Media Production, Delivery and Interaction for Platform Independent Systems

Format-Agnostic Media

Editors Oliver Schreer | Jean-François Macq | Omar Aziz Niamut Javier Ruiz-Hidalgo | Ben Shirley | Georg Thallinger | Graham Thomas

MEDIA PRODUCTION, DELIVERY AND INTERACTION FOR PLATFORM INDEPENDENT SYSTEMS

MEDIA PRODUCTION, DELIVERY AND INTERACTION FOR PLATFORM INDEPENDENT SYSTEMS

FORMAT-AGNOSTIC MEDIA

Editors

Oliver Schreer Fraunhofer Heinrich Hertz Institute, Technical University Berlin, Germany

Jean-François Macq Alcatel-Lucent Bell Labs, Belgium

Omar Aziz Niamut *The Netherlands Organisation for Applied Scientific Research (TNO), The Netherlands*

Javier Ruiz-Hidalgo Universitat Politècnica de Catalunya, Spain

Ben Shirley University of Salford, MediaCityUK, United Kingdom

Georg Thallinger DIGITAL – Institute for Information and Communication Technologies, JOANNEUM RESEARCH, Austria

Graham Thomas BBC Research & Development, United Kingdom

WILEY

This edition first published 2014 © 2014 John Wiley & Sons, Ltd

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

Media production, delivery, and interaction for platform independent systems : format-agnostic media / by Oliver Schreer, Jean-François Macq, Omar Aziz Niamut, Javier Ruiz-Hidalgo, Ben Shirley, Georg Thallinger, Graham Thomas.

pages cm Includes bibliographical references and index. ISBN 978-1-118-60533-2 (cloth)

1. Video recording. 2. Audio-visual materials. 3. Video recordings–Production and direction. I. Schreer, Oliver, editor of compilation.

TR850.M395 2014 777–dc23

2013027963

A catalogue record for this book is available from the British Library.

ISBN: 978-1-118-60533-2

Set in 10/12pt Times by Aptara Inc., New Delhi, India

1 2014

Contents

List o	of Editors	and Contributors	xiii
List o	List of Abbreviations		xvii
Notat	tions		xxiii
1		action Schreer, Jean-François Macq, Omar Aziz Niamut, Javier Ruiz-Hidalgo, Frley, Georg Thallinger and Graham Thomas	1
2	and De Grahan	f-the-Art and Challenges in Media Production, Broadcast livery 1 Thomas, Arvid Engström, Jean-François Macq, Omar Aziz Niamut, 1 rley and Richard Salmon	5
2.12.22.3	2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6	ction Fundamentals and Acquisition Technology How Real Should Video Look? Fundamentals of Video Camera Technology Production for Formats with Differing Aspect Ratios Stereoscopic 3D Video Challenges for the Future Fundamentals and Acquisition Technology	5 7 9 14 19 20 21 21
	2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6	Introduction Fundamentals of Audio Non-Live Production Live Production Surround Sound Challenges for the Future	21 21 27 31 34 34
2.4	Live Pro 2.4.1 2.4.2 2.4.3	ogramme Production The Production Area and Roles in Production The Production Workspace Vision Mixing: Techniques for Directing, Selecting and Mixing Camera Feeds	34 35 37 38
	2.4.4	Audio Mixing	40

	2.4.5	Replay Operation in Live Television Production	40	
	2.4.6	Challenges for the Future	42	
2.5	Coding	Coding and Delivery		
	2.5.1	Managed Delivery Networks	43	
	2.5.2	Unmanaged Delivery Networks	47	
	2.5.3	Codecs and Transport Protocols	48	
	2.5.4	Challenges for the Future	50	
2.6	Display	7 Technology	50	
	2.6.1	Plasma Displays – Developing the Flat Panel Display Market	51	
	2.6.2	LCD – the Current Dominant Technology	52	
	2.6.3	Projection Technologies	53	
	2.6.4	Other Technologies	54	
	2.6.5	Impact on Broadcasters	55	
	2.6.6	Challenges for the Future	56	
2.7	Audio I	Reproduction Technology	56	
	2.7.1	Stereophonic Sound Systems	57	
	2.7.2	Holophonic Systems	59	
	2.7.3	Binaural Systems	61	
	2.7.4	Hybrid Systems	62	
	2.7.5	Challenges for the Future	62	
2.8	Use of Archive Material			
	2.8.1	Video Format Conversion	62 63	
	2.8.2	Audio Format Conversion	64	
	2.8.3	Challenges for the Future	64	
2.9	Concept of Format-Agnostic Media			
	2.9.1	Limitations of Current Production and Delivery Approaches	65 65	
	2.9.2	A New Approach: Format-Agnostic Media	65	
	2.9.3	Metadata for Enabling Rich User Interaction	66	
	2.9.4	A Format-Agnostic Media Production and Delivery System	67	
2.10	Conclu	· · ·	68	
	Notes		69	
	Referen	nces	69	
3		Acquisition	74	
		Schreer, Ingo Feldmann, Richard Salmon, Johannes Steurer and		
	Grahar	n Thomas		
3.1	Introdu	ction	74	
3.2	Ultra-H	ligh Definition Panoramic Video Acquisition	75	
	3.2.1	History of Panoramic Imaging	75	
	3.2.2	The Geometry of Two Views	79	
	3.2.3	Fundamentals of Panoramic Video Acquisition	82	
	3.2.4	Geometrical Constraints for Parallax Free Stitching of Two Images	84	
	3.2.5	Registration of Views	88	
	3.2.6	Stitching, Warping and Blending of Views	91	
3.3	Use of	Conventional Video Content to Enhance Panoramic Video	94	
	3.3.1	Calibration of Camera Position and Orientation	94	

	3.3.2	Photometric Matching of Panoramic and Broadcast Cameras	98	
	3.3.3	Blending and Switching Between Camera Views	101	
3.4	High F	rame Rate Video	102	
	3.4.1	Early Work on HDTV Frame Rates	104	
	3.4.2	Issues with Conventional Frame Rates	104	
	3.4.3	Practical Investigations into the Effects of High		
		Frame Rates	107	
	3.4.4	Future Frame Rates for TV Production and Distribution	111	
	3.4.5	Consideration of Frame Rates and Motion Portrayal in		
		Synthetic Production	111	
	3.4.6	Conclusions on Frame Rates	112	
3.5	High D	ynamic Range Video	112	
	3.5.1	The Human Visual System in Natural Environments	113	
	3.5.2	Conventional and HDR Video Cameras	115	
	3.5.3	Conventional and HDR Displays	117	
	3.5.4	HDR Video Formats	119	
	3.5.5	Adaptive Tone-mapping for Format-Agnostic Video	120	
3.6	Conclu	sion	125	
	Notes		126	
	Referen	nces	126	
4	Platfor	m Independent Audio	130	
	Ben Sh	irley, Rob Oldfield, Frank Melchior and Johann-Markus Batke		
4.1	Introdu		130	
4.2		and Definitions	132	
	4.2.1	Auditory Event and Sound Event	132	
	4.2.2	Basic Room Acoustics Theory	134	
4.3		ion of the Problem Space	135	
	4.3.1	Reproduction Environment	135	
	4.3.2	Reproduction Method	137	
	4.3.3	Audio-visual Coherence	141	
	4.3.4	User Interaction	143	
	4.3.5	Example Scenario	143	
4.4		Representation	144	
	4.4.1	Components of a Virtual Sound Scene	144	
	4.4.2	Representations of Virtual Sound Scenes	146	
	4.4.3	Implementation Examples	147 149	
4.5	Scene Acquisition			
	4.5.1	Capturing Discrete Audio Objects	150	
	4.5.2	Capturing the Sound Field Component	152	
	4.5.3	Capturing the Diffuse Field	153 153	
4.6	Scene Reproduction			
	4.6.1	Scenario: Mobile Consumption Via Headphones	153	
	4.6.2	Scenario: Interactive Multichannel Reproduction	154	
	4.6.3	Scenario: Big Screen	154	
	4.6.4	Scenario: Interactive and Free Viewpoint 3D	155	

4.7	Existing	Systems	156
	4.7.1	Commercial Systems	156
	4.7.2	Research Projects	157
	4.7.3	Perceptive Media	160
4.8	Conclusi	on	161
	4.8.1	Open Issues	162
	Reference	es	162
5	Semi-Aı	itomatic Content Annotation	166
	Werner 1	Bailer, Marco Masetti, Goranka Zorić, Marcus Thaler	
	and Geo	rg Thallinger	
5.1	Introduc	tion	166
	5.1.1	Requirements on Semi-automatic Annotation Tools	167
	5.1.2	Requirements on Metadata	168
5.2	Metadata	a Models and Analysis Architectures	170
	5.2.1	Metadata Models	170
	5.2.2	Architectures for Audio-visual Analysis	171
	5.2.3	Storing MPEG-7 Metadata	172
	5.2.4	Bulk Loading Techniques for Massive MPEG-7 Metadata Storage	175
	5.2.5	An Example Architecture of a Semantic Layer Management System	175
5.3		independent Saliency	177
	5.3.1	Spatio-temporal Visual Saliency	177
	5.3.2	Estimating Grid-based Saliency	178
	5.3.3	Salient Regions for Controlling Automated Shot Selection	179
5.4		Detection and Tracking	180
	5.4.1	Person Detection	181
	5.4.2	Person Tracking	182
	5.4.3	Multicamera and Panoramic Environment	184
	5.4.4	GPU Accelerated Real-time Tracking Beyond HD	187
5.5		Detection of Concepts and Actions	189
	5.5.1	Sequence-based Kernels	190
	5.5.2 5.5.3	Kernels for Online Detection	193 194
5.6		Performance of Online Kernels ng Annotation for Automated Production	194
5.0	5.6.1	User Preferences and Functionality Definition	195
	5.6.2	Design Overview and Principles	195
	5.6.3	Preconfiguration and Predefined Workspaces	198
5.7	Conclusi		204
5.7	Reference		201
6	Virtual	Director	209
		iser and Wolfgang Weiss	2 07
6.1	Introduc	tion	209
	6.1.1	What is a Virtual Director?	210
	6.1.2	Features Enabled by a Virtual Director	211
	6.1.3	Definitions	212

	6.1.4	Requirements for Virtual Director Technology	213	
	6.1.5	Existing Implementations and Research Activities	215	
6.2	Implem	ientation Approaches	219	
	6.2.1	Behaviour Implementation Approaches	220	
	6.2.2	Combining Rule Engines and Event Processing Technology	223	
6.3	Examp	le Architecture and Workflow	225	
	6.3.1	Workflow of the Production System	225	
	6.3.2	Workflow of the Virtual Director	226	
	6.3.3	Distributed Nature	228	
	6.3.4	Sources of Knowledge	228	
6.4	Virtual	Director Subprocesses	230	
	6.4.1	Semantic Lifting	230	
	6.4.2	Shot Candidate Identification	231	
	6.4.3	Shot Framing	233	
	6.4.4	Shot Prioritisation	234	
	6.4.5	Decision Making	235	
6.5	Behavi	our Engineering: Production Grammar	237	
	6.5.1	Production Knowledge Elicitation Process	237	
	6.5.2	Cinematic Techniques	238	
	6.5.3	Audio Scripting	241	
	6.5.4	Domain Model	241	
	6.5.5	Limitations in Rule-based Behaviour Engineering	242	
6.6	Virtual Director: Example Prototype			
	6.6.1	Architecture and Software Framework	245	
	6.6.2	Production Scripts	246	
	6.6.3	Behaviour Implementation	247	
	6.6.4	Production Grammar Example	248	
6.7	Conclu	sion	251	
	6.7.1	Summary	251	
	6.7.2	Limitations	251	
	6.7.3	Testing and Evaluation	252	
	6.7.4	Research Roadmap	253	
	6.7.5	Concluding Thoughts	255	
	Referen	nces	256	
7	Scalab	le Delivery of Navigable and Ultra-High Resolution Video	260	
		rançois Macq, Patrice Rondão Alface, Ray van Brandenburg,		
	Omar A	Aziz Niamut, Martin Prins and Nico Verzijp		
7.1	Introdu	ction	260	
7.2	Deliver	y of Format-Agnostic Content: Key Concepts and State-of-the-Art	262	
	7.2.1	Delivery Agnostic to Content Formats, Device Capabilities and		
		Network Bandwidth	262	
	7.2.2	Delivery Agnostic to Video Timing – the Temporal Interactivity		
		Case	264	
	7.2.3	Delivery Agnostic to Video Reframing – the Spatial		
		Interactivity Case	266	

7.3	Spatial Random Access in Video Coding	267
	7.3.1 Video Compression and Random Access – A Fundamental	
	Trade-off	268
	7.3.2 Spatial Random Access by Tracking Coding Dependencies	271
	7.3.3 Spatial Random Access by Frame Tiling	271
	7.3.4 Multi-Resolution Tiling	273
	7.3.5 Overlapping Tiling for Low-Powered Devices	274
7.4	Models for Adaptive Tile-based Representation and Delivery	276
	7.4.1 Saliency-based Adaptive Coding of Tiled Content	277
	7.4.2 Optimisation of Tile Selection Under Delay and Bandwidth	
	Constraints	280
7.5	Segment-based Adaptive Transport	281
	7.5.1 Video Streaming Over IP	282
	7.5.2 Tiled HTTP Adaptive Streaming Over the Internet	285
	7.5.3 Publish/Subscribe System for Interactive Video Streaming	289
7.6	Conclusion	294
	References	294
8	Interactive Rendering	298
	Javier Ruiz-Hidalgo, Malte Borsum, Axel Kochale and Goranka Zorić	
8.1	Introduction	298
8.2	Format-Agnostic Rendering	299
	8.2.1 Available Rendering Solutions in End Terminals	299
	8.2.2 Requirements for Format-Agnostic Video Rendering	306
	8.2.3 Description of a Technical Solution	308
8.3	Device-less Interaction for Rendering Control	311
	8.3.1 Sensors for Gesture Recognition	314
	8.3.2 Gesture Analysis Techniques	317
	8.3.3 Recognition and Classification Techniques	319
	8.3.4 Remaining Challenges in Gesture Recognition Systems	321
	8.3.5 Description of a Technical Solution	321
	8.3.6 User Study of the Gesture Interface	327
8.4	Conclusions	331
	References	332
9	Application Scenarios and Deployment Domains	337
	Omar Aziz Niamut, Arvid Engström, Axel Kochale, Jean-François Macq,	
	Graham Thomas and Goranka Zorić	
9.1	Introduction	337
9.2	Application Scenarios	338
	9.2.1 Digital Cinema: A Totally Immersive Experience	338
	9.2.2 Home Theatre: In Control	339
	9.2.3 Mobile: Navigation and Magnification	339
9.3	Deployment in the Production Domain	340
	9.3.1 Outlook on New Production Practices	340

	9.3.2	Use of Format-Agnostic Technology to Aid Conventional Production	342
	9.3.3	Production of Format-Agnostic Content to Support End	
		User Interaction	344
9.4	Deploy	Deployment in the Network Domain	
	9.4.1	Network Requirements	347
	9.4.2	Impact of Application Scenarios	348
9.5	Deployment in the Device Domain		351
	9.5.1	Device Capabilities	351
	9.5.2	User and Producer Expectations	355
9.6	Deploy	ment in the User Domain	356
9.7	Conclu	sion	357
	Referen	nces	357
Index	X		359

Index

xi

List of Editors and Contributors

Editors

Dr. Oliver Schreer

Scientific Project Manager, Fraunhofer Heinrich Hertz Institut and Associate Professor Computer Vision & Remote Sensing, Technische Universität Berlin, Berlin, Germany

Dr. Jean-François Macq Senior Research Engineer, Alcatel-Lucent Bell Labs, Antwerp, Belgium

Dr. Omar Aziz Niamut

Senior Research Scientist, The Netherlands Organisation for Applied Scientific Research (TNO), Delft, The Netherlands

Dr. Javier Ruiz-Hidalgo Associate Professor, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain

Ben Shirley Senior Lecturer at University of Salford, Salford, United Kingdom

Georg Thallinger

Head of Audiovisual Media Group, DIGITAL – Institute for Information and Communication Technologies, JOANNEUM RESEARCH, Graz, Austria

Professor Graham Thomas

Section Lead, Immersive and Interactive Content, BBC Research & Development, London, United Kingdom

Contributors

Werner Bailer

Key Researcher at Audiovisual Media Group, DIGITAL – Institute for Information and Communication Technologies, JOANNEUM RESEARCH, Graz, Austria

Dr. Johann-Markus Batke

Senior Scientist, Research and Innovation, Audio and Acoustics Laboratory, Deutsche Thomson OHG, Hannover, Germany

Malte Borsum

Research Engineer, Image Processing Laboratory, Deutsche Thomson OHG, Hannover, Germany

Ray van Brandenburg

Research Scientist, The Netherlands Organisation for Applied Scientific Research (TNO), Delft, The Netherlands

Dr. Arvid Engström

Researcher, Mobile Life Centre, Interactive Institute, Kista, Sweden

Ingo Feldmann

Scientific Project Manager at 'Immersive Media & 3D Video' Group, Fraunhofer Heinrich-Hertz Institut, Berlin, Germany

Rene Kaiser

Key Researcher at Intelligent Information Systems Group, DIGITAL – Institute for Information and Communication Technologies, JOANNEUM RESEARCH, Graz, Austria

Axel Kochale

Senior Development Engineer, Image Processing Laboratory, Deutsche Thomson OHG, Hannover, Germany

Marco Masetti Networked Media Team Leader, Research & Innovation, Softeco Sismat Srl, Genoa, Italy

Frank Melchior

Lead Technologist, BBC Research & Development, Salford, United Kingdom

Dr. Rob Oldfield

Audio Research Consultant, Acoustics Research Centre, University of Salford, United Kingdom

Martin Prins

Research Scientist, The Netherlands Organisation for Applied Scientific Research (TNO), Delft, The Netherlands

Dr. Patrice Rondão Alface Senior Research Engineer, Alcatel-Lucent Bell Labs, Antwerp, Belgium

Richard Salmon

Lead Technologist, BBC Research & Development, London, United Kingdom

Dr. Johannes Steurer

Principal Engineer Research & Development, ARRI, Arnold & Richter Cine Technik GmbH & Co. Betriebs KG, München, Germany

Marcus Thaler

Researcher at Audiovisual Media Group, DIGITAL – Institute for Information and Communication Technologies, JOANNEUM RESEARCH, Graz, Austria

Nico Verzijp

Senior Research Engineer, Alcatel-Lucent Bell Labs, Antwerp, Belgium

Wolfgang Weiss

Researcher at Intelligent Information Systems Group, DIGITAL – Institute for Information and Communication Technologies, JOANNEUM RESEARCH, Graz, Austria

Dr. Goranka Zorić

Researcher, Mobile Life Centre, Interactive Institute, Kista, Sweden

List of Abbreviations

2D	Two-dimensional
3D	Three-dimensional
3GPP	3 rd Generation Partnership Project
4D	Four-dimensional
4K	Horizontal resolution on the order of 4000 pixels, e.g. 3840×2160 pixels
	(4K UHD)
7K	Horizontal resolution on the order of 7000 pixels, e.g. 6984×1920 pixels
AAML	Advanced Audio Markup Language
ACES	Academy Color Encoding System
ADR	Automatic Dialogue Replacement
ADSL	Asymmetric Digital Subscriber Line
AIFF	Audio Interchange File Format
API	Application Programming Interface
AMPAS	Academy of Motion Picture Arts and Sciences
APIDIS	Autonomous Production of Images based on Distributed and Intelligent Sensing
ARMA	Auto Regressive Moving-Average model
ARN	Audio Rendering Node
ASDF	Audio Scene Description Format
ATM	Asynchronous Transfer Mode
AudioBIFS	Audio Binary Format for Scene Description
AV	Audio-visual
AVC	Advanced Video Coding
BBC	British Broadcasting Corporation
BWF	Broadcast Wave Format
CCD	Charge Coupled Device
CCFL	Cold Cathode Fluorescent Lamp
CCIR	Comité Consultatif International des Radiocommunications
CCN	Content-Centric Networking
CCU	Camera Control Unit
CDF	Content Distribution Function
CDFWT	Cohen-Daubechies-Feauveau Wavelet Transform
CDN	Content Delivery Network
CG	Computer Graphics
CGI	Computer Generated Imagery

A v m	
CIF	Common Intermediate Format
CMOS	Complimentary Metal-Oxide Semiconductor
COPSS	Content Oriented Publish/Subscribe System
CPU	Central Processing Unit
CRT	Cathode Ray Tube
CUDA	Compute Unified Device Architecture
DASH	Dynamic Adaptive Streaming over HTTP
dB	Decibel
DBMS	Data Base Management System
DCI	Digital Cinema Initiative
DLNA	Digital Living Network Alliance
DLP	Digital Light Processing
DMD	Digital Micromirror Device
DMIPS	Dhrystone Million Instructions Per Second
DOCSIS	Data Over Cable Service Interface Specification
DONA	Data-Oriented Network Architecture
DPX	Digital Picture Exchange
DSL	Digital Subscriber Line

- Digital Subscriber Line Access Multiplexer DSLAM
- DSLR **Digital Single-Lens Reex**
- DSP Digital Signal Processor
- Dynamic Time Alignment Kernel DTAK
- DTW Dynamic Time Warping
- DVB Digital Video Broadcasting
- DVD Digital Versatile Disc
- EBU European Broadcasting Union
- EBUCore Basic metadata set defined by the EBU
- EMD Earth Mover's Distance
- ENG Electronic News Gathering
- EOFOV Edges Of Field Of View
- EOTF Electro-Optical Transfer Function
- EPG Electronic Program Guide
- ESPN Entertainment and Sports Programming Network
- ESS Extended Spatial Scalability
- High Dynamic Range Image Format EXR FascinatE
- Format-Agnostic SCript-based INterAcTive Experience FCC Fast Channel Change
- FMO
- Flexible Macro-block Ordering FRN Flexible Rendering Node
- Finite State Machines FSM
- FTTH Fibre-to-the-Home
- FullHD HD resolution of 1920×1080 pixels
- GB Gigabyte
- GOP Group Of Pictures
- GPU Graphical Processing Unit
- GUI Graphical User Interface

HAS	HTTP Adaptive Streaming
HBB	Hybrid Broadcast Broadband
HBBTV	Hybrid Broadcast Broadband TV
HD	High-Definition
HDMI	High-Definition Multimedia Interface
HDR	High Dynamic Range
HDTV	High-Definition Television
HEVC	High Efficiency Video Coding
HI	Hearing Impaired
HLFE	High-Level Feature Extraction
HMM	Hidden Markov Model
HOA	Higher Order Ambisonics
HOA HOG	6
	Histograms of Oriented Gradients
HQ HRTF	High Quality Head Related Transfer Function
HTML5	HyperText Markup Language 5
HTTP IBC	HyperText Transfer Protocol
IDC	International Broadcasting Convention, annual industrial fair, Amsterdam,
IDD	The Netherlands
IBR	Image-Based Rendering
ICP	Iterative Closest Point
ID	Identity
IEEE	Institute of Electrical and Electronics Engineers
IETF	Internet Engineering Task Force
IGMP	Internet Group Management Protocol
IMAX	Image Maximum (motion picture film format)
I/O	Input/Output
IP	Internet Protocol
IPTV	Internet Protocol Television
IROI	Interactive Region-Of-Interest
ISO	International Standards Organisation
IT	Information Technology
ITU	International Telecommunications Union
iTV	Interactive TV
JND	Just Noticeable Difference
JPEG	Joint Photographic Experts Group
JPIP	JPEG2000 over Internet Protocol
JSIV	JPEG2000-based Scalable Interactive Video
JVT	Joint Video Team
kB	kilo Bytes
KLT	Tracking approach proposed by Kanade, Lucas, Tomasi
KLV	Key, Length, Value; a binary encoding format used in SMPTE standards
kNN	k-Nearest Neighbour
LBP	Local Binary Patterns
LCD	Liquid Crystal Display
LCS	Longest Common Subsequence

LDR	Low-Dynamic Range
LED	Light Emitting Diode
LF	Light Field
LFE	Low Frequency Effects
LIDAR	Light Detection And Ranging
LSR	Layered Scene Representation
MAD	Mean Absolute Difference
MAP	Mean Average Precision
MDA	Multi-Dimensional Audio
MLD	Multicast Listener Discovery
MOCA	Multimedia over Coax
MP4	MPEG-4 Part 14
MPD	Media Presentation Description
MPEG	Moving Picture Experts Group
MPLS	Multiprotocol Label Switching
MVC	Multiview Video Coding
MXF	Material eXchange Format
NAB	National Association of Broadcasters, synonym for the annually held industrial
1.1.12	convention in Las Vegas, USA
NAT	Network Address Translation
NDN	Named Data Networking
NHK	Nippon Hoso Kyokai (Japan Broadcasting Corporation)
NTSC	National Television System Committee (analogue television standard used on
11150	most of American continent)
NTT	Nippon Telegraph and Telephone Corporation (Japanese Telecom)
NVIDIA	an American global technology company based in Santa Clara, California
OB	Outside Broadcast
OLED	Organic Light-Emitting Diode
OmniCam	Omni-directional camera by Fraunhofer HHI
OpenCV	Open source Computer Vision libary
OpenEXR	a high dynamic range (HDR) image file format
OPSI	Optimized Phantom Source Imaging
OSR	On-Site Rendering
OTT	Over-The-Top
OVP	Online Video Platform
OWL	Web Ontology Language
P2P	Peer to Peer
PC	Personal Computer
PCI	Peripheral Component Interconnect (standard computer interface)
PDP	Plasma Display Panel
PiP	Picture-in-Picture
PSE	Production Scripting Engine
PSIRP	Publish-Subscribe Internet Routing Paradigm
PSNR	Peak Signal-to-Noise Ratio
PTS	Presentation Time Stamps
PTZ	Pan-Tilt-Zoom

pub/sub	Publish/subscribe
PVR	Personal Video Recorder
QoE	Quality of Experience
QoS	Quality of Service
RADAR	Radio Detection and Ranging
RAID	Redundant Array of Independent Disks
RANSAC	Random Sample Consensus
RF	Random Forest
RGB	Red-Green-Blue colour space
RGBE	RGB with a one byte shared exponent
RO	Replay Operator
ROI	Region-of-Interest
RSS	Rich Site Summary
RTP	Real-time Transport Protocol
RUBENS	Rethinking the Use of Broadband access for Experience-optimized Networks
RODENS	and Services
SAOC	Spatial Audio Object Coding
SD	Standard Definition
SHD	Super High-Definition
sid	Spatial Identifier
SIFT	Scale-Invariant Feature Transform
SLA	Service-Level Agreement
SMIL	Synchronised Multimedia Integration Language
SMPTE	Society of Motion Picture and Television Engineers
SN	Scripting Node
SNR	Signal to Noise Ratio
SpatDIF	Spatial sound Description Interchange Format
SQL	Structured Query Language
STB	Set-Top Box
SVC	Scalable Video Coding
SVM	Support Vector Machine
SXGA	Super eXtended Graphics Adapter referring to resolution of 1280×1024 pixels
SXGA+	SXGA at resolution of 1400×1050 pixels
TCP	Transmission Control Protocol
TDOA	Time Difference Of Arrival
TIFF	Tagged Image File Format
TOF	Time Of Flight
TRECVID	TREC (Text Retrieval Conference) Video Track
TV	Television
UCN	User Control Node
UDP	User Datagram Protocol
UHD	Ultra High Definition
UHDTV	Ultra High Definition TV
UI	User Interface
UPnP	Universal Plug and Play
USB	Universal Serial Bus

VBAP	Vector Based Amplitude Panning
VBR	Video Based Rendering
VDSL	Very High Speed Digital Subscriber Line
VFX	Visual Effects
VM	Vision Mixer
VOD	Video On Demand
VRML	Virtual Reality Modelling Language
VRN	Video Rendering Node
VTR	Video Tape Recorder
VVO	Virtual View Operator
WF	Wave Field
WFS	Wave Field Synthesis
XML	Extensible Markup Language
XPath	XML Path Language
xTV	Explorative TV
YUV	Luminance and chrominance color space

Notations

General

- Scalar value *x*; *y* in italic lower case. Coordinate values are scalars.
- 2D homogeneous vector **m** as lower case standard bold mathematical font.
- 3D homogeneous vector *M* as italic upper case standard mathematical font.
- Matrix M as upper case boldface font.
- |.| denotes the norm of a vector, length of a sequence or number of bins of a histogram.
- Vector of arbitrary dimension \vec{x} as lower case standard bold math font with arrow.
- $X = (\vec{x}_1, ..., \vec{x}_n)$ is an ordered sequence of *n* feature vectors.
- $\chi = \{X_1, \dots, X_k\}$ denotes a set of k feature vectors of sequences.

Specfic Symbols

Chapter 3 Video Acquisition

$\mathbf{m} = (x, y)^T$	Euclidean 2D point
$M = (x, y, z)^T$	Euclidean 3D point
$\mathbf{m} = (u, v, 1)^T$	Homogeneous 2D point
$M = (x, y, z, 1)^T$	Homogeneous 3D point
Α	Intrinsic matrix
R	Rotation matrix
Ι	Identity matrix
t	Translation vector
f	Focal length
κ	Radial distortion coefficient
k_u, k_v	Horizontal/vertical scale factor
u_0, v_0	Horizontal/vertical offset
α_{μ}	Focal length in multiples of the pixel width
С	Optical center
$\mathbf{P} = \mathbf{A}[\mathbf{R} \mathbf{t}]$	Camera projection matrix
$I_{1,2}$	Image plane of camera $1 = \text{left}$ and $2 = \text{right}$ camera
B	Baseline, interaxial distance between two cameras
m _{1,2}	Corresponding 2D points
[t]×	Skew-symmetric matrix of vector t
Н	Projective transformation/homography

$m_1, m_2,, m_N$	Corresponding 2D points
δ	Disparity
π	Projective plane
H_{π}	Homography related to a plane π
λ	Projective parameter
w _h	Sensor width
N_p	Horizontal pixel resolution
Δq	Pixel width
$H_{R,G,B}$	Histogram of the R, G, B colour component

Chapter 5 Semi-Automatic Content Annotation

$\kappa(\vec{x}, \vec{y})$	Kernel function applied to a pair of feature vectors \vec{x} , \vec{y} .
$\kappa_f(\vec{x}, \vec{y})$	Appropriate kernel function for feature <i>f</i>
5	applied to a pair of feature vectors \vec{x} , \vec{y} .
Н	Histogram
T_c	Runtime complexity of component <i>c</i>
U	Support vector of a model c
$O(\cdot)$	describes the upper bound of the runtime complexity of an algorithm ("big O
	notation").
τ	Time point
<u> </u>	

 δ Time offset

Chapter 7 Scalable Delivery of Navigable and Ultra-High Resolution Video

- r_i Bitrate assigned to tile *i*
- s_i Aggregated saliency score of tile *i*
- α Multiplicative factor that converts saliency values into rate values
- λ Impact factor of saliency on rate
- **BW** Bandwidth budget
- M Number of columns of a regular grid of tiles
- N Number of rows of a regular grid of tiles
- Z Overlapping factor of tiling scheme

1

Introduction

Oliver Schreer¹, Jean-François Macq², Omar Aziz Niamut³, Javier Ruiz-Hidalgo⁴, Ben Shirley⁵, Georg Thallinger⁶ and Graham Thomas⁷

¹Fraunhofer Heinrich Hertz Institute, Berlin, Germany

²Alcatel-Lucent Bell Labs, Antwerp, Belgium

³*TNO*, *Delft*, *The Netherlands*

⁴Universitat Politècnica de Catalunya (UPC), Barcelona, Spain

⁵University of Salford, Manchester, United Kingdom

⁶Joanneum Research, Graz, Austria

⁷BBC Research & Development, London, United Kingdom

The consumption of audio-visual media has changed rapidly in the past decade. Content is now viewed on a variety of screens ranging from cinema to mobile devices. Even on mobile devices, today's user expects to be able to watch a personal view of a live event, for example, with a level of interactivity similar to that of typical web applications. On the other hand, current video and media production technology has not kept up with these significant changes. If we consider the complete media processing chain, the production of media, the delivery of audio-visual information via different kinds of distribution channels and the display and interaction at the end user's terminal, many challenges have to be addressed. The major challenges are the following.

Due to reuse of video content for different distribution channels, there is a *need for conversion and post-production* of the content in order to cope with different screen sizes. It is widely accepted that a movie production for cinema is recorded in a significantly different way to that intended for smaller screens. However, production budgets are limited; hence complex and costly re-purposing must be avoided. A good example is the production of 3D movies, where the aim is to develop camera technologies that allow 2D and 3D capture at the same time. Approaches to multiformat production that require parallel shooting or significant manual re-editing are no longer financially viable.

Media Production, Delivery and Interaction for Platform Independent Systems: Format-Agnostic Media, First Edition. Edited by Oliver Schreer, Jean-François Macq, Omar Aziz Niamut, Javier Ruiz-Hidalgo, Ben Shirley, Georg Thallinger and Graham Thomas. © 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.

The convergence of broadcast and Internet requires future media production approaches *to embrace the changes brought by web-based media*. The habits of media consumption have changed drastically, partially due to the availability of user interaction with users freely navigating around web pages and interactively exploring maps and views of the street for example. Hence, future media production and delivery must support interactivity.

Although the overall bandwidth available for media delivery is continuing to increase, future media services will still face limitations, particularly if the end user at home or on-the-go is considered. Hence, new distribution formats are required to allow for *the provision of audio-visual media beyond current HDTV formats*, to support interactivity by the end user and to support intelligent proxies in the network that are capable of performing processing, which cannot be offered by low capacity devices. First developments towards resolution beyond HD are already appearing commercially, such as 4K camera and display technologies.

In addition, the user wants to decide when, where and on which device to watch audiovisual media as nowadays a variety of devices are available (including mobiles, TV at home and immersive large projection systems in cinemas). All of these devices must be supported by media delivery and rendering. Therefore, *a large variety of audio-visual formats* must be provided for the full spectrum of terminals and devices taking their special capabilities and limitations into account.

Even in live events, a lot of human operators such as directors or cameramen are involved in content creation and capturing the event from different viewpoints. Due to the increasing number of productions, *automated viewpoint selection* may be able to make a significant contribution to limiting production costs.

A new concept appearing on the horizon that could provide answers to these issues and challenges is referred to as *format-agnostic media production*. The basic idea is to define a new approach to media production that supports the necessary flexibility across the whole production, delivery and rendering chain. A key aspect of this approach is to acquire a representation of the whole audio-visual scene at a much higher fidelity than traditional production systems, and to shift closer to the user-end the decision of how the content is experienced. This idea allows end users to experience new forms of immersive and interactive media by giving them access to audio-visual content with the highest fidelity and flexibility possible. This book discusses current challenges, trends and developments along the whole chain of technologies supporting the format-agnostic approach. This approach could lead to a gradual evolution of today's media production, delivery and consumption patterns towards fully interactive and immersive media.

In Chapter 2 "State-of-the-art and Challenges in Media Production, Broadcast and Delivery", we give an overview on the current situation in audio-visual acquisition, coding and delivery and the evolution of terminal devices at the end-user side in current media production and delivery. Based on the review of the state-of-the-art and a summary of current and upcoming challenges, the format-agnostic concept is explained. This concept offers the capability to deal successfully with the new requirements of current and future media production.

The acquisition and processing of audio-visual media following a format-agnostic approach is discussed in two separate chapters, Chapter 3 and Chapter 4. In Chapter 3 "Video Acquisition", the three major video format parameters, spatial resolution, temporal resolution and colour depth (i.e., the dynamic range) are investigated with respect to the benefits they offer for future immersive media production. Due to the large variety of future video formats moving towards higher resolution, frame rate and dynamic range, the need for a format-agnostic concept is particularly helpful in supporting media production and rendering independent of the specific format. The composition and merging of visual information from different sensors will lead to more appealing and higher quality images. In Chapter 4 "Platform-Independent Audio", the current challenges faced in audio broadcast using a channel-based approach and sound scene reproduction techniques such as wave field synthesis are reviewed. The problem of having many competing audio formats is addressed at both the production and reproduction (user) ends. The concept of object-based audio representation is introduced and several example implementations are presented in order to demonstrate how this can be realised.

In Chapter 5 "Semi-automatic Content Annotation", both manual and automatic content annotation technologies that support format-agnostic media production are discussed. The specific requirements on those tools, in particular under real-time constraints of live scenarios are investigated. Relevant video processing approaches such as detection and tracking of persons as well as action detection are presented. Finally, user interfaces in media production are discussed, which help the production team to perform semi-automatic content annotation.

One of the advanced concepts of media production currently under discussion and development is presented in Chapter 6 "Virtual Director". This concept builds on various audio-visual processing techniques that allow for automatic shot framing and selection to be used at the production side or by the end user. Approaches are discussed for addressing the semantic gap between data from low-level content analysis and higher-level concepts – a process called *Semantic Lifting*, finally leading to content and view selection that fulfils the desires of the user.

Chapter 7 "Scalable Delivery of Navigable and Ultra-High Resolution Video" deals with the main challenges in delivering a format-agnostic representation of media. As the final decision on how content will be presented is moved closer to the end user, two factors have a significant impact on delivery: higher data rate at the production side and higher levels of interactivity at the end-user side. The chapter focuses on coding and delivery techniques, which support spatial navigation based on the capture of higher resolution content at the production side. Methods for content representation and coding optimisation are discussed in detail. Finally, architectures for adaptive delivery are presented, showing how ultra-high resolution video can be efficiently distributed to interactive end users.

Chapter 8 "Interactive Rendering" starts with a list of challenges for end user devices resulting from increased interaction with the content supported by the format-agnostic media production and delivery concept. Gesture-based interaction is one of the recent trends in interactive access to media, and this is discussed in detail. A number of technologies already on the market and currently under development are presented. This chapter concludes with user studies of gesture interfaces showing that technology development must coincide with continuous evaluation in order to meet user requirements.

Finally, Chapter 9 "Application Scenarios and Deployment Domains" discusses the formatagnostic concept from an application point of view. Based on the technologies described in the previous chapters, various application scenarios are derived. An analysis is presented of the impact of the format-agnostic concept and related new technologies in the production, network, device and end user domains. Based on this future outlook, this chapter concludes the book.

This book offers a comprehensive overview of current trends, developments and future directions in media production, delivery and rendering. The format-agnostic concept can be considered as a paradigm shift in media production, moving the focus from image to scene

representation and from professionally-produced programmes to interactive live composition driven by the end user. Therefore, this will influence how media is produced, delivered and presented leading to more efficient, economic and user-friendly ways for media to be produced, delivered and consumed. Offering new services, better accessibility to content and putting the user in control are the main aims.

The idea for this book was born in the European FP7 research project FascinatE (Grant agreement no.: FP7 248138, http://www.fascinate-project.eu), which was proposing and investigating the format-agnostic concept for the first time. Beside the editors and the co-authors, which contributed to this book, there are several other colleagues to be mentioned. Without their expertise, their ideas and the fruitful discussion over more than 5 years, this book would not have been possible. Therefore we gratefully thank the following colleagues from several institutions and companies in Europe: R. Schäfer, P. Kauff, Ch. Weissig, A. Finn, N. Atzpadin and W. Waizenegger (Fraunhofer Heinrich Hertz Institute, Berlin Germany); G. Kienast, F. Lee, M. Thaler and W. Weiss (Joanneum Research, Graz, Austria); U. Riemann (Deutsche Thomson OHG, Hannover, Germany); A. Gibb and H. Fraser (BBC R&D, London, United Kingdom); I. Van de Voorde, E. Six, P. Justen, F. Vandeputte, S. Custers and V. Namboodiri (Alcatel-Lucent Bell Labs, Antwerp, Belgium); J.R. Casas, F. Marqués and X. Suau (University Politecnica Catalunya, Barcelona, Spain); O. Juhlin, L. Barkhuus and E. Önnevall (Interactive Institute, Stockholm, Sweden); I. Drumm (University of Salford, Manchester, United Kingdom); and F. Klok, S. Limonard, T. Bachet, A. Veenhuizen and E. Thomas (TNO, Delft, The Netherlands).

The editorial team, August 2013