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Preface

The number of observed or guessed atomic architectures formed by elemental
carbon has unexpectedly increased in the last decades. In addition to graphite and
diamond, a multiplicity of other structures – such as well ordered fullerenes and
nanotubes, or less ordered structures like nanoporous and amorphous carbon – have
been synthesized and studied. Similarly to what happens for diamond with respect to
graphite, the new metastable phases (although basically sp2-bonded) are definitely
other than graphite (still to consider as the most stable phase) as for their physical
and chemical features in a wide range of temperatures and pressures. Interestingly,
the mechanical, structural, and electronic properties of these new forms of carbon
are extremely different, ranging from soft to hard, from compact to open, from in-
sulating to metallic.

Theory and simulations have largely contributed to understand and characterize
the new carbon-based systems and led to the prediction of new ones. The multiplic-
ity of possible arrangements, the diversity of behaviors, and the complex interplay
between structures and properties poses a formidable challenge to theoretical and
computational physicists. A number of different methods are therefore needed,
ranging from model-potential molecular dynamics, to tight-binding calculations, to
first-principles simulations. As a general feeling, it is also becoming evident that
their combination into a unique theoretical and computational tool is actually needed
to make new progress in this field.

This volume presents a unique survey of the theoretical modeling of all phases
of carbon – other than single fullerene molecules or nanotubes – from natural crys-
talline forms found on earth and in meteorites to artificial (hypothetical) nanofoams.
In addition, the present volume deals with the computational techniques used to
understand and predict the structure and properties of such carbon systems, as well
as reports about the present state of the art, including controversial aspects like the
occurrence of magnetism, and presents open questions for the future. Although the
main focus is on carbon-based systems, the computational challenges posed by their
diverse structural, bonding, mechanical and electronic properties are relevant for all
materials and make the present volume valuable for the whole community of com-
putational condensed matter physics.

v



vi Preface

Each chapter is a self-contained authoritative exposition by scientists with an
international reputation, sharing their knowledge and tricks of the trade. As a whole,
the book provides a basis towards a unified theoretical description of carbon, the
most fascinating element in Nature.

The first part of the volume is mostly devoted to the structural properties of sev-
eral novel carbon structures.

Chapter 1 by Ghiringhelli and Meijer opens with a description of the phase di-
agram of carbon that includes its traditional phases, diamond, graphite and liquid
carbon. Graphite and diamond melt into a liquid with a network-like microscopic
structure at extremely high values of pressure and temperature. The phase diagram
of carbon is experimentally poorly known and recent simulations give access to its
determination.

The diamond structure can also become extremely stable at the nanoscale, as
extensively discussed in Chapter 2 by Galli, where nanoparticles with diamond-like
structures, formed in a wide variety of natural environments (around stars or in CVD
phases) or under very high pressure and temperature conditions, are investigated.

Since the discovery of fullerenes and nanotubes, that are not treated in detail here,
several other new forms of nanostructured carbon mostly based on the graphitic sp2

bond configuration have been identified. Chapter 3 by Seifert, Kuc and Heine intro-
duces the carbon nanofoams, hypothetical ordered graphitic structures that display
interesting analogies with carbon nanotubes. Although not yet firmly established,
these structures might have been possibly experimentally realized.

The second part of the volume is more focused on the physico-chemical proper-
ties of several exotic carbon architectures.

Chapter 4 by Carlsson introduces a more general type of structure based on sp2

bonding called nanoporous carbon, a class of materials that have been obtained by
a number of experimental methods. Nanoporous carbon and nanofoams promise to
have specific cathalitic action and great potential for chemical applications.

Chapter 5 by Marks examines amorphous carbon, currently among the most in-
teresting materials for applications. Computer simulations have largely contributed
to the complex characterization of this disordered type of structure. The contribution
provides a critical exam of the criteria for theory to be accurate enough to discern
between different structural models.

Chapter 6 by Blase, Benedek and Bernasconi examines the exceptional mechan-
ical properties of clathrate structures. The criteria for designing hard materials are
examined, also in connection with electronic properties and possible occurrence of
superconductivity.

Finally in Chapter 7 by Ganchenkova, Vehviläinen and Nieminen, the intriguing,
but still controversial observation of ferromagnetism in nanostructured carbon, such
as polymerised fullerenes and ion-irradiated graphitic materials is examined and the
conditions for ferromagnetic ordering defect-related magnetism are explored.

Luciano Colombo
Annalisa Fasolino
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Chapter 1
Liquid Carbon: Freezing Line and Structure
Near Freezing

Luca M. Ghiringhelli1 and Evert Jan Meijer2

Abstract This chapter deals with the phase diagram of carbon with emphasis on
the liquid phase occurring in extreme conditions of temperature and pressure. After
presenting a critical review of the experimental results and still unresolved issues,
the authors discuss the possibility of modeling carbon by use of empirical potentials.
Also the techniques to evaluate numerically the free energy of each phase are pre-
sented in detail. The second part of the chapter discusses in detail the structure of
the liquid in different ranges of pressure, the pressure–density equations of state at
different temperatures and the possibility of a liquid–liquid phase transition.

1.1 Introduction

Carbon exhibits a rich variety of solid structures such as the familiar crystalline
graphite and diamond state, or amorphous states such as glassy carbon or carbon
black. More recently additional (metastable) phases have been found or predicted.
These include carbynes [1,2] and M-carbon [3]. In addition to the bulk phases there
are various other recently discovered structures including fullerenes [4], nanotubes
[5], and graphene [6].

Knowledge of the phase diagram of carbon is of crucial importance for a better
understanding of a wide variety of physical phenomena and properties of carbon-
based materials. For example, the phase diagram determines the carbon content of
the interior of the Earth and other planets and it determines the optimal conditions
for the manufacturing of synthetic diamonds. Knowledge of the graphite melting
line is relevant for the formation mechanism of low dimensional layered structures
that are important in fundamental and technological applications.

1Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, D-14195, Berlin, Germany
e-mail: luca@fhi-berlin.mpg.de

2Van’t Hoff Institute for Molecular Sciences & Amsterdam Center for Multiscale Modeling,
Universiteit van Amsterdam, Nieuwe Achtergracht 166, NL-1018 WV, Amsterdam,
The Netherlands
e-mail: e.j.meijer@uva.nl

L. Colombo and A. Fasolino (eds.), Computer-Based Modeling of Novel Carbon
Systems and Their Properties, Carbon Materials: Chemistry and Physics 3,
DOI 10.1007/978-1-4020-9718-8 1, c� Springer Science+Business Media B.V. 2010
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2 L.M. Ghiringhelli and E.J. Meijer

The phase diagram of carbon has been intensively studied, both experimentally
and by theoretical and numerical methods [1, 7–11, 11–26]. These studies covered
pressures (P ) and temperatures (T ) ranging up to 100 GPa and 10,000 K. Until
recently the knowledge of the carbon phase diagram was still fragmented because
experiments under these conditions are difficult if not outright impossible, whereas
quantitative theoretical and numerical predictions were hampered by the fact that
the existing atomistic models for carbon had serious flaws that made them unsuited
for quantitative predictions. Recent advances in modeling of carbon allows for the
calculation of the phase diagram of carbon and the structure of the liquid with un-
precedented accuracy. This provided significant progress in the understanding of the
behavior of carbon under extreme conditions [26–30]. Knowledge of the location of
the melting line and the liquid structure near melting is an important requisite in un-
derstanding the (non)-existence of a liquid–liquid phase transition and the process
of homogeneous nucleation of the liquid into graphite or diamond. The latter issue
is key to answering the question of the existence of diamond in planet interiors.

In the present contribution we provide a review of some of the recent compu-
tational studies of the phase diagram and the liquid structure of carbon. First, we
summarize some important characteristics of the carbon phase diagram. Then we
discuss the modeling of the inter-atomic interaction with a focus on a particular
class of bond-order potentials, the so-called LCBOP models. Subsequently we dis-
cuss in detail the computational methods to determine the thermodynamic stability
of the diamond, graphite, and liquid phase together with a presentation of the cal-
culated phase diagram for a well tested version of the LCBOP model. These results
are discussed in a context of experimental and other computational studies. Finally,
we address the structure of liquid carbon.

1.2 Carbon Phase Diagram: Some Important Characteristics

In the pressure and temperature range up to 100 GPa and 10,000 K, the well estab-
lished thermodynamic stable phases of carbon are the crystalline graphite (G) and
diamond (D) phase at lower temperatures, and a liquid (L) phase at higher temper-
atures (Fig. 1.4). The graphite-diamond coexistence line has been relatively well
characterized up to 2,400 K [7, 15]. For the graphite melting line a large amount of
experimental data are available [1, 8, 9, 13, 14, 16]. The experiments have in com-
mon that the melting temperature shows little variation with pressure, and that most
of the measured graphite melting P � T lines [8, 9, 16] show a maximum around
P D 6 GPa. However, the nature of the maximum is not well established. The exper-
imental estimates for the melting temperatures show a large spread. It appears that
the estimated melting temperature depends significantly on the heating rate of the
sample [13, 14], yielding values from 3,700 to 5,000 K below 0.01 GPa. In a recent
comprehensive review of graphite melting [31] the melting temperature is proposed
to be in the range of 4,600–5,000K. The precise nature of the maximum in the melt-
ing curve is important, because a discontinuous change of slope of the melting curve
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at this point would imply the existence of a liquid–liquid phase transition (LLPT)
line, branching off from the graphite melting curve. This will be discussed in more
detail in Section 1.5.

Early shock wave experiments [11] provided evidence for the existence of
diamond at P D 140 GPa at a temperature beyond the temperature of the Graphite–
Diamond–Liquid triple point (T � 4;000 K), implying that the carbon diamond
melting line has a positive slope in the P � T diagram. Recent experimental data
have provided evidence [32] that diamond is stable up to at least 800 GPa.

1.3 Modeling Carbon

Realistic modeling of the carbon phase diagram involving the liquid, graphite, and
diamond phase requires an accurate description of the inter-atomic interactions,
combined with a precise evaluation of the relative stability of the involved phases.
This requires the evaluation of the free energy of state points in all phases involved.
Presently, density-functional theory (DFT) based ab initio MD simulations would
provide the best possible approach. However, the computational cost associated with
DFT calculations renders such an approach unfeasible, in particular when combined
with free-energy calculations.

A viable alternative is to model the inter-atomic interactions by a functional
description, whose parameters are (partly) fitted to a selected database. Such a
functional description (also referred to as empirical, semi-empirical or classical po-
tentials) serves several purposes, ranging from the modeling of minimum energy
structures for surface reconstructions, grain boundaries or related defects, to the de-
scription of the liquid structure and thermodynamic stability.

According to Brenner [33], an analytic potential needs to be:

� Flexible The function should be flexible enough to accommodate the inclusion
of a relatively wide range of structures in a fitting database.

� Accurate The potential function must be able to accurately reproduce quantities
such energies, bond lengths, elastic constant, and related properties entering a
fitting database.

� Transferable The functional form of the potential should be able to reproduce
related properties that are not included in the fitting database. In practice the
potential should be able to give a good description of the energy landscape for any
possible realistic configuration characterized by the set of atomic positions fri g.

� Computationally Efficient The function should be of such a form that it is
tractable for a desired calculation, given the available computing resources.

Focusing on carbon, there is a noble lineage of increasingly successful parameter-
izations of the empirical potentials, from the Tersoff [34] potential, via the Brenner
potentials [35] and their modifications [36–39] up to Los-Fasolino LCBOP [27,29].
The crucial characteristic of these potentials is that they account for the “bond or-
der” : the potentials formalize and parameterize the idea that for covalently bonded
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systems an increasing number of bonds per atom modifies (typically decreases)
the bond energy per bond. With increasing complexity, many-body contributions
due to angular correlations [34], conjugation effects [35] and torsional interactions
[36] were included. These short ranged potentials proved to describe increasingly
well hydrocarbon molecules (when hydrogen is included) and the diamond phase.
However, more disordered structures were less well described. After an earlier at-
tempt to introduce longer range (pair) correlations [38], the seamless inclusion of
non-bonded interactions led to the semi-empirical long range bond order potential
(LCBOPI) by Los and Fasolino [27] that is partly based on ab initio data. The in-
clusion of conjugation dependent torsional interactions (LCBOPIC) (Ref. [29] in
Appendix A, and Ref. [40] in chapter 6.7) added the necessary flexibility to de-
scribe in a proper way the transformation between diamond and graphite and the
structure of the liquid phase. LCBOPIC also accounts properly for the inter-planar
interactions in graphite. In a subsequent development, the introduction of middle
range interactions (i.e. allowing for smooth bond breaking and forming), together
with a revision of the definition of the torsional angle, yielded LCBOPII [29], which
performs as well as density functional in the liquid phase (wherever it was tested)
and opens the way for an accurate description of surfaces and their reconstructions.

The LCBOP family is the first empirical potential that is capable of providing
an accurate description of the graphite, diamond, and liquid phase. This makes the
LCBOP’s uniquely suited to predict the carbon phase diagram and the properties of
liquid carbon.

1.4 The Graphite–Diamond–Liquid Phase Diagram
of LCBOPIC

1.4.1 Computational Methods

The properties of the liquid, graphite, and diamond phases were determined by
Monte Carlo (MC) simulations. Coexistence lines were determined by locating
points in the P � T diagram with equal chemical potential for the two phases
involved. To this purpose, we first determined the chemical potential for the liq-
uid, graphite, and diamond at an initial state point (P D 10 GPa, T D 4;000 K).
Subsequently, the liquid/graphite, liquid/diamond, and graphite/diamond coexis-
tence pressures at T D 4;000 K were located. In turn, these coexistence points
served as the starting point for the determination of the graphite melting, diamond
melting, and graphite/diamond coexistence lines, obtained integrating the Clausius–
Clapeyron equation (this procedure is also known as Gibbs–Duhem integration):

dT

dP
D T�v

�h
(1.1)
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where �v is the difference in specific volume, and �h the difference in molar
enthalpy between the two phases (calculated as h D u C P v, being u the poten-
tial energy per particle).

The first point is in turn accomplished in two sub-steps. Firstly a Helmholtz free
energy (F ) at a given volume (V ) and temperature (T ) can be calculated via ther-
modynamic integration. In a canonical system, coexistence between phases can be
found via the Helmholtz double tangent construction, after F is evaluated at other V

and T , by integrating its gradient, a quantity that can be measured in a MC simula-
tion (see e.g. Ref. [21]). As an alternative [41], the one we chose, one can transform
F into the chemical potential � (coinciding with the specific Gibbs free energy in
a one-component system), the latter as a function of P and T , knowing accurately
enough the equation of state of each phase. Coexistence at a given T is found at that
P where � for the different phases cross.

For all phases, the free energies at the initial state point F� was determined by
transforming the systems into a reference system F ref of known free energy, using
U� D .1 � �/U�C �U ref. Here, U� and U ref denote the potential energy function
of the LCBOPIC and of the reference system, respectively. The transformation is
controlled by varying the parameter � continuously from 0 to 1. The free-energy
change upon the transformation was determined by thermodynamic integration:

F� D F ref C �F ref!�

D F ref C
Z �D1

�D0

d�

�
@U�

@�

�
�

D F ref C
Z 1

0

d�
D
U ref � U�

E
�

(1.2)

The symbol h:::i� denotes the ensemble average with the potential U�.
For the liquid phase the reference system was taken to be a Lennard–Jones 12-6

(LJ) system, described by the well known interaction energy:

U LJ D 4"

���

r

�12 �
��

r

�6
�

The reference free energy (F ref) of the liquid is:

F ref D F LJ D F id C F ex
LJ (1.3)

The ideal-gas contribution is:

ˇF id

N
D 3ln� C ln� � 1

where N is the number of particles in the box, � D h=
p

2�m kBT is the de Broglie
wavelength, m is the mass of one atom, and � is the number density. The LJ liquid
excess free energy (F ex

LJ ) has been accurately parameterized [42] by means of (NVT)
MC and MD simulations.
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The LJ � parameter was determined by matching the first peak of the radial
distribution functions (g.r/) of the LCBOPIC and LJ liquid at the same position,
ensuring optimal similarity between the structure of the two liquids. The LJ " pa-
rameter was chosen such that, at the selected T D 4;000 K, the LJ liquid was above
the critical temperature: this is done in order to avoid possible unwanted transitions,
since the thermodynamic integration method works under the hypothesis that no
boundary between phases is ever crossed on varying �. On the other hand, the liq-
uid should not be too far from the critical temperature: in fact, the g.r/ given by
the LCBOPIC (see Section 1.5) has pronounced secondary peaks beyond the first
coordination shell. Thus, a rather structured LJ liquid had to be preferred for the
coupling. The requirements are matched by putting the LJ liquid in proximity of the
critical temperature.

For the solid phases the Einstein crystal, whose free energy is analytically known,
was taken as reference system [43]. For the Einstein solid, U E is:

U E D ˛

2

NX
iD1

.ri � ri; 0/2

where the ri;0 are the equilibrium (i.e. at T D 0 K) lattice positions of the parti-
cles. In the Einstein solid, the fixed equilibrium lattice positions are referred to an
absolute frame, so that if a particle is moved, then the crystal as a whole cannot.
When � � 0 (i.e. the system is on the LCBOPIC side) the center of mass of the sys-
tem (CoM) is free to drift: if L is the box size, the CoM mean square displacement˝
r2

˛
CoM

becomes of the order of L2. Should this happen, the integral of Eq. 1.2
becomes sharply peaked for small values of �. In fact, the particles are allowed to
drift far away from their absolute equilibrium lattice positions, since the coupling
with the Einstein solid is mild, but in Eq. 1.2 appears the energy U� D U E , that
can become uncontrollably large. In order to circumvent this problem for small �,
a physically well founded remedy is to perform a simulation under the constraint
that the CoM of the solid is fixed [43–45], so that

˝
r2

˛
CoM is of the order of

˝
r2

˛
0
,

the mean square displacement of a particle from its lattice site in a real (i.e. interact-
ing) crystal. This constraint calls for a slight modification of Eq. 1.2. We label with
E.CM / the Einstein solid with fixed center of mass, �.CM / the LCBOPIC system
with fixed center of mass, so that [43–45]:

F� D F E(CM) C �F E(CM)!�.CM/ C �F�(CM)!�

D F E(CM) C
Z 1

0

d�
D
U ref � U�

E
�

C �F�(CM)!� (1.4)

Specifically:

ˇF E(CM)

N
D 3ln� � 3

2
ln

�
2�

ˇ˛

�
� 3

2N

�
ln

�
˛ˇ

2�

�
C lnN

�
(1.5)
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The last term on the right hand side represents the (finite size) correction for the
fixing of the CoM. Note its dependency on 1=N , which consistently makes the
correction vanish in the thermodynamic limit.

ˇ�F�(CM)!�

N
D � 1

N
ln

V

Nws

(1.6)

where Nws is the number of Wigner–Seitz cells in the simulation box. If nws is the
number of atoms per Wigner–Seitz cell, Nws D N=nws. Note that also this term, a
purely finite size effect, vanishes in the thermodynamic limit.

In reporting the results (in Section 1.4.2) we will group differently the terms of
the previous three equations: it is indeed natural to group the terms proportional to
1
N

, so that:

ˇF E

N
D 3ln� � 3

2
ln

�
2�

ˇ˛

�
(1.7)

ˇ�F
1
N

N
D � 1

N

�
3

2
ln

�
N

˛ˇ

2�

�
C ln

V

Nws

�
(1.8)

The coupling of (hot) graphite to an Einstein crystal, whose average atomic positions
are constrained to a fixed reference system, displayed a peculiar feature. Due to the
softness of the interplanar interactions (0.07 kBT at 4,000 K), graphite neighboring
sheets are allowed to slide. Also this is a finite size effect: to correct for this we
found necessary to attach any sheet to its CoM, independently from the others.1

The Einstein crystal spring constant, ˛, was determined by requiring that the
mean-squared displacement from the equilibrium lattice positions is equal for the
Einstein crystal and the carbon crystal:

3

ˇ˛
D

*
1

N

NX
iD1

.ri � ri; 0/2

+

Therefore ˛ was fixed by calculating the right hand side in a simulation with the
LCBOPIC.

1 Equation 1.5 then becomes:

ˇF E(CM)

N
D 3ln� � 3

2
ln

�
2�

ˇ˛

�
� 3Ns

2N

�
ln

�
˛ˇ

2�

�
C lnNNs

�

where Ns is the number of sheets. Equation 1.6 becomes:

ˇ�F�(CM)!�

N
D �Ns

N
ln

V

Nws

where, in Nws D N=nws , one has to define the Wigner–Seitz cell within a graphite sheet; this leads
to nws D 2. Equation 1.8 becomes:

ˇ�F
1
N

N
D �Ns

N

�
3

2
ln

�
NNs

˛ˇ

2�

�
C ln

V

Nws

	
:
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Table 1.1 Parameters for the polynomial fitting of the 4,000 K
isotherms of the three phases, according to: P.�/ D aCb�Cc�2

a [GPa] b [GPa nm3] c [GPa nm6]

Liquid 89.972 �1:9654 0.011 092
Diamond 74.809 �3:6307 0.019 102
Graphite 108.29 �2:2707 0.011 925

In order to estimate the chemical potential � along the 4;000 K isotherm we
integrated from the initial state point a fit, P.�/ D a C b� C c�2, through simulated
.P; T / state points along the 4,000 K isotherm. Here, � is the number density, and a,
b, and c are fit parameters (see Table 1.1). This yields for the chemical potential [41]:

ˇ�.�/ D ˇF�

N
C ˇ

"
a

��
C b ln

�

��
C b C c

�
2� � ��

�#
(1.9)

Here, �� denotes the number density at the initial state point, N the number of
particles, and ˇ D 1=kBT , with kB the Boltzmann constant. Details on this equation
are given in Appendix A.

1.4.2 The LCBOPIC Phase Diagram

For calculating the three F� we performed independent Monte Carlo (MC) sim-
ulations for three phases. Three samples of 216 particle of the three systems were
prepared, the solids in their lattice positions, and the liquid in a simple cubic ar-
rangement. The three phases were equilibrated with NPT MC simulations at the
chosen T D 4;000 K and at P D 10 GPa.2 The integer N D 216 permits the atoms to
be arranged both in a defect-free diamond and cubic lattice, aligned with the sides of
a cubic cell, while bonding perfectly across its faces to periodic-image atoms. The
same requirements are fulfilled for 216 atoms in a defect-free graphite lattice, ar-
ranged in three sheets, but in a rectangular periodically replicated cell, with resulting
edge-size ratios 1:1.5:1.7. The first, in-plane, ratio (1:1.5) is defined by the lattice ge-
ometry (hexagons), while the interplanar ratio (1:1.7) is pressure dependent. In fact,
the rescaling of the box was allowed to be independent on the three axes for the equi-
libration of the solid phases, while kept intrinsically isotropic for the melting of the
cubic crystal and the subsequent equilibration of the liquid phase. The equilibrium
densities ��, expressed in 103 kg/m3, were 3.425 for diamond, 2.597 for graphite,
and 2.421 for the liquid. Three configurations at the equilibrium volume were then
chosen as starting points for the three thermodynamic integrations. The value of ˛

2 For the correct application of the method it is not needed to have the three states at the same P .
It is only required that the phases share a broad stable region in pressure at the chosen T .
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was set to 453,000 and 39,700 kJ/(mol nm2) for diamond and graphite, respectively.
The parameters � and " for the LJ fluid were 0.127 nm and 31.84 kJ/mol.

The reference free energies ˇF E=N were �5:755 kBT , and �1:912 kBT for
graphite and diamond, respectively, while the reference free energy for the liquid
was found .ˇ=N /



F id C F ex

LJ

� D �10:863 kBT . The integration in Eq. 1.2 yields

for ˇF�=N the values �25:090 ˙0:006 kBT (graphite), and �24:583 ˙ 0:002 kBT

(diamond), �25:137 ˙ 0:002 kBT (liquid).
The values of � for the sampling were defined by a 10-point Gauss–Legendre

integration scheme. The scheme avoids the sampling of the systems at the two
boundary values of �. A 10 point scheme assures exact result whenever the inte-

grand function of Eq. 1.2
�
hU ref � U LCBOPICi�

�
can be reasonably described with

a polynomial up to order 2 � 10 C 1 D 21. When � D 0; 1 the system performs
its random walk on the basis of only one of the two potentials, thus in principle
is allowed to assume configurations completely avoided by the other potential, in
such a way that the integrand of Eq. 1.2 could diverge. Should this be the case, the
integration scheme would yield a poor estimate of the integral. We thus ascertained
that the integrand never indeed diverged at � D 0; 1. For the three phases, we run at
each � point an NVT MC simulation of 500,000 cycles.

In Fig. 1.1 hU ref �U LCBOPICi� versus � is shown. The absence of spurious phase
boundary crossings throughout the integration over � was checked by looking at the
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Fig. 1.1 Plots of the quantity ˇ=N hU ref � U LCBOPIC i� (see Eqs. 1.2 and 1.4) as a function
of the coupling parameter � for the liquid, graphite, and diamond phase. On the left side of the
horizontal axis (� D 0) is the pure LCBOPIC . On the right side (� D 1) is the reference system,
i.e. the Lennard–Jones liquid for the liquid phase and two Einstein crystals (with different coupling
constant) for graphite and diamond phase. The temperature is 4,000 K and the pressure is 10 GPa
for the three phases, at � D 0 (along the integration path the volume, rather than the pressure, is
conserved). The simulated �-points are marked by their error bars, that are almost reduced to a
single dash at this scale
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Fig. 1.2 Equations of state at 4,000 K for the liquid, graphite, and diamond phase. The lines are the
quadratic polynomial fits to the data. The circles indicate the points, at 10 GPa, where the thermo-
dynamic integration (Eq. 1.2) was performed. The solid arrows connect coexisting (stable) points,
i.e. liquid/graphite and graphite/diamond. The dashed arrow links the liquid/diamond coexisting
point, that is metastable relative to the graphite phase

distribution of (U ref � U LCBOPIC).3 Since the points were run in parallel in order to
accumulate more statistics, only shorter independent simulations were performed by
increasing and then decreasing �, each new � point starting from the final configu-
ration of the previous. The absence of hysteresis in this process completely rules out
phase boundary crossings. The isotherms for the three phases, calculated via NPT
MC simulations together with their fit, are shown in Fig. 1.2.

The three � curves (at T D 4;000 K), as given in Eq. 1.9, but expressed as func-
tions of P , are shown in Fig. 1.3. The three curves, �L, �G, �D, as given in Eq. 1.9,
intersect in pairs in three points (these points are shown as a solid triangle, square
and diamond in Fig. 1.4). The intersections locate the graphite/liquid coexistence
at 6.72 ˙ 0.60 GPa (�GL D �24:21 ˙ 0:10 kBT ), and the graphite/diamond
coexistence at 15.05 ˙ 0.30 GPa (�GD D � 23:01 ˙ 0:03 kBT ). The third in-
tersection locates a diamond/liquid coexistence at D 12.75 ˙ 0.20 GPa (�DL D
�23:24 ˙ 0:03 kBT ). Even though both diamond and the liquid are there metastable,
this point can be taken as the starting one for the Clausius–Clapeyron integration of
the diamond melting line. Starting from the three coexistence points at 4,000 K, the
coexistence lines were traced–by integrating the Clausius–Clapeyron equation using
the trapezoidal-rule predictor-corrector scheme [46]. The new value of the coexist-
ing P at a given T was taken when two iterations differed less than 0.01 GPa, this
being the size of the single uncertainty in the calculation of dP=dT . This normally
took two to three iterations to be obtained.

3 The distribution usually exhibits a bimodal shape in case of phase boundary crossing.
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Fig. 1.3 Plot of the chemical potential � for the three phases at T D 4;000 K; we plot double
lines, which marks the boundaries of the numerical uncertainty of the calculated �. These curves
represent Eq. 1.9, but are expressed as a function of pressure using P.�/ D a C b� C c�2. The
main source of error was the thermodynamic integration; the uncertainty in the equations of state
was at least an order of magnitude less

0 10 20 30 40 50 60
Pressure [GPa]

0

1000

2000

3000

4000

5000

6000

7000

T
em

pe
ra

tu
re

 [
K

]

Diamond

Liquid

Calc. Graphite melting line
Calc. Graphite-Diamond coex.
Calc. Diamond melting line
Exp. Graphite melting line [15]
Exp. Graphite melting line [16]
Exp. Graphite-Diamond coex. [7]
0 K Graphite-Diamond coex. [15]

Graphite

Fig. 1.4 Phase diagram of carbon up to 60 GPa. The solid right triangle, square, and diamond are
the three coexistence points found by equating the chemical potentials at 4,000 K (see text). The
open right triangles, squares, and diamonds are the calculated coexistence points, propagated via
Gibbs–Duhem integration. The solid circle with error bars indicates the experimental estimate for
the liquid/graphite/diamond triple point [15, 18, 20]. The dashed line is the experimental graphite
melting line from Ref. [15]. The up triangles are graphite melting state points from Ref. [16]. The
crosses represent experimental graphite/diamond coexistence from Ref. [7]. The asterisk represent
the theoretical graphite/diamond coexistence at zero kelvin, as reported in Ref. [15]
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Fig. 1.5 Phase diagram of carbon at all calculated pressures. The thick solid lines are the cal-
culated phase boundaries. The dashed line is the metastable prolongation of the graphite melting
line, from Gibbs–Duhem integration; the line stops just before the simulated graphite became insta-
ble, displaying large density fluctuations. The dashed-dotted line departing from the experimental
guess for the triple point (solid circle with error bar [15,18,20]) is the diamond melting line calcu-
lated in Ref. [21] with the BrennerI potential. The solid circle is the final point of the shock wave
experiment of Ref. [11] at which diamond is not yet melted. Crosses mark the liquid with equal
amount of three- and fourfold atoms; circles represent state points in which the sample freezes; in
the region in between the two series is the “diamond-like liquid”: the star is the point reported in
Ref. [47]

Table 1.2 Pressure (P ), temperature (T ), solid and liquid densities
(�) along the melting lines

P [GPa] T [K] �G [103 kg/m3] �L [103 kg/m3]

Graphite melting line:
2.00 3,800 2.134 1.759
6.70 4,000 2.354 2.098

16.4 4,250 2.623 2.414

Diamond melting line:
16.4 4,250 3.427 2.414
25.5 4,750 3.470 2.607
43.9 5,500 3.558 2.870
59.4 6,000 3.629 3.043
99.4 7,000 3.783 3.264

148.1 8,000 3.960 3.485
263.2 10,000 4.286 3.868
408.1 12,000 4.593 4.236

The calculated phase diagram in the P � T plane is shown in Fig. 1.4 for the low
pressure region, and in Fig. 1.5 for the full range of pressures and temperatures con-
sidered. Table 1.2 lists the densities of selected points on the coexistence lines. The
three coexistence lines meet in a triple point at 16.4 ˙ 0.7 GPa and 4,250 ˙ 10 K.
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Table 1.3 Pressure (P ),
temperature (T ), and melting
enthalpy (�hm , calculated as
the enthalpy of the liquid
subtracted of the enthalpy of
the underlying solid phase)
along the melting lines

P [GPa] T [K] �hm [kJ/mol]

Graphite melting line:
2.00 3,800 68.8
5.24 3,950 65.6
9.94 4,100 67.8

16.4 4,250 64.7

Diamond melting line:
16.4 4,250 95.9
25.5 4,750 111.5
43.9 5,500 130.8
59.4 6,000 143.9
99.4 7,000 160.5

148.1 8,000 174.7
263.2 10,000 195.3
330.5 11,000 208.1
408.1 12,000 221.7

The graphite/diamond coexistence line agrees very well with the experimental data.
In the region near the liquid/graphite/diamond triple point, that has not been directly
probed in experiments, the graphite/diamond coexistence line bends to the right, de-
parting from the usually assumed straight line. Analysis of our data shows this is
mainly due to the fast reduction with increasing pressure of the interplanar distance
in graphite at those premelting temperature. This causes an enhanced increase of the
density in graphite, yielding a decrease of dT=dP .

Table 1.3 shows the melting enthalpy �hm for graphite and diamond. These are
calculated as the difference in enthalpy between the solid and the melt at coex-
istence. Our calculated melting enthalpies of graphite are sensibly lower than the
values around 110 kJ/mol reported in shock heating melting experiments in the past
years [15, 16], nonetheless our values retain the feature of being rather constant
along the graphite melting line. No experimental data are known about the melting
enthalpies of diamond: we note that they increase monotonically with temperature
(and pressure).

The calculated graphite melting line is monotonically increasing in a small tem-
perature range around 4,000 K. In contrast to data inferred from experiments it
shows no maximum and is at a somewhat lower temperature. In agreement with
the experiments the coexistence temperature is only slowly varying with pressure.
Inspection reveals that this behavior is due to (1) the limited variability of the melt-
ing enthalpy, and (2) a similar bulk modulus for liquid and graphite such that �v is
almost constant.

We have extended the calculation of the graphite melting line to the region in
which both graphite and the liquid are metastable towards diamond, with the aim
to look for a possible maximum in the line. The results are shown as a dashed
line in Fig. 1.5. We stopped the Gibbs–Duhem integration at �50 GPa, where the
216-particles graphite sample started showing huge volume fluctuations during the
NPT sampling. The integration algorithm became instable, forbidding any further
analysis. Looking at this metastable melting line, it is clear that its slope does not
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continue to decrease with increasing pressure as in the stable region; thus, the hy-
pothesis of an hidden maximum appears to be rejected.

The slope of the diamond melting line is consistent with the only experimental
point available [11] (see Fig. 1.5). When compared to the diamond melting line of
the Brenner model [21], the LCBOPIC diamond melting line has a steeper slope
yielding significantly higher temperatures for the diamond melting line.

1.4.3 Diamond Melting According to LCBOPII

We have not carried out an extensive numerical evaluation of the phase diagram
as predicted by the LCBOPII. Yet, using direct free-energy difference calculations
starting from the diamond melting line of the LCBOPIC, we determined one point
and the slope at that point of the diamond melting line for the LCBOPII. We sampled
with the LCBOPIC a liquid and a diamond sample at the same phase point on the
calculated diamond melting line and at intervals a virtual swapping between the two
potentials, LCBOPIC and LCBOPII, was performed. This means that the energy of
independent configurations during this run was evaluated also with the LCBOPII.
We chose Tm D 6;000 K, which gave Pm D 59:44 GPa for the coexistence for the
LCBOPIC. We found for LCBOPII Tm D 5,505 K at the same pressure. The slope
of the melting line was evaluated by means of the Clausius–Clapeyron equation. We
found a slope of 28.04 K/GPa. We compare it to the very close value of 28.97 K/GPa
as given by the LCBOPIC at the same pressure. Thus, by means of this single point
evaluation, we found that LCBOPII has a melting line at lower temperature than the
LCBOPIC, but the slope should be similar between the two potentials.

1.4.4 Recent Developments

Recently, the melting curve of diamond in a range up to 2,000 GPa has been stud-
ied by ab initio MD simulations using density functional theory. Wang et al. [48]
determined the relative stability of the diamond and liquid phase by evaluating the
free energy of both phases. Correa et al. [26] determined the melting temperature
using a “two phase” simulation method, where the system initially consists of a
liquid and a diamond structure that are in contact. Subsequently the melting temper-
ature is estimated by locating the temperature at which the system spontaneously
evolves towards a liquid or a crystalline structure. In both ab initio MD studies it
was found that the diamond melting curve shows a maximum; around 450 GPa [26]
or 630 GPa [48].4 Subsequent laser-shock experiments [49] provided data consistent

4 The difference between these two values gives a hint on the uncertainties related to the two
different methods used for calculating coexistence, given that the DF-MD set-up is quite similar in
the two works.
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with this observation, indicating a negative melting slope most probably in the re-
gion of 300–500 GPa. When comparing the LCBOPIC diamond melting curve, that
monotonically increases with pressure, to the ab initio MD results of Refs. [26, 48]
we see a significant deviation from 200 GPa onwards. This might be attributed to an
incorrect description of the liquid structure at high compression. Indeed, LCBOPIC
has not been validated against high density structures with coordination beyond four.
These are typical configuration that might become more dominant in the pressure
region beyond 200 GPa.

1.5 The Nature of Liquid Carbon: Absence of a First-Order
Liquid–Liquid Phase Transition

In this section we re-examine the issue of the liquid–liquid phase transition (LLPT)
for carbon. A short review of the relevant findings is given in Section 1.5.1. In
Section 1.5.2 we describe the liquid at 6,000 K as predicted by several bond order
potentials (see Fig. 1.9 for the complete list) and compare the results with density
functional (DF) based molecular dynamics (MD) calculation. The temperature was
chosen to agree with the DF-MD based analysis of the liquid Wu et al. [22] There
the isotherm at 6,000 K was originally chosen for two reasons. Firstly it is expected
to be far from coexistence in the density interval studied; this assumption is based
on the phase diagram calculated by Glosli and Ree [21] using one of the Brenner
bond order potential [35] (the authors do not specify which parameterization they
use). Secondly, the 6,000 K isotherm is predicted by Glosli and Ree [20], with the
BrennerI [35] bond order potential, to cross the liquid–liquid coexistence line. In
Section 1.5.3 the analysis will be extended at all the relevant regions of the phase
diagram, with the aim of ruling out the presence of a LLPT, at least within the scope
of the LCBOP family. Intriguingly, signatures of a LLPT transition are nonetheless
hinted at by LCBOPII for the strongly undercooled liquid, where the liquid would
be anyhow dynamically arrested into a glass (see Section 1.5.2.3). A characteristic
that carbon would share with water.

1.5.1 A Short History of Carbon LLPT

An Analysis of Experimental Data The possibility of a liquid–liquid phase transi-
tion (LLPT) in liquid carbon has been firstly investigated by Korsunskaya et al. [17],
analyzing data on the graphite melting line proposed by Bundy [8] (those data
showed a maximum melting temperature at 6.5 GPa). By fitting the data from Bundy
into the original two levels model of Kittel [50] and postulating the existence of
two liquids, Korsunskaya et al. found the critical temperature Tc of the LLPT. The
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model is fitted with three points on the graphite melting line, with the respective
derivatives, and with the heat of melting at a selected pressure. The authors assume
that:

1. Liquid and solid have different compressibilities.
2. The nature of liquid carbon is described univocally by the relative fraction of the

two liquids.
3. Each of the two liquids presents a volume change on melting, heat of melting and

entropy of melting that are independent of T , P , and the fraction s: the volume
change upon melting for the liquid is a linear combination of the volume changes
of the pure species (i.e. for s D 0; 1), while heat and entropy of melting combine
according to the regular solution rules.

4. The overall entropy jump on melting is independent of T (that is equivalent to
assuming the same heat capacity in the liquid and the solid).

The fitting procedure gives an estimate for the critical pressure of �6.5 GPa
and for the critical temperature of the searched transition at 3,770 K, i.e. below the
melting temperature. The fitted value for the entropy of melting is the same for the
two liquids, thus implying a vertical slope (dT=dP ) of the coexistence line (in the
metastable liquid region just below the critical temperature).

When the slope of two out of the three coexisting line meeting at a triple point
is known, the slope of the third is also determined. On the basis of their results, the
authors were thus able to calculate also the diamond melting line: they predicted it to
have a negative slope. Note that the slope of the graphite melting line, and the slope
of the diamond/graphite coexistence, as extracted from Bundy’s data [7,8], together
with the densities of the phases obtained by fitting to the two levels model implied
(via Clausius–Clapeyron equation) a negative slope of the diamond melting line.
Different values of the slopes of the graphite boundary lines, and of the densities of
the phases can yield rather different slope of the diamond melting line, as we have
shown in Section 1.4.

Consistently with the slope of the fitted graphite melting line, the low density
liquid (LDL, s D 0) is less heavy, and the high density liquid (HDL, s D 1) is
heavier than the coexisting graphite. The nature of the two liquids is predicted as
follows: at low pressure graphite melts into a liquid of neutral particles, which inter-
act predominantly through dispersion (London) forces. Upon increasing pressure5

the liquid metallizes into a close packed liquid. No assumption is made on the local
structure.

A Semi-empirical Equation of State The modern discussion on the LLPT for
carbon, starts with the elaboration of a semi-empirical equation of state for carbon,
valid also at high P and T , by van Thiel and Ree [18, 51]. The equation of state is
constructed on the basis of experimental data and electronic structure calculations. It
is postulated the existence, in the graphite melt, of a mixture of a threefold (sp2) and

5 The transition in the stable liquid region is supercritical, thus continuous, but taking place in a
short range of pressures around 6.5 GPa.
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a fourfold (sp4) liquid. The model of pseudo-binary mixture is assumed to describe
the mixing of the two liquids [52]; the mixing energy J of the two liquids is written
as: ˇJ D �

A0=


1 C .P=P0/3=2

�
s.1 � s/ where ˇ D 1=.kBT /, A0 and P0 are

fitting parameter, and s is the fraction of the sp3 liquid. The value of these fitting
parameters is essential to determine the possibility of the occurrence of a first order
transition. Van Thiel and Ree show that fitting A0 in order to obtain the graphite
melting points of Bundy [8], the slope of the graphite melting line predicted by their
model inverts its sign discontinuously in correspondence of the maximum, so that
a first order LLPT arises. On the other hand, if they fit to the data from Ref. [9],
the value of A0 decreases so that the Tc of the LLPT drops below the melting line
and the transition between the two liquids becomes continuous in the stable liquid
region. As pointed out by Ponyatovsky [53] the expression for ˇJ proposed by
van Thiel and Ree involves two ambiguities. Firstly, extrapolating the coexistence
line between the two liquids at atmospheric pressure, the coexistence temperature
would be T � 3;700 K: this would imply that the sp3 liquid (and the glass) would
be more stable than the sp2 at room pressure up to very high temperatures, which
is in contrast to the experimental data. Furthermore, J is proposed to have a linear
dependence on T , so that, when T ! 0, also the mixing energy would tend to zero,
i.e. at zero temperature the regular solution would become an ideal solution. This is
extremely unusual.

Experimental Suggestions from the Graphite Melting Line Togaya [16] found
a maximum in the melting line at Pmax D 5:6 GPa. The author fitted the six ex-
perimental points with two straight lines: with positive slope at pressures lower
than Pmax , with negative slope at pressures higher than Pmax . The discontinuous
derivative of the melting curve at the maximum would imply there a triple point
graphite/LDL/HDL, as a starting point of a LLPT coexistence line.

Prediction of a Short Range Bond Order Potential In Ref. [20] Glosli and Ree
reported a complete study of a LLPT simulated with the Brenner bond order po-
tential [35] in its version with torsional interactions [36]. The authors simulated
in the canonical (NVT) ensemble several samples at increasing densities at eight
different temperatures. By measuring the pressure, they show the familiar van der
Waals loop denouncing mechanical instabilities at certain imposed densities. Using
the Maxwell equal-area construction, the authors calculated the LLPT coexistence
line, ending in a critical point at T D 8;802 K and P D 10:56 GPa. The lowest tem-
perature coexistence point was calculated at T D 5;500 K and P D 2:696 GPa. The
LDL/HDL coexistence line should meet the graphite melting line at its maximum,
but unfortunately the BrennerI potential does not contain non bonded interactions,
thus it cannot describe neither bulk graphite nor its melting line. To overcome this
deficiency, the authors devised an ingenious perturbation method. Assuming con-
stant slope of the negative sloped branch of the graphite melting line6 and fixing the

6 The authors adopted the graphite melting line measured by Togaya [16]. This melting line is
reported in Fig. 1.4, together with our results. According to Glosli and Ree, from the maximum of
that melting line would branch off the LLPT coexistence line.
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graphite/diamond/HDL triple point at a value taken from the experimental literature,
they give an estimate of the graphite/LDL/HDL triple point, at T D 5;133 K and
P D 1:88 GPa. The LDL was found to be mainly twofold (sp) coordinated with a
polymeric-like structure, while the HDL was found to be a network forming, mainly
fourfold, (sp3) liquid. Following the predictions of this bond order potential, the sp2

coordinated atoms would be completely avoided in the liquid. The authors identified
the reason in the presence of torsional interactions. In fact, the increase in density
demands an increase in structures with higher coordination than the sp, which is
entropically favored at low densities. Each bonds of the sp3 structures can freely
evolve around the bond axis, while bonds between sp2 sites are constrained in a
(almost) planar geometry by the torsional interactions: this implies a low entropy
for a liquid dominated by sp2 sites. This low entropy would eventually destabilize
the sp2 sites towards the sp3. To prove this conjecture, the authors calculated two
relevant isotherms in the original version of the potential, without torsional inter-
actions, finding no sign of a LLPT. Since some torsional interactions are definitely
needed to mimic the double bond reluctancy to twist, the authors concluded that the
LLPT predicted by the Brenner bond order potential with torsion is more realistic
than its absence when torsional interactions are switched off.

Tight binding calculations [54] showed no evidence of van der Waals loops at
some of the temperatures analyzed in Ref. [20]. As Glosli and Ree note, the tight
binding model used in [54] is strictly two-center, thus the torsional interactions
cannot be described.

An Ab Initio Confutation of the LLPT In Ref. [22], Wu et al. reported on a se-
ries of NVT-CPMD simulations at 6,000 K from density 1.27 � 3.02 �103 kg/m3,
in a range where the BrennerI potential showed the first order LLPT at the same
T . No sign of a van der Waals loop was found: in contrast to the BrennerI re-
sults of the previous section, two approaching series starting from the lowest and
the highest density, were found to meet smoothly at intermediate densities. Look-
ing for the reasons of the failure of the BrennerI potential, the authors calculated,
with the same density functional (DF) used in the CPMD simulations, the torsional
energy of two model molecules. One, (CH3)2CC(CH3)2 (see Fig. 2 in Ref. [30]
for a schematic representation), was chosen so that the bond between the two cen-
tral atoms represents a double bond in a carbon network: two sp2 sites are bonded
each to two sp3 sites; the peripheral hydrogens are needed to saturated the sp3

atoms and are intended to have no effect on the central bond. The second molecule,
(CH2)2CC(CH2)2 (see again Fig. 2 in Ref. [30] for a schematic representation) is
a portion of a completely sp2 coordinated network: in the bond order language, the
central bond is conjugated. The two molecules were geometrically optimized in their
planar configurations and then twisted around the central bond axis in steps of �=12.
In each configuration the electronic wave function was optimized, without further
relaxations, to give the total energy, that was compared to the planar configuration
total energy. The difference is the torsional energy. The DF calculations found a
surprising picture (see Section 6.7 in Ref. [40] or Fig. 3 in Ref. [30]): while the dou-
ble bond torsional energy was only slightly overestimated by the BrennerI potential


