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Notations

Set of real numbers

Set of strictly positive real numbers

Set of n-dimensional real vector

B
n

Unitary box in 

α General notation for a scalar

a General notation for a vector

A General notation for a matrix

A
T

Transpose of matrix A

A
−1

Inverse of matrix A

det(A) Determinant of matrix A

tr(A) Trace of matrix A

Im(A) Image of matrix A

General notation for strictly positive definite matrix A

General notation for positive definite matrix A

General notation for strictly negative definite matrix A

General notation for negative definite matrix A

In Identity matrix in 

On Zeros matrix in 

diag(a1,...,an) Diagonal matrix of dimension n

General notation of a m-zonotope

rs(H) Round-sum of matrix H

Approximation of zonotope  by a box

Approximation of zonotope  by a parallelotope

Zonotope inclusion

Absolute value

Infinity norm

P-norm

Frobenius norm

∈ It belongs to

⊂ Subset



Intersection

Minkowski sum

Pontryagin difference

M(S) Image of a set S

Distance between the sets  and  (also called “normal”

distance)

Hausdorff distance between the sets  and 

n combination of m elements

n! Factorial of n

The ith row of vector yk

conv(·) Convex hull

ω ~ N(0, Q) Random variable ω having zero means, normal distribution and

covariance matrix Q



Acronyms

BMI Bilinear Matrix Inequality

CARIMA Controlled Auto-Regressive Integrated Moving Average

CRHPC Constrained Receding Horizon Predictive Control

DMC Dynamic Matrix Control

EHAC Extended Horizon Adaptive Control

EPSAC Extended Prediction Self-Adaptive Control

ESO Equivalent Single-Output

ESOCE Equivalent Single-Output with Coupling Effect

EVP Eigenvalue Problem

GPC Generalized Predictive Control

LMI Linear Matrix Inequality

LQ Linear Quadratic control

LQR Linear Quadratic Regulator

LTI Linear Time Invariant

MAC Model Algorithmic Control

MIMO Multi-Input Multi-Output

MPC Model Predictive Control

MPHC Model Predictive Heuristic Control

MPT Multi-Parametric Toolbox

MURHAC Multi-predictor Receding Horizon Adaptive Control

MUSMAR Multi-step Multivariable Adaptive Control

PAZI Polytope and Zonotope Intersection

PFC Predictive Functional Control

PMI Polynomial Matrix Inequality

QP Quadratic Programming

SISO Single-Input Single-Output

SOS Sum of Squares

SVD Singular Value Decomposition

TMPC Tube-based Model Predictive Control

UPC Unified Predictive Control



Introduction

This book stands at a crossroad between two major axes in

automatic control: state estimation and robust control,

applied to uncertain discrete-time linear time invariant

systems. The goal is to take into account disturbances,

measurement noises and constraints in order to build a

zonotopic guaranteed state estimation and an output

feedback control which can guarantee the feasibility and the

stability of the closed-loop system in this specific context.

Part of the results proposed in this book were developed and

published in the PhD thesis of Hieu Le [LE 12c], under the

supervision of the co-authors of this book.

In the literature, there are two main approaches for

describing uncertainties, disturbances and noises acting on

a dynamic system:

– Stochastic approach, which assumes that the

disturbances, noises and parameter uncertainties are

unknown but the probability distributions are known.

– Deterministic approach, which assumes that

disturbances, noises and parameter uncertainties are

unknown but bounded by some convex sets. The main

advantage of the deterministic approach is that

disturbances and noises are assumed to be bounded and

this is often simpler to verify than the criterion on the

probability distribution. This is the main reason why

many authors [WIT 68, SCH 68, BER 71] have chosen the

deterministic approach to model the disturbances and

the noises affecting the system behavior. Based on this

remark, the deterministic approach has been chosen in

this book to model possible uncertainties, disturbances

and/or measurement noises.



Because of the presence of measurement noises, the

system state, which is necessary for building the control

law, is not always available. In this case, the implementation

of a state estimator is necessary. This state estimation

problem can be solved by different methods, such as a

Luenberger observer [LUE 64], functional observer [MUR

73], moving horizon estimation [GRI 90] and set-

membership estimation [WIT 68, SCH 68, BER 71]. Owing to

its ability to deal with uncertainties and disturbances, the

set-membership estimation method has been chosen in this

book. This approach has been applied to the problem of

state estimation of uncertain systems since the 1960s [WIT

68, SCH 68, COM 03, ALA 05]. The set-membership

estimation allows us to obtain a set containing the real

system state that is consistent with the disturbances and

measurement noises. With the development of robust

control theory, the set-membership estimation technique is

shown to be suitable in dealing with unknown but bounded

uncertainties, disturbances and measurement noises. If

constraints are added to the previous problem, then a

predictive control feature should be added. This results in

using robust predictive control strategies based on set-

membership estimation in order to answer the proposed

problem. In particular, zonotopic sets will be used due to

their flexibility and low-complexity.

This book builds upon previous results on the zonotopic

set-membership state estimation [COM 03, ALA 05] and the

output feedback Tube-based Model Predictive Control [MAY

09]. The aim of the state estimation problem is to obtain a

small estimation set which contains the real state. The

method proposed by [COM 03] computes a zonotopic outer

approximation of the set of states based on a Singular Value

Decomposition of a matrix [STR 05], which offers good

accuracy of the estimation. In [ALA 05], the authors

proposed a method to compute the zonotopic guaranteed



state estimation based on two optimization problems. The

first solution is based on the minimization of the volume of a

zonotope and offers a high-accuracy estimation with a

complex computation, while the second solution considers

the minimization of the segments of the zonotope and

proposes a simple computation but with a deterioration of

the estimation accuracy. For these reasons, the goal of this

book is to propose a method which permits the

improvement of the estimation accuracy while keeping a

low complexity level. Moreover, this zonotopic set-

membership estimation is proposed to replace the

Luenberger observer in the output feedback Tube-based

Model Predictive Control [MAY 09]. This association allows us

to improve the performance of the closed-loop system as

will be shown in the following chapters.

This book is organized as follows:

– Chapter 1: the goal of this chapter is to answer the

question on how to represent uncertainties, disturbances

and noises in the deterministic approach. The chapter

starts with a short description of the deterministic

approach in which the disturbances and the noises are

assumed to be bounded by known convex sets.

Afterwards, some basic definitions and operations

necessary for manipulating different sets are presented.

The next section consists of presenting a list of the most

popular families of sets which are used in the literature

to bound uncertainties. Because of the advantages of

zonotopes, the family of zonotopic sets is further chosen

to bound the disturbances and measurement noises.

– Chapter 2: in this chapter, an overview of existing

estimation techniques is proposed to solve the problem

of state estimation for systems subject to unknown but

bounded disturbances and measurement noises.

Zonotopic-based guaranteed set-membership estimation

techniques are further detailed. Two main classes of



approaches are addressed: Singular Value

Decomposition-based methods [COM 03] and

optimization-based methods. The following optimization-

based methods are recalled: minimization of the

segments of a zonotope [ALA 05] (offering low

computation complexity), minimization of the volume of

a zonotope [ALA 05] (offering good accuracy of the

estimation) and the minimization of the P-radius of a

zonotope [LE 11a] (offering a trade-off between the low

computation complexity and the accuracy of the state

estimation). Moreover, the P-radius criterion allows us to

guarantee the non-increasing property of the guaranteed

state estimation at each time instant.

– Chapter 3: this chapter details the P-radius-based

zonotopic set-membership estimation for both Single-

Output systems and Multi-Output systems. The Single-

Output system solution consists of a zonotopic outer

approximation of the intersection between a zonotope

and a strip, solved using matrix inequality optimization

techniques.

The case of Multi-Output systems leads to two different

classes of solutions. The first class is the direct application

proposed for the Single-Output systems for each output of

the Multi-Output system leading to a conservative result.

Several approaches belonging to this first class are

developed and compared (the Equivalent Single-Output

approach and Equivalent Single-Output with Coupling Effect

and Polynomial Matrix Inequality approach). The second

class based on the zonotopic outer approximation of the

intersection between a polytope and a zonotope allows us to

improve the accuracy of the estimation while considering all

the output measurements at the same time.

– Chapter 4: the problem of robust predictive control is

discussed in this chapter, in the context of zonotopic set-

membership estimation. Based on the zonotopic set-



membership estimation discussed in Chapter 3, a

feedback predictive control based on a tube of

trajectories is proposed for the case of linear discrete-

time invariant systems with bounded disturbances and

measurement noises, subject to constraints. This chapter

also proposes an application of the developed

approaches to control a magnetic levitation system. The

first step consists of describing and modeling this

nonlinear unstable continuous-time system subject to

bounded disturbances, measurement noises and

constraints. The proposed model is linearized around an

equilibrium point and discretized for a given sampling

time. Based on this model, the Tube-based Model

Predictive Control associated with the zonotopic set-

membership estimation is used to stabilize this system

around the equilibrium point.

– Conclusion and Perspectives: the final chapter

summarizes the work developed in this book and

proposes several directions for future developments.



Chapter 1

Uncertainty Representation

Based on Set Theory

Real systems are often complex due to several factors: the

system’s nature (e.g. mechanical, electrical and chemical

systems), interactions between its different components

(e.g. multivariable systems), and its different behavior in a

dynamic environment (e.g. influence of disturbances, noises

and uncertainties). All these aspects have to be considered

when modeling a given system, sometimes leading to a

complicated model. In the context of control systems, a

mathematical model is frequently used to describe the

system behavior. On the one hand, the accuracy of the

mathematical model is important to analyze and design

control strategies for the considered system; on the other

hand, in the context of industrial applications, it is suitable

to use unsophisticated controllers designed using a simple

model. In this context, a trade-off must be found: the

system model should be simple but precise enough to

characterize the dynamical behavior of the original system.

Thus, the simple/simplified mathematical model cannot

represent the real system exactly due to a lack of

knowledge of, or unreliable information about, the system.

To validate this model, some uncertainties can be added to

the mathematical model. Frequently, perturbations

influencing the real system have to be taken into account in

the mathematical model in order to ensure a similar

behavior of the real system and the mathematical model.

The importance of uncertainties in system design has been


