
Pro .NET 1.1 Remoting,
Reflection, and Threading

TOBIN TITUS, SYED FAHAD GILANI, MIKE GILLESPIE, JAMES HART,
BENNY K. MATHEW, ANDY OLSEN, DAVID CURRAN, JON PINNOCK,

ROBIN PARS, FABIO CLAUDIO FERRACCHIATI, SANDRA GOPIKRISHNA,
TEJASWI REDKAR, SRINIVASA SIVAKUMAR

Pro .NET 1.1 Remoting, Reflection, and Threading

Copyright © 2005 by Tobin Titus, Syed Fahad Gilani, Mike Gillespie, James Hart, Benny K. Mathew,
Andy Olsen, David Curran, Jon Pinnock, Robin Pars, Fabio Claudio Ferracchiati, Sandra Gopikrishna,
Tejaswi Redkar, Srinivasa Sivakumar

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN: 1-59059-452-5

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Ewan Buckingham
Technical Reviewers: Rick Delorme, Don Reamey
Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis, Jason Gilmore,

Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser
Assistant Publisher: Grace Wong
Project Manager: Beckie Stones
Copy Manager: Nicole LeClerc
Copy Editor: Julie McNamee
Production Manager: Kari Brooks-Copony
Production Editor: Kelly Winquist
Compositor: Kinetic Publishing Services, LLC
Proofreader: Patrick Vincent
Indexer: Michael Brinkman
Artist: Kinetic Publishing Services, LLC
Cover Designer: Kurt Krames
Manufacturing Manager: Tom Debolski

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 233 Spring Street, 6th
Floor, New York, NY 10013, and outside the United States by Springer-Verlag GmbH & Co. KG, Tiergarten-
str. 17, 69112 Heidelberg, Germany.

In the United States: phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders@springer-ny.com, or visit
http://www.springer-ny.com. Outside the United States: fax +49 6221 345229, e-mail orders@springer.de,
or visit http://www.springer.de.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liabil-
ity to any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Downloads section.

For my wife, Carol for being a solid rock and support in my career. For my parents, who
continue to teach their sons, no matter how old they get. To my brother, Rick, for showing

me that happiness isn’t achieved, it’s a choice. To my grandparents, for their sacrifices to get
us where we are today, their stories of life in a better time, their bear hugs that seem to get

stronger every year, and baked goods that my mouth waters for at the very thought of them.
My aunts and uncles, cousins, and nieces for always making room in their schedules for me

at a moment’s notice when I come home to visit.

Contents at a Glance

About the Author . xv

About the Technical Reviewers. xvii

Acknowledgments . xix

Introduction. xxi

CHAPTER 1 Introducing .NET Remoting. 1

CHAPTER 2 Remoting Basics. 15

CHAPTER 3 Custom Remoting. 43

CHAPTER 4 Configuration and Deployment . 99

CHAPTER 5 Asynchronous Remoting . 127

CHAPTER 6 Debugging and Error Handling . 159

CHAPTER 7 Flexible Programming . 209

CHAPTER 8 Examining Assemblies, Objects, and Types . 223

CHAPTER 9 Using Objects. 251

CHAPTER 10 Creating Objects . 279

CHAPTER 11 Attributes . 301

CHAPTER 12 The .NET Component Model . 343

CHAPTER 13 Defining Threads . 397

CHAPTER 14 Threading in .NET. 421

CHAPTER 15 Working with Threads. 469

CHAPTER 16 Threading Models . 519

CHAPTER 17 Scaling Threaded Applications . 535

CHAPTER 18 Debugging and Tracing Threads . 563

CHAPTER 19 Networking and Threading . 593

INDEX . 619

v

Contents

About the Author . xv

About the Technical Reviewers. xvii

Acknowledgments . xix

Introduction. xxi

■CHAPTER 1 Introducing .NET Remoting . 1

Distributed Systems . 1

Client-Server Models. 2

Evolution of Distributed Systems . 4

Using .NET Remoting . 6

Remote Object Types. 7

Context. 8
Managing Remote Objects . 9

The Remoting Process . 10

Summary . 14

■CHAPTER 2 Remoting Basics . 15

.NET Remoting Classes . 15

Classes Associated with Marshaling . 16

Channel Classes. 17

.NET Remoting Code Example . 19

Marshaling User-Defined Objects . 22

Marshaling User-Defined Objects by Value . 22

Marshaling User-Defined Objects by Reference. 25

MBR Activation Modes . 26

Server-Activated Objects . 26

Client-Activated Objects . 30

Dynamically Publishing Server-Activated Objects 31

MBR Lifetime Management . 36

A Closer Look at Leased-Based Lifetimes. 36

Manipulating Leases . 38

Renewing Leases. 39

Summary . 42
vii

■CHAPTER 3 Custom Remoting . 43

A Closer Look at the Sink Chain . 43

Formatter Classes . 44

Channel Sink Interfaces and Classes . 45

Client Channel Sink Providers . 47

Customizing the Sink Chain. 48

The Basic Invert Example . 48

Adding a New Client Channel Sink . 52

Replacing the Formatter Sink . 59

Adding a Custom Formatter . 62

Custom Serialization . 71

Defining a Custom Serialization Format. 72

Channels with Custom Transport Protocols . 83

Channel Interfaces. 83

Implementing a Custom TCP/IP Socket Channel 84

Summary . 98

■CHAPTER 4 Configuration and Deployment. 99

Configuration . 99

Standard Configuration File Types . 100

Configuration File Structure . 100

Loading a Configuration File . 105

Deploying Metadata . 110

Using Interface-Only Assemblies . 111

Using Soapsuds . 113

Hosting . 115

Hosting in a Windows Service . 115

Hosting in IIS. 119

Versioning . 123

Assigning a Version Number . 123

Determining the Version to Use . 124

Other Versioning Issues . 124

Summary . 125

■CHAPTER 5 Asynchronous Remoting . 127

Simple Asynchronous Remoting . 127

Implementing a Slow Synchronous Process 128

Implementing a Slow Asynchronous Process 130

Implementing a Slow Asynchronous Remote Process 135

■CONTENTSviii

Using Events with Asynchronous Remote Processes 138

Generating Events in a Single Application Domain 139

Passing Events Between Remote Applications 141

Multiuser Asynchronous Remote Applications 149

Using Call Contexts with Asynchronous Remoting. 154

Using Call Contexts in the Teleconference Application 154

Summary . 157

■CHAPTER 6 Debugging and Error Handling . 159

Common Exceptions in Remoting Applications . 159

Illustrating Common Remoting Exceptions . 160

Diagnosing and Preventing Errors in Remoting Applications. 169

Implementing the Bank Application . 170

Dealing with Errors in the Client . 183

Dealing with Errors in the Remote Object . 185

Improving the Bank Application. 189

Defining Custom Exception Classes for Remote Objects 191

Defining Exception Classes in the Exception Inheritance
Hierarchy . 191

Exceptions and Serialization . 192

Defining Constructors . 194

Defining Informational Properties and Methods 197

Logging Error Information at the Server . 198

Logging Errors to a File. 198

Logging Errors to a Database . 200

Logging Errors to the Windows Event Log. 203

Summary . 207

■CHAPTER 7 Flexible Programming . 209

Reflection Defined . 209

What Is Reflection For? . 210

Type Terminology. 212

Binding . 213

Early (Static) Binding . 213

Runtime Binding. 214

Object-Orientation . 214

Late Binding . 215

Metadata. 218

Accessing .NET Metadata . 219

Attributes. 220

■CONTENTS ix

Reflection in .NET . 221

Examining Objects . 221

Manipulating Objects . 221

Creating Objects. 221

Summary . 221

■CHAPTER 8 Examining Assemblies, Objects, and Types 223

Examining Assembly Metadata . 223

The Assembly Class. 225

Examining Type Metadata . 230

Retrieving Types. 230

Type Class Members . 231

Examining Class Member Metadata. 234

The MemberInfo Class . 235

The FieldInfo Class. 238

The PropertyInfo Class . 240

The MethodBase Class . 242

The MethodInfo Class . 243

The ConstructorInfo Class . 245

The EventInfo Class . 246

The ParameterInfo Class. 247

Summary . 250

■CHAPTER 9 Using Objects. 251

Why Invoke Members Using Reflection? . 251

Invoking Members Dynamically . 252

Invoking Class Members Using the Info Classes 252

Invoking Class Members Using InvokeMember() 256

Reflective Invocation at a Price. 272

Reflection or Delegates?. 273

Summary . 278

■CHAPTER 10 Creating Objects . 279

Dynamic Assembly Loading. 279

Creating Assembly References . 280

Methods Used for Dynamic Assembly Loading. 282

Instantiating Classes Dynamically . 283

■CONTENTSx

Abstract Factory Pattern. 285

Implementing the Abstract Factory Pattern with Dynamic
Assembly Loading in VB .NET . 289

Summary . 300

■CHAPTER 11 Attributes . 301

Understanding Attributes . 302

Syntax for Using Attributes. 304

Testing a Data Type for Standard Attributes 311

Using Predefined .NET Attributes . 315

Understanding Attribute Class Definitions . 316

Using Attributes to Control the Compiler . 322

Defining and Using Assembly Attributes . 327

Defining New Custom Attributes. 332

Summary . 340

■CHAPTER 12 The .NET Component Model . 343

Investigating the .NET Component Model . 344

Components, Controls, and Classes . 344

Using Reflection with the Component Model 345

Creating New Components . 358

Defining a Component Class . 359

Storing Components in a Container . 364

Using Components in VS .NET . 372

Defining Properties and Events for a Component. 375

Defining Converter Classes for Components. 381

Testing the Final Employee Component Class 392

Summary . 395

■CHAPTER 13 Defining Threads . 397

Threading Defined. 397

Multitasking . 398

Processes . 399

Threads . 400

Thread Support in Visual Basic .NET . 410

System.AppDomain . 411

Thread Management and the .NET Runtime. 418

Summary . 419

■CONTENTS xi

■CHAPTER 14 Threading in .NET . 421

System.Threading Namespace . 421

Thread Class. 422

Creating a Thread . 424

ThreadStart and Execution Branching . 427

Thread Properties and Methods . 429

Thread Priorities. 431

Timers and Callbacks . 434

Spinning Threads with Threads . 436

Life Cycle of Threads. 442

Putting a Thread to Sleep . 443

Interrupting a Thread. 445

Pausing and Resuming Threads . 447

Destroying Threads . 453

Joining Threads . 455

Why Not Thread Everything? . 457

Threading Opportunities. 458

Background Processes . 458

Accessing External Resources. 461

Threading Traps . 462

Execution Order Revisited . 463

Threads in a Loop . 465

Summary . 468

■CHAPTER 15 Working with Threads . 469

Why Worry About Synchronization? . 469

Synchronize Critical Sections . 470

Making the Account Object Immutable . 471

Using a Thread-Safe Wrapper . 472

.NET Synchronization Support. 472

.NET Synchronization Strategies . 473

Synchronized Contexts . 473

Synchronized Code Regions. 474

Manual Synchronization . 488

Synchronization and Performance . 498

Beware of Deadlocks . 498

End-to-End Examples . 501

Writing Your Own Thread-Safe Wrappers . 501

A Database Connection Pool . 510

Summary . 518

■CONTENTSxii

■CHAPTER 16 Threading Models . 519

Multiple Threads in Applications . 519

STA Threading Model . 520

MTA Threading Model . 521

Specifying the Threading Model . 522

Designing Threaded Applications . 522

Threads and Relationship. 524

Summary . 533

■CHAPTER 17 Scaling Threaded Applications. 535

What Is Thread Pooling?. 535

The Need for Thread Pooling . 536

The Concept of Thread Pooling . 536

The CLR and Threads . 537

The Role of the CLR in Thread Pooling. 537

Glitches Involved in Thread Pooling . 538

The Size of a Thread Pool . 538

Exploring the ThreadPool Class. 539

Programming the Thread Pool in VB .NET . 542

Scalability in .NET . 547

A Thread Pool Manager. 548

Summary . 561

■CHAPTER 18 Debugging and Tracing Threads . 563

Creating the Application Code . 564

Debugging Your Code . 564

Visual Studio .NET Debugger . 565

Stepping Through the Code . 568

Setting Breakpoints . 568

Debugging Threads . 570

Code Tracing. 570

The System.Diagnostics.Trace Class . 571

Using Different Listener Applications . 574

Tracing Switches . 579

The Debug Class . 583

The DataImport Example . 584

The Code . 584

Testing the Application . 589

Logical Errors . 589

Summary . 591

■CONTENTS xiii

■CHAPTER 19 Networking and Threading . 593

Networking in .NET . 593

System.Net Namespace . 594

System.Net.Sockets Namespace . 595

Creating the Sample Application. 595

Design Goals. 596

Building the Application . 597

Running the Applications . 615

Summary . 618

■INDEX . 619

■CONTENTSxiv

About the Author

Beginning at the age of 10, programming BASIC on an ATARI 800XL,
TOBIN TITUS has seen more than his fair share of technologies come and
go. His most recent experiences have been designing and implement-
ing solutions for the .NET platform. Holding MCAD and MCSD “Early
Achiever” certifications, he was asked by Microsoft to help design
the next generation developer certification track. He has previously
co-authored three books for Wrox Press and served as technical
editor for countless others. Currently, Tobin is a senior developer/

analyst for TiBA Solutions (http://www.tibasolutions.com), a Greenville, South Carolina-
based technology firm that provides customized information technology solutions to
meet mission-critical business needs. TiBA Solutions offers a full line of services: business
consulting, project management, and customized software application design and develop-
ment. He can be reached at authorresponse@titus.to.

xv

About the Technical Reviewers

■RICK DELORME works as a consultant in Ottawa, Ontario, and currently
spends much of his time working with Microsoft .NET technologies as
an MCSD for Microsoft.net.

When not working he enjoys running, golfing, and spending time
with his young son.

■DON REAMEY is a program manager for Microsoft Corporation working on business intelligence
tools. He has been in the industry for 17 years and holds a bachelor’s degree in Computer Infor-
mation Systems.

xvii

Acknowledgments

Iwant to thank the kind folks who have been tremendous resources in this project in one fashion
or another. To the many contributors to this book who wrote the first drafts for version .NET 1.0
before many people even had a grasp of the basics, you guys deserve the lion’s share of the credit.
Beckie Stones and Ewan Buckingham, you guys are awesome to work with and I admire your
tremendous work ethic. Eric Eicke at Net Tool Works (http://www.nettoolworks.com) has always
been a great friend and is always willing to provide a wealth of information. Chris Boar at
Microsoft has always had the hook up when it was needed—and always listened when I had
some complaint about certification! Jack Bradham at Microsoft: thanks a million for your help
and friendship. Lastly, thanks to the team at TiBA Solutions that brought me on board: Ken, Kirk,
Dave, Phil, and Pierre. You guys really understand the value of designing and building great
software—not just slapping a rag-tag team together and making a quick buck.

xix

Introduction

When reading the title of this book, you might ask yourself “Why did they put remoting,
reflection, and threading together in one book?” The answer might not seem obvious at first,
but after reading this introduction you should understand why these three technologies belong
in a developer’s toolkit and in a single book. These three technologies share the following benefits:

• Flexibility: Today’s business needs demand that applications have the capability to
grow with the business. All three of these technologies bring that flexibility to the table
in a variety of ways.

• Power: Although .NET has brought about a highly powerful development platform by
itself, the inclusion of these three core technologies gives .NET developers the ability to
create powerful solutions with minimal effort.

• Ease of Use: Flexibility and power are great features to have, but they don’t mean any-
thing if they come at the price of complex APIs and increased development time.

Remoting
Today’s applications demand to be scalable. One of the many ways to make an application
scalable is to separate your application into logical and physical tiers. This is often referred to
as distributed computing. The distributed programming model has been implemented in many
ways throughout the years. In the .NET world, this is done most often with remoting. The “power”
of remoting allows two processes—on the same computer or a networked computer—to commu-
nicate as though they were in the same process. The programming model for remoting is not
complex providing that “ease of use” credential listed earlier. Furthermore, remoting can be
programmed without regard to where the logical components will physically reside. Both the
caller (client) and the receiving component (server) can be configured long after the application
has been compiled. If your business needs currently only require a single server for all tiers
of your application, remoting can be configured to do so. If later, your business requires more
processing power, remoting can be configured to move your tiers to another or multiple
servers—now that’s “flexibility.”

Reflection
When describing the need for flexibility in programming, you need look no further than
reflection. When a piece of .NET code is successfully compiled, you typically create an assem-
bly that contains the compiled code, data, and metadata. Metadata is information about what
is contained in the assembly such as classes, class members, and other types. Reflection pro-
vides the capability of a .NET application to read the metadata in an assembly, including itself.

xxi

The capability to read data about itself is what gives the technology the name “reflection.” Several
methods in .NET allow you to determine what assembly is currently running, what assembly
called in to the current method, and what assembly was the starting assembly for the current
process. This capability provides a great deal of flexibility in runtime decision-making. Code can
now make decisions based on how it is being called. For instance, you could make a method
behave differently if it was called by one of your own assemblies as opposed to when it was
called by a third-party assembly. Reflection also provides a great deal in power through the use
of attributes. Attributes are special decorations that you can add to your assemblies, classes,
and members, which add metadata to the compiled assembly. You can use these attributes to
control the way security is handled in .NET, the way components are handled at designtime, and
more. With all this power, reflection still provides a very simple API through the System.Reflection
namespace.

Threading
Even the most simple of applications often have more than one operation to perform at a time.
For instance, the application may be connecting to a database to perform a query, while also
responding to user input on the user interface (UI). By default, .NET applications perform these
operations synchronously—that is, they execute them one at a time. This makes your application
appear unresponsive. By assigning operations to different threads, you give your application the
capability to share processor execution time with more than one operation. Threading refers to
the capability of an application to spawn a new thread and control its execution lifecycle. By
allowing you to control the thread’s execution, you are given a great amount of power. A computer
system can execute multiple threads simultaneously if more than one processor is installed. If
a computer system has two processors, two threads can execute simultaneously. Likewise, four
threads can be executed in unison if the system has four processors. By default, the operating
system decides which threads go to which processor. However, .NET provides the flexibility for
the application programmer to decide which processors the application threads can be assigned
to and at what priority they are run. The power of the thread and its associated configuration
comes in a very easy-to-use object and configuration models.

Now the Bad News
So far you’ve heard all the good news about these technologies. If you stopped reading right now,
you would come away feeling that anyone could write applications using these technologies
without a care in the world. In some ways, we want to give you that impression. We want to get
you excited about these technologies because after they are mastered, they provide an invaluable
set of skills to you, your development team, and more importantly, your end users.

However, as the uncle of a famed masked superhero once said, “With great power comes
great responsibility.” While I’m not one to take wisdom from fictional characters as a rule, I think
this is sound. The power of these technologies does come at a price. That price is the responsibil-
ity to understand the limits and best practices of each of these technologies before haphazardly
including them in your design documents.

■INTRODUCTIONxxii

Looking ahead in our book, we are going to cover these three topics one by one, and mostly
as separate topics. In those sections, we’ll cover the power and pitfalls involved in these premium
technologies. We highly suggest you use this book as you practice these concepts as often as you
can. As with any skill, the more time you spend using it, the more familiar you make yourself
with the limits, restrictions, and tricks needed to use it effectively.

■INTRODUCTION xxiii

1

C H A P T E R 1

■ ■ ■

Introducing .NET Remoting

This chapter explains the basic concepts behind .NET Remoting. We’ll start by examining distrib-
uted systems in general and client-server systems in particular. You’ll see how they have evolved
over the past few years, and what peculiar issues remote object systems must contend with.

After we cover the basics, we’ll discuss .NET Remoting itself, including the various remote
object types available and how they are managed. You’ll see the entire remoting process and
how .NET Remoting makes it all work.

Distributed Systems
Shortly after World War II, the government in Britain decided that two computers would be
adequate for its needs. Things have changed a little since then, and dealing with entire net-
works of computers is routine. Before we look at what remoting involves, let’s consider why
networking systems are used. There are essentially three types of networked, or distributed,
system:

• Cooperative systems

• Peer-to-peer systems

• Client-server systems

All these systems are made up of several independent processes—generally running on
separate computers—interacting with each other. I say “generally” because any system that is
made up of several processes working together within a single machine could be regarded as
a miniature distributed system. In fact, as you’ll see, it doesn't actually matter to the .NET
Remoting model whether the various processes are running in the same machine or different
ones. In fact, remoting is merely two processes or application domains talking to each other.

Cooperative systems are networks in which the various tasks are allocated to different pro-
cessing units with a common, shared goal. It may be distributed for several different reasons.
First, there might be a number of specialized functions that can only be carried out in one spe-
cific place; a typical example of this is the system that controls how an automobile works. Sec-
ond, it might be more efficient to distribute the processing across several machines. Finally, it
might be effective from a development point of view to distribute the tasks between different
teams, each working on their own module.

CHAPTER 1 ■ INTRODUCING .NET REMOTING2

Peer-to-peer systems are more loosely linked networks, where computers exchange informa-
tion with each other but are not necessarily working toward a common goal. For example, an
automatic financial trading system might communicate with several other systems to establish
best prices before executing a trade through another one.

Client-server systems are more asymmetric, in that one kind of computer (a client) is initi-
ating the process, while the other computers in the network (the servers) are effectively slaves.
Generally (but not necessarily), the ultimate client end of such a system is a human user. Arguably,
all peer-to-peer systems are actually client-server systems, because at any one time, one specific
computer (the client) is driving the process forward. In fact, it’s possible for one application to
be a server of another as well as being a client of a third.

The .NET Remoting model is very much a client-server model. Before we look at it in any
detail, however, we should examine the different variants of the client-server model.

Client-Server Models
In client-server systems, a client application talks to a server over a network using a protocol.
A protocol consists of a number of message types that can be used to transmit information in
either direction. It can either be standard (such as HTTP) or proprietary (such as MSMQ). It can
also be synchronous or asynchronous. In a synchronous protocol, every message exchange
involves a request going one way and a response coming back. HTTP is such a protocol. In an
asynchronous protocol, however, there is no requirement for the sender to wait for a response.
Indeed, there may be more than one response to a single initial request. Examples of this abound
in the protocols used in the finance industry.

The type of protocol has a significant impact on the nature of the system that uses it. Any
system built on top of an asynchronous protocol needs to have a connection open continuously
between the client and the server. In other words, it needs to have a session. With a synchronous
protocol, there is no such necessity.

Systems are divided into session-oriented and session-less categories. In a session-oriented
system, a link is established between the client and the server and maintained while a number
of messages are exchanged. While this link is in place, the server retains some idea of the client’s
state. In this sense, state refers to a set of data associated with the client that persists for the
duration of the session. In a session-less system, a new logical link is established with every
message exchange, and then destroyed afterwards. The server has no concept of state in between
messages. In fact, for efficiency’s sake, the physical link between the client and the server may
still be maintained (simply because establishing it may take time and resources), but logically,
it is broken every time. If such a system were a living organism, it would be something with an
ultra-low attention span, such as a goldfish.

The World Wide Web (WWW) is probably the most famous session-less system. That’s the
reason it scales so well, because there is no need for all the servers involved to keep track of all
the users that fly in and out of their Web pages. It’s also why Web-based reservation systems are
such a nightmare, because making a reservation intrinsically involves keeping track of your state
as you go through the process, and you end up making extensive use of cookies as a sort of
pseudo-session. Most proprietary reservation systems are, incidentally, highly session-oriented.

The following diagram shows a typical session-less distributed system. Each time the client
sends a request to the server, a new connection is established and then broken as soon as the
response is received.

CHAPTER 1 ■ INTRODUCING .NET REMOTING 3

Client

Session-less Distributed System

Session-less
server invocations

Client
Session-oriented
server
invocations

Synchronous Session-Oriented
Distributed System

Client
Session-oriented
server
invocations

Asynchronous, Session-Oriented
Distributed System

The next diagram shows a synchronous, session-oriented system. Again, each request gets
a single, immediate response, but the server retains information about the client session and
hence the client’s state.

The final diagram in this sequence shows an asynchronous, session-oriented system. Here,
a single request from the client can provoke several responses from the server, each pertaining
to the current session.

There is also a distinction between single-user systems and multiuser systems. A multiuser
system in this sense involves multiple clients interacting with each other simultaneously in real
time via a central server. Multiuser systems are intrinsically session-oriented because some kind
of state must be held by the server on behalf of the various clients for any interaction between
them to be meaningful. They are also typically asynchronous in nature. A typical example of
such a system is a teleconference as shown in the following diagram.

CHAPTER 1 ■ INTRODUCING .NET REMOTING4

In this kind of system, one client talks to all the others via a central server. Such a system is
asynchronous and session-oriented. In fact, any system in which users can interact with each
other in real time is session-oriented.

Evolution of Distributed Systems
Now that we’ve established the kinds of distributed systems you need to develop, the next ques-
tion to ask is what sort of underlying technology can be used to implement them. Basically, you
need some software sitting on the server that receives incoming calls from the clients.

During the late seventies and eighties, a lot of work was done on the idea of Remote Procedure
Calls (RPCs). The idea was that you could effectively code your server as a set of library routines,
and then code your client as if it was simply using those locally. Well, yes and no. Yes if you had
the bandwidth, no—well, almost all the time, in fact. There was also a massive problem with
versioning. What happened when you extended the specification of your library?

Around the start of the nineties, however, object orientation suddenly became all the
rage, and someone spotted that encapsulation might be the answer to the versioning problem.
Encapsulation is one of the central concepts in object-oriented programming, expressing the
principle that you can make whatever changes you like to the underlying implementation of
an object, provided that the methods and properties it presents to the world remain constant.
So the idea of isolating the remote software behind rigidly defined language-independent object
interfaces arose. Two alternative solutions rapidly emerged: the Object Management Group’s
CORBA (Common Object Request Broker Architecture) (in 1992) and Microsoft’s COM (Compo-
nent Object Model) (in 1993). COM was a general component model, which could be used for
communication with in-process objects as well as remote objects. Distributed COM (DCOM)
came as part of the COM package.

Client

Client

Client

Session-oriented
server
invocations

Multi-user Distributed System

CHAPTER 1 ■ INTRODUCING .NET REMOTING 5

■Tip Actually, a third solution also emerged at about this time: Java Remote Method Invocations (RMI).
However, because RMI was restricted to Java implementations, it was ruled out of any discussions of
language-independent mechanisms.

However, this separation had a number of crucial problems. First, you needed a significantly
higher skill level to develop these distributed systems (which didn’t please those in charge of
the project budget). In fact, the solutions were difficult to work with, and it wasn’t until Microsoft
brought out Visual Basic 6 (which hid all the really horrible stuff under the surface) that COM
really came into the mainstream. The crucial difference with .NET is that the component model
is built into the framework from the word go, in all the languages from C# to VB .NET, and
remoting is just another .NET area to learn about—you don’t have to get a grip on a completely
new technology.

Secondly, CORBA failed to attain mass acceptance because it wasn’t endorsed by Microsoft.
DCOM, however, was only available on Microsoft systems. There was an initiative to port it to
other systems, but this never really caught on.

Finally, and most importantly, all these solutions used a proprietary, binary protocol for
client-server communication. That is perfectly acceptable when you have an in-house system,
but not when you’re dealing with clients that are outside your firewall and sometimes behind
their own firewall.

Unfortunately, just when it was ripe for distributed object systems to take over the world,
the Web became prime-time news, and they didn’t.

SOAP and Web Services
However, distributed objects didn’t go away. They simply went under cover, and reemerged
several years later under the banner of SOAP. SOAP (Simple Object Access Protocol) essentially
involves the client encoding object method calls in XML (Extensible Markup Language) and
inserts them in packets of a standard protocol (such as HTTP). These packets are then sent to
the server through—in the case of HTTP—whichever port the Web server is listening on (gener-
ally port 80). SOAP disposed of any firewall problems, and was immediately hailed as the best
thing since—well, the last best thing. Not only could you now carry on complex interactions
through a firewall, but it also didn’t matter what technology you were using on the client or the
server, as long as they both understood SOAP. Also, all the interactions were carried out using
a transparent plain-text format (XML), which made debugging easier.

The SOAP movement led to the next big thing, Web Services. With Web Services, you can
define your service using the Web Services Definition Language (WSDL). This is essentially
a generalization of the old Interface Definition Languages (IDLs) used by CORBA and DCOM,
and gives a client everything it needs to know about the method calls in the interface. You can
then use SOAP to invoke those methods. The next stage of this process is to store the WSDL file
in a UDDI registry (Universal Description, Discovery, and Integration registry) on the Web so
that interested parties can locate your service automatically (as shown in the following diagram).
Web Services set out to make distributed objects the programmatic equivalent of Web sites,
with client programs using UDDI registries as search engines. However, in the same way that
not all applications are best delivered through a Web browser, not all distributed objects are
best delivered through a Web Service.

CHAPTER 1 ■ INTRODUCING .NET REMOTING6

The strange thing about SOAP is that despite its name, it really doesn’t have anything to do
with objects. There is absolutely no reason why the piece of software at either end needs to be
object oriented, as long as it handles the incoming calls correctly. You could program a light
bulb to understand a certain format of SOAP request and turn itself off or on by command; the
light bulb doesn’t need to be object-oriented. SOAP’s great advantage is that it can be used by
almost any kind of networked computer system. However, if you know that your client and server
are both similar systems, bringing SOAP into things just introduces a massive, unnecessary
protocol overhead, and it would be easier to use an old fashioned binary DCOM-style protocol.
Bandwidth is certainly less of an issue these days than it used to be, but it still isn't unlimited.

As an illustration, consider this snippet from the SOAP specification, which shows how
invoking a single method (GetLastTradePrice), passed in a single parameter (the symbol DIS),
gets encoded as a SOAP message:

<SOAP-ENV:Envelope
xmlns:SOAP-ENV=_http://schemas.xmlsoap.org/soap/envelope/_
SOAP-ENV:encodingStyle=_http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>

<m:GetLastTradePrice xmlns:m="Some-URI">
<symbol>DIS</symbol>

</m:GetLastTradePrice>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

That’s a total of 316 bytes to encode a simple 3-byte parameter. Clearly a tradeoff must be
made between generality and efficiency. As you’ll see, .NET Remoting offers the enticing possi-
bility of being able to choose whichever is appropriate without making massive application-
level changes to accommodate both alternatives.

Using.NET Remoting
.NET Remoting might be the best solution currently available for distributed computing.
In Microsoft’s white paper, An Introduction to Microsoft .NET Remoting Framework (avail-
able at http://msdn.microsoft.com/library/en-us/dndotnet/html/introremoting.asp), .NET
Remoting is described as providing a “rich and extensible framework for objects living in differ-
ent AppDomains,” An AppDomain (application domain) is an isolated environment where appli-
cations execute. Within such an environment, an application can’t be independently stopped,
directly access code in applications in other AppDomains, or cause other applications to crash.

Client

WSDL

Session-less
server
invocations

CHAPTER 1 ■ INTRODUCING .NET REMOTING 7

Multiple AppDomains can run in a single process, although there isn’t a one-to-one correlation
between AppDomains and threads. In fact, several threads can belong to a single AppDomain. At
any one time, a thread executes in a single AppDomain, although it isn’t permanently confined to
one. The central principle behind .NET Remoting, then, is that it facilitates the development of
object-oriented systems where objects exist in more than one AppDomain.

.NET Remoting offers several big gains:

• Writing remote applications does not require you to learn an entire new technology,
because .NET Remoting is just one more facet of .NET as you’ll see in Chapter 2.

• You can develop applications that are both efficient for internal clients and accessible
for external ones (you’ll see this later on in this chapter, as we look at the different alter-
natives available for channels and formatters).

• You can support non-.NET clients using a standard protocol (SOAP).

Remote Object Types
There are three main remoting scenarios, each of which has a corresponding .NET remote object
type. The objects fall into two main categories: server-activated objects and client-activated
objects. Server-activated objects can be subdivided further into single call objects and sin-
gleton objects. We’ll briefly look at all these three types, and then take a more detailed look at
how object lifetimes are managed.

Single Call Objects
The single call object handles one and only one incoming request at a time, and doesn’t hold
any state information between calls. Each method call is treated as independent of every other
one, and there’s no concept of a session for the object. This is a slightly weird type of object when
you first encounter it, because it seems to cut right across the usual idea of an object being equiva-
lent to logic + data. So you have to think more in terms of an object as being simply a repository
for a set of related functionality. This type of object is useful in satisfying session-less require-
ments, and is particularly appropriate to hold the business logic in classic n-tier applications.

Singleton Objects
As its name suggests, this type of object is useful in circumstances where a single instance of
an object is required. This is used in both session-oriented and session-less applications. A suit-
able session-oriented application is a multiuser scenario, in which state is held across a number
of connected clients, such as the teleconferencing system mentioned earlier. Another scenario
where this type of object might be used is when a single client receives asynchronous events
back from the server. We’ll be looking at asynchronous remoting in more detail in Chapter 5.

In a session-less application, a single call object can be used, but the process of instantiating
such an object is time-consuming or resource-consuming. This is a massively scalable solution,
but if you use this type of object in a session-less application, you must be 100% sure that you
never hold any state between calls.

A single call object is instantiated with every call, and then eventually destroyed by the
garbage collector, so there’s no issue with state. However, a singleton object is instantiated by
the first call, and stays there until the last client releases it.

CHAPTER 1 ■ INTRODUCING .NET REMOTING8

Serialized explicit method call

Serialized implicit call context

Application Remote object

Client-Activated Objects
Finally, the Client-Activated Object (CAO) is the closest that .NET Remoting gets to the classic
COM. CAO is used in highly session-oriented applications. A separate instance is created for
each client, and remains in existence until released by the client. As far as the client is concerned,
it’s the same as if the object in question was local rather than remote.

Context
Context is the remoting topic that has tremendous potential to cause confusion because it
actually has two separate and different uses in .NET. The first use, which has direct relevance
to remoting, is in “call context.” The second use, which is not specifically relevant to remoting,
is in “context-bound objects.”

Call Context
When designing a class to be used for a remoted application, you generally want to make the
method calls as elegant and concise as possible. This isn’t always as simple as it might seem,
however. Imagine that your application does some kind of multistage order entry, but that you
want the scalability of a single-call object. You must decide what to do with all that session
information. One option is to insert everything into a database as you go along, but that creates
all sorts of rollback and recovery issues. Another option is to simply extend your method calls
so that each one has input arguments representing every part of the order entered so far, but
that’s horribly inelegant.

The neatest solution is to put everything in a special object, called the call context, which
is automatically serialized along with every single method call as shown in the following diagram.

You should understand, however, that just because the call context is not passed across
explicitly in every single method call doesn’t mean that it has no impact on bandwidth. For
a future medical application, for example, we would try to avoid the temptation to put the
patient’s entire DNA structure into the call context, because we would be waiting a long time
for the response to come back.

You’ll see the call context in action in Chapter 5, where it turns out to be particularly useful
in asynchronous multiuser applications.

Context-Bound Objects
The other use of the term context in .NET is slightly more complex. The idea is that in certain
applications, you might want to have a set of objects within an AppDomain that obeys certain rules.
Such objects are bound to the same context. The concept is a kind of extension of the transaction

CHAPTER 1 ■ INTRODUCING .NET REMOTING 9

context idea introduced with Microsoft Transaction Server (MTS), where if you create a series
of objects within the same transaction context, they are all treated as part of the same trans-
action. Confusingly, MTS context is still an entirely separate thing in .NET, and uses an entirely
separate mechanism from .NET context-bound objects.

With regard to remoting, the main thing you need to understand is that how access to
objects within another context is controlled is very similar to how access to objects in another
AppDomain is managed. The context rules need to be enforced, so if you’re outside the context
in question, the only way you can access an object inside the context is via a proxy—just like
remoting. The proxy is responsible for enforcing the rules of the context. For example, thread
synchronization is one attribute that can be controlled like this. If you specify your object to be
context-bound with the synchronization attribute, the framework makes sure that only one thread
can access your object at any one time.

The context principle is also extensible (although this is not particularly well documented
officially), so that you can specify your own context rules.

Managing Remote Objects
When looking at the question of managing remote objects, two central issues must be resolved:
where to put them (in other words, hosting) and when to dispose of them (in other words, lifetime).

Hosting
Let’s start by looking at where to host these objects. After all, they need to be available in
a runnable program that is capable of receiving the remote invocations. There are three basic
alternatives.

• Host them in any ordinary .NET EXE or managed Windows Service.

• Host them in Internet Information Server (IIS), which effectively exposes your objects to
the world as Web Services.

• Host them in the .NET component services infrastructure. If you do this, the objects can
be incorporated into transactions, and you can use COM+ concepts such as just-in-time
(JIT) activation and object pooling.

Leased-Based Lifetime
After a system is distributed across more than one machine, the question of knowing when to
release resources immediately becomes a lot more complex than within a single machine. In .NET,
the lifetimes of objects are managed according to a process called leased-based lifetime. A lease
is created for every object that also has a reference created outside its host AppDomain. Each
AppDomain has a lease manager, which periodically checks the status of all outstanding leases.
Each lease has a lease time associated with it, and when this time expires, the lease manager
releases the object to be destroyed by the garbage collector.

Each lease time begins with a standard default value. However, the lease’s behavior can be
changed by the client or the server object itself. For example, the server object can set its lease
time to infinity, which means that it never expires; this means that the object will never be
destroyed. The client can simply renew the lease by making a call on the lease manager. The
lease can also be set so that each call to the object extends the lease by a preset amount.

CHAPTER 1 ■ INTRODUCING .NET REMOTING10

Finally, the client can register a sponsor for the lease. A sponsor is simply an object that
implements a particular interface that can be called by the lease manager. If a lease is about to
expire, the lease manager asks the sponsors if they are interested in renewing the lease. A time-
out is associated with this request to ensure that if contact is lost with the sponsor, the sponsor
is dropped from the list.

The topic of leased lifetimes is covered in more detail in Chapter 2.

The Remoting Process
Now let’s turn our attention to how the clients and servers talk to each other to facilitate method
calls on remote objects. Any form of remoting needs a transport mechanism. Given its ubiquity,
there’s no other option but TCP/IP as the base protocol. All you need to do now is define an
application-level protocol to go on top. However, as you’ve seen, a number of conflicting demands
must be satisfied when choosing such a protocol.

A proprietary binary protocol such as DCOM is not firewall-friendly. SOAP goes some way
to resolving this, but it’s a much looser, general-purpose heavyweight protocol, which isn’t the
best solution if you’re looking for efficiency. One of the neat things about .NET Remoting is that
you can choose your own transport mechanism.

Using Channels
In .NET Remoting, a transport mechanism is referred to as a channel. By default, you get a choice
of two channels: TCP and HTTP. This is a great concept, but terrible terminology, because HTTP,
of course, also uses TCP as its underlying transport mechanism. What Microsoft really means
by “TCP channel” is “TCP/IP with proprietary binary protocol on top.” What it means by “HTTP
channel” is “TCP/IP with HTTP on top.” Of these two alternatives, the TCP channel is more
compact and efficient, and ideal for use inside a firewall. The HTTP channel is more useful if
your clients are outside your firewall.

It gets better. If neither of these channel types suits your needs, then you can roll your own,
which makes .NET Remoting infinitely extensible. We’ll look at the issues involved in providing
your own channel type in Chapter 2.

Formatters and Serialization
The issue of formatting objects for transmission between clients and servers is intimately linked
with the underlying channel technology. The essential problem is that although it’s easy to for-
mat a single number into a message for transmission from a client to a server, squashing a whole
object into a stream of bytes is a different matter. The squashing of an object into a byte stream
is called serialization, and the reconstruction of the object from the byte stream at the other end
is called deserialization. The software that carries out the process of serialization and deserial-
ization is called a formatter, and a similar choice is available with channels.

Out of the box, .NET Remoting comes with two formatters:

• Binary

• SOAP

The binary formatter is a natural partner for the TCP channel, and the SOAP formatter is
a natural partner for the HTTP channel, but you can use the binary formatter with the HTTP

CHAPTER 1 ■ INTRODUCING .NET REMOTING 11

channel or vice versa. Remember, however, that the binary formatter carries far less overload
than the SOAP formatter because the SOAP formatter uses XML elements to wrap all your data
in a SOAP envelope. Again, if you want, you can even provide your own formatter—there’s an
example in Chapter 2.

Marshaling
Now that we’ve covered serialization, let’s discuss marshaling. To marshal an object means to
make it available to be used, either remotely or locally. If you specify an object as being of type
marshal by reference (MBR), that means all you’re interested in remotely is a reference to it.
You don’t want an actual copy of the object to be made on your client. You just want it to be sit-
ting there on the server awaiting your method calls. So any object that is to be invoked
remotely should be designated as being of type MBR.

So far, so good. But if you want to actually pass an object from the server to the client, or
vice versa, the object itself is reinstantiated in a different AppDomain from where it started. As
you’ve just seen, you need to use your formatter on the object to serialize it. But you can only
do that if the object is of type marshal by value (MBV), which means that it must be serializable.

Metadata and Configuration
Now let’s consider how the client finds out what methods are available in the server object. To
access remote objects, a client needs to get the metadata information for the object. This can
occur in three ways:

• The server can create and distribute a metadata assembly.

• The server can create and distribute a WSDL file.

• The client can generate a metadata assembly from a running server.

The most straightforward way is to create a metadata assembly for the server object, which
can be distributed to the clients. The metadata can then be extracted from the assembly as if it
were for a local object. However, this isn’t always possible; for example, if the clients are Web-based,
the server object can provide a WSDL file describing its methods. The client can then generate
SOAP requests using this WSDL in the standard Web services manner. We covered this briefly in
the evolution of .NET Remoting discussion. A standard utility called Soapsuds can generate WSDL
files from server objects. Finally, clients can also use Soapsuds to generate a metadata assembly
from a running server.

As well as finding out how to invoke methods on the object, a client also needs informa-
tion on how to access its remote objects. This is held in a configuration file, separately from the
client application, to make it easy to change as the system configuration changes without hav-
ing to rebuild the client process. A configuration file contains information on things like the
URI (Uniform Resource Identifier) of the objects, the channels being used, the lease time settings,
and so on. This configuration file resides on the client, and might be set up completely by the
end user, or perhaps downloaded from the server prior to use. Chapter 4 includes much more
information on deployment.

The following diagrams provide a couple of typical examples of how remoting might work
in practice. First, this is how an IIS-hosted object might be accessed as a Web service using the
HTTP channel with the SOAP formatter.

CHAPTER 1 ■ INTRODUCING .NET REMOTING12

In this case, the client application obtains the WSDL file in some manner, perhaps from an
entry in a UDDI table or maybe as part of a distribution kit. It then uses this to generate SOAP
messages to send through its firewall and that of the server to the remoting object. The remoting
object is invoked with the specified method and arguments, returning a value. The return message
is also encoded as a SOAP message.

Next, the following diagram shows how a remoting object might be accessed within an
organization’s internal network using the TCP channel with the binary formatter.

Here, the metadata assembly is created by the remoting object, and either distributed to
the clients as part of the distribution kit or made available in some central download area. The
client application then uses this assembly to determine how to communicate with the remoting
object. All interactions in this case use the binary formatter and TCP/IP, because this is the most
efficient protocol when no firewalls are present. This mechanism is also restricted to .NET clients,
because other clients are unable to make use of metadata assembly. This contrasts with the pre-
vious picture, in which using WSDL opens up the application to both MS and non-MS clients.

The Whole Picture
Now let’s look at a more complete picture of how .NET Remoting works. We’ll look at the whole
process as shown in the following diagram, and then discuss each of the elements in turn.

WSDL

Client
application

(MS or non-MS)

Client
firewall

Remoting
object

HTTP/
SOAP Host

Server
firewall

Metadata
assembly

Remoting
objectTCP/

Binary

.NET
Client

application

Hosting EXE

