project. 
Identify a group or an individual who will be responsible for ensuring that code that can 
be reused on other projects is maintained for future use.

Managing the testing process is a big topic and an important one. There are many excel-
lent texts available so we won’t attempt to compete with them here; check Appendix C of this 
book for more information on this topic.

Building a Team for Automated Testing
What is the makeup of a good test team? Ideally, automated testing personnel and those members 
of the team using manual processes should not be kept separate. They can enhance each other’s 
capabilities and they do need to keep in close communication. If you are part of a fairly large 
company, it is beneficial to have members of the team experienced in different kinds of auto-
mated testing: some with applied experience in one or more of the major tools available on the 
market, and at least a couple of testers who have significant programming experience using 
Perl, C#, Visual Basic, C/C++, Java, or other languages.

One large company we worked with had a sizeable test group dedicated to automated 
testing. In this group, they hired personnel experienced in several major tools. On each test 
project, this team determined which tools, if any, were appropriate for that project, as well as 
the backgrounds and experience required for the test team. They were integrally involved in 
the setup for all company test projects and monitored each project as it progressed. This is an 



8 C H A P T E R  1  ■  A U T O M A T E D  S O F T W A R E  T E S T I N G  W I T H  . N E T

ideal way to proceed. The team was able to keep a repository of test plans and code, as well as 
a detailed history of the projects and their results. They were instrumental in arranging appro-
priate training in the tools selected for the project, as well. This model worked quite well for 
this company, although so far it’s the only company we have seen do it quite this way. It takes 
time and money to set up such a model, but it has many benefits in the long run. 

If you are a midsize company with a team of ten testers, the makeup of your test team 
could be something like this:

• Four to five testers experienced in traditional manual-testing processes

• Three testers experienced in automated test tools such as Segue, Mercury, and Rational

• Two to three testers experienced in software development, at least two of whom could 
be considered advanced programmers

■Note  Testers who develop code for use in testing are increasingly gaining titles of their own. This type of 
testing specialist is sometimes called an automator or Developer-in-Test—or a Software Design Engineer in 
Test (SDE/T), as Microsoft calls them. 

Of course, there could and should be some overlap. However, don’t make the mistake of 
having nine manual testers but only one person experienced in software development, test 
tools, and so on. If there is only one person with experience, that person will end up spending 
all of his time coaching everyone else and getting nothing done. It’s best to avoid depending 
too much on a single person or, nearly as bad, only two people in a test project. 

When it isn’t possible to form your ideal team with technical programming professional 
skills onboard immediately, some teams rely on developers to assist them with writing testware. 
And, if there’s sufficient time, alongside these developers, place your most technical testers 
and get them some training. Hopefully, this will work, until you can compose the team you need.

Test Scripts Are Software
When test engineers write automated test scripts, they must take the time to define and analyze 
the requirements. This is when the process of writing the scripts actually begins. This process 
is necessarily interactive as the testers repeatedly run the scripts, then improve and perfect 
them to meet the ever-changing testing requirements. 

After the scripts are working, they must be updated on a regular basis to ensure they work 
with new versions of the application being tested. A professional software developer would 
recognize this process of developing and updating automated test scripts as essentially the 
same one used to develop software applications. So, the writing of automated test scripts is
software development. The skills needed to be a good automator are similar to those required 
of a good software developer. In addition to software development skills, automators must also 
be skilled at testing. To find out more about how to be a good tester, get Cem Kaner’s book, 
Testing Computer Software, 2nd Edition (Wiley, 1999). Another good book is Edward Kit’s Software 
Testing in the Real World (Addison-Wesley, 1995). (For publication information and other good 
books on software testing, see Appendix C of this book.)



C H A P T E R  1  ■  A U T O M A T E D  S O F T W A R E  T E S T I N G  W I T H  . N E T 9

It is important to recognize that the same rules for developing good software apply to 
developing good test scripts. Good planning and design are important, as is allowing sufficient 
time to develop the code and supporting utilities.

Goals of Good Testing Software
Test scripts, like application code in general, should be

• Readable: Using standard naming conventions and constants, and creating project 
standards for code development make code more readable. If code is readable, it can be 
more readily understood and modified, which makes it easier to work with and to adapt 
to future projects.

• Reusable: Writing routines that can be reused within the same project (and sometimes 
modified to work within another project, as well) can save time and duplication of effort. 
Some possibilities may include logging utilities to document test results, front-end or 
driver routines to make running test suites easy, or specialized utilities that make working 
with your test target easier, like start-up and shutdown routines.

• Maintainable: Writing code that is easy to update is important. You can account for a 
changing application in many ways, including the use of constants, library files, the 
Windows Registry, and initialization files.

• Portable: Writing suites that can be easily changed makes them portable. For example, 
don’t directly place file paths into your code. Instead place files within the assembly of 
your application and use relative paths to reference them, or let the user specify locations 
by providing options for them to set. (We’ll see how to do this as we proceed in the book.)

Of course, these are guidelines to follow within reason. As testers, we are far more likely 
than developers to write simple testware that ends up being thrown away because it’s a one-time, 
special-purpose situation we are addressing. And there are times that copying and pasting can 
be a good thing. The most important of the four “able” qualities is the ability of your testware 
to be readable. Reusability, maintainability, and portability should be considered for testware 
that is intended to be used many times, such as test utilities, and test drivers, i.e., code, that are 
used as a front end to run other tests.

Code can be written in many different ways. When we review code written by others, we 
try to determine its readability and, therefore, the ease with which we can maintain or alter it. 
When we write code for testing purposes, we will try to levy that same mandate on our own 
work. We will then reap the same rewards as the developers and, in the process, learn a bit 
about why they do the things they do. Throughout this text, we will emphasize good programming 
technique. Even when in a hurry on a test project, it is absolutely true that it is just as easy to 
write code properly as it is to write it poorly.

In this book, you will explore ways to implement these goals for yourself and for the appli-
cations you test.



10 C H A P T E R  1  ■  A U T O M A T E D  S O F T W A R E  T E S T I N G  W I T H  . N E T

Limitations of Programming Languages 
for Testing
Because they are not intended as test tools, programming languages usually do not include 
many of the bells and whistles that most commercial automated test tools, and some open 
source test tools, do. For example, in all but the Team and Enterprise level editions, .NET 
languages have no inherent support for bug reporting or test design and documentation as 
many testing tools have. In .NET’s Enterprise and Team editions, they have attempted to help 
integrate the software development and software testing process using the new Team Test 
software. We provide an introduction to that software in Chapter 11. If you want these kinds of 
things in your .NET testware, your company must purchase the Enterprise level software 
versions of .NET (or your test team will have to write them). If you decide to write this kind of 
functionality yourself, you might find you have entered the business of test-tool writing instead 
of the testing business. That will be a time-consuming effort. So, .NET languages should not be 
considered a substitute for the major test tools, or manual testing, but simply a powerful 
adjunct to them and all of your test strategies.

Summary
.NET languages are powerful enough to accomplish any testing task as long as you have testers 
with the skill and ability to write effective code, and test management capable of administrating 
it effectively. This book is intended to guide you and your team in your efforts.



11

■ ■ ■

C H A P T E R  2

Understanding .NET 
Testing Choices

In Chapter 1, we discussed the fact that all .NET languages compile into the same Intermediate 
Language (IL) so that the choice of a language is largely one of preference. If you have already 
used a form of Basic (such as an earlier version of Microsoft’s Visual Basic or VBScript), then 
you will feel more at home with Visual Basic .NET. That will also be true if you don’t have a pref-
erence and are just learning how to program. 

■Note  For quick-start programming tutorials on Visual Basic programming and C#, see Appendix B.

You may find yourself more comfortable using another .NET language if you’re more 
familiar with C-like languages, or Java. In that case, C# would be a good option since it’s a new 
language that has some C language constructs and is similar in many ways to Java. In this book, 
for simplicity’s sake, we’ll show example code in just two of the .NET languages: VB .NET and C#. 

There is more than just one way to use .NET on a test project. There may be times when a 
quick, short program to uncover the value of a system variable is wanted, or a more complete 
test utility requiring multiple forms and a nice user interface. In this section, we’ll sample the 
three main kinds of projects you’ll use to create most all of your testware: Windows Forms 
project, Console project, and Web Forms project. We will present all exercises using both C# 
and VB .NET code; however, we recommend you try all exercises in the chapter in just one 
language first. Then, if you’d like, go back and attempt them in the other language. More than 
likely, this route will be less confusing and ensure greater success.

Objectives
By the end of this chapter, you will be able to

• Create, run, and save a simple testware Console application, Windows Forms application, 
and Web Forms application

• Use the System.IO namespace


