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Preface

This volume of Light Scattering Reviews is aimed at the presentation of recent
advances in radiative transfer, light scattering, and polarimetry and consists of nine
chapters prepared by leading experts in respective research areas. A state-of-the-art
discrete-ordinate algorithm for the transfer of monochromatic unpolarized radiation
in non-isothermal, vertically inhomogeneous media, as implemented in the com-
puter code discrete-ordinate-method radiative transfer, DISORT, is reviewed by
Laszlo et al. in chapter “The Discrete Ordinate Algorithm, DISORT for Radiative
Transfer”. Both the theoretical background and its algorithmic implementation are
covered in detail. These include features common to solutions of many radiative
transfer methods, including the discrete-ordinate method, and those specific to
DISORT. The common features include expansions of the phase function and the
intensity into a series of Legendre polynomials and Fourier series, respectively,
which transform the radiative transfer equation into a set of equations that depend
only on the optical depth and the zenith angle, and the transformation of the
integro-differential equations into a set of ordinary differential equations by
approximating the integral in the source function by a quadrature sum. The features
specific to DISORT include the reduction of the order of the standard algebraic
eigenvalue problem to increase efficiency in both homogenous and particular
solutions of the system of coupled ordinary differential equations, application of the
scaling transformation to make the solution unconditionally stable for arbitrary
large values of optical depth, application of the δ-M method to handle highly
anisotropic scattering, the correction of intensities by the Nakajima–Tanaka
method, and the implementation of a realistic bidirectional bottom boundary con-
dition as realized in version 3 of DISORT. Numerical considerations that make the
implementation robust and efficient are also discussed. Examples of setting up
DISORT runs are shown by using test cases with increasing complexity. Brief
summaries of the versions released to date are provided as well. Chapter
“Community Radiative Transfer Model for Air Quality Studies” prepared by Liu
and Lu presents the latest community radiative transfer model (CRTM), which is
applicable for passive optical, microwave, and infrared sensors. The CRTM has
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been used in operational radiance assimilations in supporting of weather forecasting
and in the generation of satellite products. In this chapter, CRTM applications to
assimilate aerosol optical depths derived from satellite measurements are discussed.
In particular, the assimilation improves the analysis of aerosol mass concentrations.
A retrieval algorithm and a retrieval product of carbon monoxide by using satellite
measurements are introduced. Wei and Xu has presented the analytical solution
of the time-dependent scalar and vector RTE in an infinite uniform medium with an
arbitrary light scattering phase function using cumulant expansion in chapter
“Analytical Solution of Radiative Transfer Using Cumulant Expansion”. Analytical
expressions for the exact distribution in angle and the spatial cumulants at any
angle, exact up to an arbitrary high order, n, of photons are derived. By a cutoff at
the second cumulant order, a Gaussian analytical approximate expressions of the
scalar and vector photon spatial distribution is obtained as a function of the
direction of light propagation and time, whose center position and half-width are
always exact at arbitrary time. The center of this distribution advances and the
half-width grows in time, depicting the evolution of the particle migration from near
ballistic, through snake-like, and into the final diffusive regime. Contrary to what
occurs in other approximation techniques, truncation of the cumulant expansion at
order n is exact at that order and cumulants up to and including order n remain
unchanged when contributions from higher orders are added. Various strategies to
incorporate the boundary conditions in the cumulant solution are presented. The
performance of the cumulant solution in an infinite and a semi-infinite medium is
verified by exact numerical solutions with Monte Carlo simulations. At the end, the
particular applications of the cumulant solution to RTE in biophotonics for optical
imaging and in remote sensing for cloud ranging are discussed. Kolesov and
Korpacheva have reviewed the radiative transfer theory in turbid media of different
shapes in chapter “Radiative Transfer in Spherically and Cylindrically Symmetric
Media”. In particular, the authors have presented the research of radiative transfer in
spherically and cylindrically symmetric media with anisotropic scattering of light.
The problems of radiation transfer in an infinite homogeneous absorbing and
anisotropically scattering media illuminated by a planar or point sources are con-
sidered. The relationship between the characteristics of the radiation fields in these
two problems is obtained. Also an overview of the problems of radiation transfer in
an infinite medium with arbitrary spherically symmetric distribution of sources is
presented. The authors also discuss the structure of the radiation field in a sphere of
a finite optical thickness and a spherical shell. The asymptotic expressions in the
theory of radiation transfer in atmospheres with spherical symmetry are presented
as well. The authors discuss the applications of the methods developed in the theory
of radiative transfer in spherically symmetric media to the case of media with a
cylindrical symmetry. They provide an overview of studies on the nonstationary
radiative transfer in plane-parallel, spherical, and cylindrical media. Lock and
Laven describe the Debye series for scattering by a sphere, a coated sphere, a
multi-layer sphere, a tilted cylinder, and a prolate spheroid in chapter “The Debye
Series and Its Use in Time-Domain Scattering”. In electromagnetic scattering of an
incident beam by a single particle possessing a reasonably high degree of
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symmetry, the Debye series decomposes the partial wave scattering and interior
amplitudes into the contributions of a number of intuitive physical processes. The
authors comment on the meaning of the various Debye series terms, and briefly
recount the method by which the formulas of ray scattering can be derived from
them. They also consider time-domain scattering of a short pulse by a spherical
particle and describe the way in which the time-domain scattering signature natu-
rally separates out the various Debye series terms. Lastly, the authors show how
time-domain scattering further separates a number of cooperating sub-processes
present in the individual Debye series terms. Kahnert et al. discuss the models of
inhomogeneous particles used in light scattering computations in chapter
“Morphological Models Forinhomogeneous Particles: Light Scattering by Aerosols,
Cometary Dust, and Livingcells”. Light scattering by chemically heterogeneous
particles with inhomogeneous internal structure is an important field of study in
such diverse disciplines as atmospheric science, astronomy, and biomedical optics.
Accordingly, there is a large variety of particle morphologies, chemical composi-
tions, and dielectric contrasts that have been considered in computational light
scattering studies. Depending on the intended applications, physical particle
properties, and computational constraints, one can find inhomogeneous particle
models ranging from simple core-shell geometries to realistic quasi-replicas of
natural particles. The authors review various approaches for representing the
geometry of encapsulated light-absorbing carbon aerosols, mineral dust, volcanic
ash, cometary dust, and biological particles. The effects of particle inhomogeneity
on radiometric properties are discussed. The authors also consider effective medium
approximations, i.e., approaches that aim at avoiding the computational difficulties
related to particle inhomogeneity altogether by representing such particles by a
homogeneous material with an effective refractive index. Chapter “Some Wave-
Theoretic Problems in Radially in Homogeneous Media” prepared by Noontaplook
et al. is aimed at consideration of wave-theoretic problems in radially inhomoge-
neous media. The wave-theoretic aspects are based on the solution of Maxwell’s
equations for scattering of plane electromagnetic waves from a dielectric (or
“transparent”) sphere in terms of the related Helmholtz equation. There is a con-
nection with the time-independent Schrödinger equation in the following sense: the
time-independent Schrödinger equation is identical in form to the wave equation for
the scalar radiation potential for TE-polarized electromagnetic waves. In regions
where the refractive index is constant, it is also identical to the scalar radiation
potential for TM-polarized electromagnetic waves, but with different boundary
conditions than for the TE case. The authors examine scattering of the TE mode
from a piecewise-uniform radial inhomogeneity embedded in an external medium
(as opposed to an off-axis inclusion). The corresponding theory for the TM mode is
also developed, and the well-known connection with morphology-dependent res-
onances (MDRs) in these contexts is noted. Kimura et al. focus on numerical
approaches to deducing the light scattering and thermal emission properties of
primitive dust particles in planetary systems from astronomical observations in
chapter “Light Scattering and Thermal Emission by Primitive Dust Particles in
Planetary systems”. The particles are agglomerates of small grains with sizes
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comparable to visible wavelength and compositions being mainly magnesium-rich
silicates, iron-bearing metals, and organic refractory materials in pristine phases.
These unique characteristics of primitive dust particles reflect their formation and
evolution around main-sequence stars of essentially solar composition. The
development of light scattering theories has been offering powerful tools to make a
thorough investigation of light scattering and thermal emission by primitive dust
agglomerates in such a circumstellar environment. In particular, the discrete dipole
approximation, the T-matrix method, and effective medium approximations are the
most popular techniques for practical use in astronomy. Numerical simulations of
light scattering and thermal emission by dust agglomerates of submicrometer-sized
constituent grains have a great potential to provide new state-of-the-art knowledge
of primitive dust particles in planetary systems. What is essential to this end is to
combine the simulations with comprehensive collections of relevant results from
not only astronomical observations, but also in situ data analyses, laboratory sample
analyses, laboratory analogue experiments, and theoretical studies on the origin and
evolution of the particles. The concluding chapter “Polarimetry of Man-Made
Objects” prepared by S. Savenkov is aimed at applications of environmental
polarimetry. Polarimetry has already been an active area of research for about fifty
years. A primary motivation for research in scatter polarimetry is to understand the
interaction of polarized radiation with natural scenes and to search for useful dis-
criminants to classify targets at a distance. In order to study the polarization
response of various targets, the matrix models (i.e., 2 x 2 coherent Jones and
Sinclair and 4 x 4 average power density Mueller (Stokes) and Kennaugh matrices
etc.) and coherent and incoherent target decomposition techniques has been used.
This comes to be the standard tools for targets characterization. Polarimetric
decomposition methods allow a physical interpretation of the different scattering
mechanisms inside a resolution cell. Thanks to such decompositions, it is possible
to extract information related to the intrinsic physical and geometrical properties
of the studied targets. This type of information is inestimable if intensity is mea-
sured only. The goal of this chapter is to explain the basics of polarimetric theory,
outline its current state of the art, and review some of important applications to
study the scattering behavior of various man-made and urban targets like buildings
(tall and short), ships, oil rigs and spills, mines, bridges, etc. The author considers
both optical range and radar polarimetry.

Darmstadt, Germany Alexander Kokhanovsky
October 2015
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The Discrete Ordinate Algorithm,
DISORT for Radiative Transfer

Istvan Laszlo, Knut Stamnes, Warren J. Wiscombe and Si-Chee Tsay

Abstract The discrete ordinate method for the transfer of monochromatic unpo-
larized radiation in non-isothermal, vertically inhomogeneous media, as imple-
mented in the computer code Discrete-Ordinate-Method Radiative Transfer,
DISORT, is reviewed. Both the theoretical background and its algorithmic imple-
mentation are covered. Among others, described are the reduction of the order of
the standard algebraic eigenvalue problem to increase efficiency in both the
homogenous and particular solutions of the system of coupled ordinary differential
equations, application of the scaling transformation to make the solution uncon-
ditionally stable for arbitrary large values of optical depth, application of the δ-M
method to handle highly anisotropic scattering, the correction of intensities by the
Nakajima-Tanaka method, and the implementation of a realistic bidirectional bot-
tom boundary. Numerical considerations that make the implementation robust and
efficient are also discussed. Examples of setting up DISORT runs are shown by
using test cases with increasing complexity. Brief summaries of the versions
released to date are provided, as well.
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1 Introduction

Studies of propagation of electromagnetic radiation in a medium (e.g., stellar and
planetary atmospheres) require the solution of an equation, the radiative transfer
equation, which mathematically describes the interaction between emission,
absorption, and scattering by which the medium affects the transfer of radiation.
One such solution is the discrete ordinate approximation; a systematic development
of which is presented by Chandrasekhar (1960). The strength of the approximation
is in the transformation of an integro-differential equation describing radiative
transfer to a system of ordinary differential equations for which solutions in terms of
eigenvectors and eigenvalues can be found. Computer implementation of the dis-
crete ordinate solutions proposed by investigators (e.g., Chandrasekhar 1960; Liou
1973; Asano 1975), however, had numerical difficulties as discussed by Stamnes
and Swanson (1981), who also showed a way to overcome these difficulties. The
discrete ordinate method has gained considerable popularity after the publication of
the paper by Stamnes et al. (1988a) that presented a detailed summary of treating
numerical ill-conditioning, computation of the eigenvalues and eigenvectors, effi-
cient inversion of the matrix needed for determining the constants of integration,
and especially after its implementation in the computer code Discrete Ordinate
Method Radiative Transfer, or DISORT, in 1988 was made readily available to the
public.

DISORT is a discrete ordinate algorithm for monochromatic unpolarized
radiative transfer in non-isothermal, vertically inhomogeneous, but horizontally
homogeneous media. It can treat thermal emission, absorption, and scattering with
an arbitrary phase function covering the electromagnetic spectrum from the ultra-
violet to radio. The medium may be driven by parallel or isotropic diffuse radiation
incident at the top boundary, by internal thermal sources and thermal emission from
the boundaries, as well as by bidirectional reflection at the surface. It calculates
intensities (radiances), fluxes (irradiances), and mean intensities at user-specified
angles and levels.

Our goal is to review the discrete ordinate approximation as it is implemented in
DISORT. The primary source used in this review is the DISORT Report v1.1
(Stamnes et al. 2000). Most of the material is taken from that report with little or no
modification. However, some parts, e.g., the treatment of the bidirectionally
reflecting lower boundary, are expanded on. We also include recent advances that
appeared in Lin et al. (2015), and which were not present in the v1.1 Report. We
first describe the theoretical basis for DISORT, and then discuss numerical con-
siderations that must be dealt with in order to make the implementation robust and
efficient. Next, taking from the many test cases provided with the code, we show
examples of how to correctly set up a DISORT run, and finally, we provide brief
summaries of the versions released to date.
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2 Equation of Transfer in DISORT

We consider a plane-parallel horizontally homogeneous medium (a slab), the optical
properties of which are characterized by its optical thickness (defined as the dif-
ference between the optical depth at the bottom and that at the top), the
single-scattering albedo ω, and the scattering phase function P. As defined, ω gives
the fraction of an incident beam which is scattered by an infinitesimal volume inside
the medium, while P describes how much of the radiation incident from a given
direction is scattered by that volume into another direction, that is, the angular
scattering pattern.

Location in the medium is specified by one vertical coordinate, measured in
optical depth units (τ) from the top down. Directions are described by two angular
coordinates, zenith and azimuth angles (Fig. 1). Polar (zenith) angles (θ) are
measured from the upward direction: straight up is 0° and straight down is 180°. In
the rest of the discussion we use the cosine of the polar angle (µ) instead of θ to
denote the polar direction. According to the above convention all upward directions
have positive polar angle cosines (+μ), while downward-directed intensities have
negative polar angle cosines (−μ). The exception is the cosine of the incident beam
angle (μ0) which, for historical reasons, is taken positive. Azimuth angles (ϕ) are
measured in an absolute frame of reference between 0° and 360°. They can be
measured either clockwise or counterclockwise from the zero azimuth when viewed
downward from zenith. However, when a choice has been made it must be applied
consistently for all directions (upward, downward, incident, reflection). We note
that according to this definition the relative azimuth angle of sunglint is 0°.

The transfer of monochromatic radiation through the medium, subject to internal
thermal emission in local thermodynamic equilibrium and illuminated at the top
boundary by a parallel beam in the direction µ0, ϕ0, is described by the following
pair of equations:

IdirectðsÞ ¼ F0e�s=l0d l� l0ð Þd /� /0ð Þ; ð1Þ

Fig. 1 Definition of upward,
ē(+µ, ϕ) and downward, ē(−µ,
ϕ) directions in DISORT.
Polar (zenith) angles θ are
measured from the upward
normal pointing to
Z. Azimuth angles ϕ are
measured in a plane
perpendicular to the upward
normal, and in relative to the
reference direction ϕ = 0°
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l
dI s; l;/ð Þ

ds
¼ I s; l;/ð Þ � S s; l;/ð Þ: ð2Þ

Here Idirect is the intensity of the direct beam at vertical optical depth τ, F0 is the flux
(irradiance) of the parallel beam normal to the direction of incidence at the top
boundary, and δ is the delta function in units of per steradian. I is the diffuse specific
intensity at τ in a cone of unit solid angle along direction µ, ϕ, and S is the “source
function.” S is the sum of the radiation scattered into the direction μ, ϕ from all
other directions μ′, ϕ′, the “pseudobeam” source term Q(beam), and the internal
thermal source Q(thermal) characterized by the Planck function B(T) at temperature
T at optical depth τ (cf. Stamnes et al. 2000):

Sðs; l;/Þ ¼ xðsÞ
4p

Z2p
0

d/0
Z1

�1

Pðs; l;/; l0;/0ÞIðs; l0;/0Þdl0

þQ beamð Þðs; l;/ÞþQðthermalÞðsÞ;
ð3Þ

where

Q beamð Þðs; l;/Þ ¼ xðsÞ
4p

Pðs; l;/; �l0;/0ÞF0 e�s=l0 ;

QðthermalÞðsÞ ¼ 1� xðsÞf gB TðsÞ½ �:
ð4Þ

Apart from the polar angles defining the direction all other quantities in (1)–(4)
depend on the wavelength of radiation. The wavelength dependence is assumed to
be understood and is omitted from the equations.

Equation (1) gives the solution for the transfer of the direct beam radiation. It
says that Idirect decreases exponentially with the pathlength τ/µ0, and it is nonzero
only in the direction µ0, ϕ0. The solution of (2) provides the diffuse radiation
propagating in the direction µ, ϕ at the optical depth τ. In the remainder of the
document we describe the solution of (2) using the discrete ordinate method as
implemented in DISORT. The solution, as we show below, is comprised of
essentially three steps: (1) transforming (2) into a set of radiative transfer equations
which are functions of the vertical coordinate τ and the angular coordinate µ only
(separation of azimuth dependence); (2) transforming the integro-differential
equations into a system of ordinary differential equations; and (3) solving the
system of ordinary differential equations using robust linear algebra solvers.

2.1 Radiative Transfer Equation Uncoupled in Azimuth

The scatterers within the medium are assumed to have random orientations; thus, ω
does not explicitly depend on the direction of the incident beam, and P depends
only on the angle between the incident and scattered beam (the scattering angle, Θ),
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that is, Pðs; l;/; l0;/0Þ ¼ Pðs; cosHÞ where, from the cosine law of spherical
trigonometry, cosH ¼ ll0 þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� l2Þð1� l02Þp

cosð/� /0Þ. With this restriction
on the form of P, we expand the phase function P into a series of Legendre
polynomials P‘ with 2M terms (‘ = 0, …, 2M − 1) (Chandrasekhar 1960, Chap. 1,
Eq. 33; Thomas and Stamnes 1999, Eq. 6.28).

P s; cosHð Þ ¼
X2M�1

‘¼0

2‘þ 1ð Þ g‘ðsÞP‘ cosHð Þ; ð5Þ

where the expansion coefficients g‘ are given by

g‘ðsÞ ¼ 1
2

Zþ 1

�1

P‘ cosHð ÞP s; cosHð Þd cosHð Þ: ð6Þ

In DISORT we require the phase function to be normalized to unity, so g0 = 1. The
g’s generally decrease monotonically, so we can expect that a finite number of
terms 2M in the expansion is sufficient. However, for highly asymmetric phase
functions (e.g., for clouds) the g’s often decrease very slowly, and several hundred
terms may be necessary in (5) to adequately represent the phase function (in
Sect. 6.1 we show how DISORT mitigates this problem).

Applying the addition theorem for spherical harmonics (Chandrasekhar 1960,
Chap. 6, Eq. 86; Thomas and Stamnes 1999, Eq. 6.30) to (5) we obtain

P s;l;/; l0;/0ð Þ ¼
X2M�1

m¼0

2� d0mð Þ
X2M�1

‘¼m

ð2‘þ 1Þg‘ðsÞKm
‘ ðlÞKm

‘ l0ð Þ
( )

cosm /� /0ð Þ:

ð7Þ

Here Km
‘ are the normalized associated Legendre polynomials related to the asso-

ciated Legendre polynomials Pm
‘ by

Km
‘ ðlÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘� mÞ!
ð‘þmÞ!

s
Pm
‘ ðlÞ:

Since (7) is essentially a Fourier expansion of P in azimuth, we may similarly
expand the intensity in a Fourier cosine series (Chandrasekhar 1960, Chap. 6,
Eq. 91; Thomas and Stamnes 1999, Eq. 6.34):

Iðs; l;/Þ ¼
X2M�1

m¼0

Imðs; lÞ cosm /0 � /ð Þ: ð8Þ

Substitution of this equation, as well as (3) and (7) into the radiative transfer
equation (2) splits it into 2M independent integro-differential equations, one for
each azimuthal intensity component Im:
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l
dImðs; lÞ

ds
¼ Imðs; lÞ � Smðs; lÞ; ðm ¼ 0; 1; . . .; 2M � 1Þ; ð9Þ

where the source function S is given by

Smðs; lÞ ¼
Z1

�1

Dm s; l; l0ð ÞIm s; l0ð Þdl0 þQmðs; lÞ: ð10Þ

The symbols Dm and Qm are defined by

Dm s; l; l0ð Þ ¼ xðsÞ
2

X2M�1

‘¼m

ð2‘þ 1Þg‘ðsÞKm
‘ ðlÞKm

‘ l0ð Þ; ð11Þ

Qmðs; lÞ ¼ Xm
0 ðs; lÞe�s=l0 þ dm0 Q

ðthermalÞðsÞ; ð12Þ

where

Xm
0 ðs; lÞ ¼

xðsÞF0

4p
2� dm0ð Þ

X2M�1

‘¼m

ð�1Þ‘þmð2‘þ 1Þg‘ðsÞKm
‘ ðlÞKm

‘ l0ð Þ; ð13Þ

and dm0 is the Kronecker delta

dm0 ¼ 1 if m ¼ 0;
0 otherwise:

�

The above procedure transforms (2) into a set of equations (9) which do not depend
on the azimuth angle (ϕ). It also uncouples the various Fourier components Im in
(9); that is, Im does not depend on any Im+k for k ≠ 0.

Using the same number of terms (2M) in the Fourier expansion of intensity (8) as
in the Legendre polynomial expansion of the phase function (7) is not accidental.
To explain why, let us consider the case when the number of terms is different:
2M in the expansion of P and 2K in the expansion of I, and assume that
K > M. Substitution of the series expansions into (2) results in an equation con-
taining terms that are proportional to integrals of the type

Z2p
0

X2M�1

m¼0

X2M�1

k¼0

cosmx cos kx dxþ
Z2p
0

X2M�1

m¼0

X2K�1

k¼2M

cosmx cos kx dx:

In this expression the second term is zero because m runs from 0 to 2M − 1 and
k runs from 2M to 2K − 1; that is, for each term k ≠ m, and in this case the integral
is zero. The same argument holds for the case M > K, in which case the remaining
(nonzero) integral has both k and m running from 0 to 2K − 1. As a consequence the
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expansion of the phase function and that of the intensity will have the same number
of terms; and that number is determined by the smaller ofM and K. We note that the
integrals with k ≠ m ≠ 0 in the first term are also zero, which leads to the
uncoupling of the various Fourier components mentioned above.

We note that when the lower boundary of the medium is characterized by
specular reflection, for example, at the bottom of atmosphere in the atmosphere–
ocean system, specular reflection can be included by adding a reflected beam source
term to (12)

Xm
0 ðs; lÞ qs �l0;/0ð Þ e� 2sL�sð Þ=l0 ;

where ρs is the specular reflection function. This term is, however, not included in
the versions of DISORT reviewed here.

3 Discrete Ordinate Approximation—Matrix Formulation

The steps presented so far are common to many approaches used to solve (2). What
sets the discrete ordinate method apart from these, and gives its name, is the next
step. In this step, we approximate the integral in (10) by a quadrature sum. For later
convenience, we choose even-order quadrature angles 2N in the sum so that we
have the same number of polar angle cosines for +μ as for −μ. Substitution of the
integral with a quadrature sum transforms the integro-differential equation (9) into
the following system of ordinary differential equations (cf. Stamnes and Dale 1981;
Stamnes and Swanson 1981)

li
dIm s; lið Þ

ds
¼ Im s; lið Þ � Sm s; lið Þ; ði ¼ �1; . . .;�NÞ: ð14Þ

Each µi is called a “stream”, and (14) represents a “2N—stream approximation”.
Writing (10) in quadratured form, Sm becomes a linear combination of Im values

at all quadrature angles µj (j = ±1, …, ±N),

Sm s; lið Þ ¼
XN
j¼�N
j 6¼0

wjD
m s; li; lj
� �

Im s; lj
� �þQm s; lið Þ: ð15Þ

This approach makes the system coupled in i, but not in m.
In DISORT we draw the µi from a Gaussian quadrature rule for [0, 1] and have

them mirror symmetric (µ−i = −µi, where µi > 0) with weights w−i = wi. This
scheme is the so-called “Double-Gauss” quadrature rule suggested by Sykes (1951)
in which Gaussian quadrature is applied separately to the half-ranges −1 < µ < 0
and 0 < µ < 1. The main advantage is that even-order quadrature points are dis-
tributed symmetrically around |µ| = 0.5 and clustered both toward |µ| = 1 and µ = 0,
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