Bellie Sivakumar

Chaos in Hydrology

Bridging Determinism and Stochasticity

Chaos in Hydrology

Bellie Sivakumar

Chaos in Hydrology

Bridging Determinism and Stochasticity

Bellie Sivakumar School of Civil and Environmental Engineering The University of New South Wales Sydney, NSW Australia

and

Department of Land, Air and Water Resources University of California Davis, CA USA

ISBN 978-90-481-2551-7 DOI 10.1007/978-90-481-2552-4

ISBN 978-90-481-2552-4 (eBook)

Library of Congress Control Number: 2016946619

© Springer Science+Business Media Dordrecht 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Cover illustration: An aerial view of an Iceland river delta. © Justinreznick / Getty Images / iStock

Printed on acid-free paper

This Springer imprint is published by Springer Nature The registered company is Springer Science+Business Media B.V. Dordrecht To my parents, Sarojini and Bellie

Preface

It is possible that you have this book in your hands because of its intriguing name (Chaos) or simply by accident, but I hope that you will continue to read it for its contents and then also recommend it to others.

In common parlance, the word 'chaos,' derived from the Ancient Greek word X $\dot{\alpha}$ o ζ , typically means a state lacking order or predictability; in other words, chaos is synonymous to 'randomness.' In modern dynamic systems science literature, however, the term 'chaos' is used to refer to situations where complex and 'random-looking' behaviors arise from simple deterministic systems with sensitive dependence on initial conditions; therefore, chaos and randomness are quite different. This latter definition has important implications for system modeling and prediction: randomness is irreproducible and unpredictable, while chaos is reproducible and predictable in the short term (due to determinism) but irreproducible and unpredictable only in the long term (due to sensitivity to initial conditions).

The three fundamental properties inherent in the above definition of chaos, namely (a) nonlinear interdependence; (b) hidden order and determinism; and (c) sensitivity to initial conditions, are highly relevant in almost all real systems. In hydrology, for instance: (a) nonlinear interactions are dominant among the components and mechanisms in the hydrologic cycle; (b) determinism and order are prevalent in daily temperature and annual river flow; and (c) contaminant transport in surface and sub-surface waters is highly sensitive to the time (e.g., rainy or dry season) at which the contaminants were released. The first property represents the 'general' nature of hydrologic phenomena, whereas the second and third represent their 'deterministic' and 'stochastic' natures, respectively. Further, despite their complexity and random-looking behavior, hydrologic phenomena may be governed only by a few degrees of freedom, another basic idea of chaos theory; for instance, runoff in a well-developed urban catchment depends essentially on rainfall.

This book is intended to address a fundamental question researchers in hydrology commonly grapple with: is the complex, irregular, and random-looking behavior of hydrologic phenomena simply the outcome of random (or stochastic) system dynamics, or is there some kind of order and determinism hidden behind? In other words, since simple deterministic systems can produce complex and random-looking outputs, as has been shown through numerous synthetic examples, is it reasonable then to ask if hydrologic systems can also belong to this category? A reliable answer to this question is important for proper identification of the type and complexity of hydrologic models to be developed, evaluation of data and computer requirements, determination of maximum predictability horizon for hydrologic processes, and assessment, planning, and management of water resources.

I approach the above question in a very systematic manner, by first discussing the general and specific characteristics of hydrologic systems, next reviewing the tools available at our disposal to study such systems, and then presenting the applications of such tools to various hydrologic systems, processes, and problems. In the end, I argue that chaos theory offers a balanced and middle-ground approach between the deterministic and stochastic extreme paradigms that are prevalent in hydrology (and in almost every other field) and, thus, serves as a bridge connecting the two paradigms.

The book is divided into four major parts, focusing on specific topics that I deem necessary to meet the intended goal. Part A (Hydrologic Systems and Modeling) covers the introduction to hydrology (Chap. 1), characteristics of hydrologic systems (Chap. 2), stochastic time series methods (Chap. 3), and modern nonlinear time series methods (Chap. 4). Part B (Nonlinear Dynamics and Chaos) details the fundamentals of chaos theory (Chap. 5), chaos identification and prediction (Chap. 6), and issues associated with chaos methods (Chap. 7), especially in their applications to real data. Part C (Applications of Chaos Theory in Hydrology) details the applications of chaos theory in hydrology, first with an overview of hydrologic applications (Chap. 8), followed by applications to rainfall (Chap. 9), river flow (Chap. 10), and other hydrologic data (Chap. 11), and then with studies on hydrologic data-related issues (Chap. 12). Part D (A Look Ahead) summarizes the current status (Chap. 13), offers future directions (Chap. 14), and includes a broader discussion of philosophical and pragmatic views of chaos theory in hydrology (Chap. 15).

I must emphasize that this book is about hydrology (and *not* about chaos theory), with focus on the applications of nonlinear dynamic and chaos concepts in hydrologic systems. Consequently, a significant portion of the presentation is devoted to hydrologic system characteristics, time series modeling in hydrology, relevance of nonlinear dynamic and chaos concepts in hydrology, and their applications and advances in hydrology, especially from an engineering perspective. The presentation about the fundamentals of chaos theory, methods for identification and prediction, and relevant issues in their applications is by no means exhaustive, and is deliberately kept to a minimum level that is needed to meet the above goal. However, the amount of literature cited on the theoretical aspects of chaos theory and methodological developments is extensive, which should guide the interested reader to further details. For the benefit of the reader, and especially

for someone new to the field, I also attempt to be descriptive in reviewing the theoretical concepts, detailing the applications, and interpreting the outcomes. All this, I believe, makes this book suitable for both experienced researchers and new ones in hydrology and water resources engineering, and beyond.

Sydney, Australia and Davis, USA

Bellie Sivakumar

Acknowledgments

This book is a result of my research in the area of chaos theory in hydrology over the last two decades, starting from my doctoral degree at the National University of Singapore. During this time, I have benefited from numerous colleagues and friends, funding agencies, research fellowships, and other invited research visits. The list is too long to mention here. Therefore, I will limit the list mostly to those that have directly contributed to the preparation of this book and to a few others that have been a great encouragement and support throughout.

The idea for writing a book on chaos theory in hydrology arose many years ago. However, the actual planning for this book occurred during one of my visits to Inha University, Korea, a few years ago. My sincere and special thanks to Hung Soo Kim (Inha University) and Ronny Berndtsson (Lund University, Sweden) for their support and contributions in planning for this book. They provided useful inputs in identifying the areas and topics to focus in this book and in outlining and organizing the contents. Apart from this book, both Ronny and Hung Soo have and continue to play important roles in advancing my research and career through our research collaborations.

Several colleagues and students provided help in the preparation of the book. Fitsum Woldemeskel offered significant help with the adoption and modification of a number of figures from existing publications, including my own. I am grateful to Fitsum for his time, effort, and generosity, at a critical time in the preparation of the book. Hong-Bo Xie provided Figs. 5.4, 5.6, and 5.7. Jun Niu provided Fig. 4.3. Carlos E. Puente provided Fig. 5.2. Seokhyeon Kim and R. Vignesh helped in the preparation of a few figures, especially in Chap. 12. Peter Young and Jun Niu offered useful inputs in the preparation of Sects. 4.3 and 4.6, respectively. Jun Niu and V. Jothiprakash also offered reviews for the manuscript. My sincere thanks to all of them for their time, effort, and generosity.

Many colleagues and friends have and continue to offer great encouragement and support to my academic, research, and professional activities. Their encouragement and support, especially during the earlier years, played an important role in writing this book. Among these are (in alphabetical order) Ronny Berndtsson, Ji Chen, Eric Gaume, Thomas Harter, A.W. Jayawardena, Kenji Jinno, V. Jothiprakash, Akira Kawamura, Hung Soo Kim, Upmanu Lall, Chih-Young Liaw, Shie-Yui Liong, Rajeshwar Mehrotra, Jun Niu, Jonas Olsson, Kok-Kwang Phoon, Carlos E. Puente, Ashish Sharma, and Wesley W. Wallender. I am grateful to all of them, for their encouragement and support. Ji Chen and Carlos Puente deserve particular mention, especially for the regular contacts, interactions, and discussions, despite the geographic distances. Raj Mehrotra also deserves particular mention for his constant encouragement. My numerous conversations with Raj, especially over coffee(!) almost on a daily basis, have greatly helped me to keep my focus on the book.

Writing a book like this consumes an enormous amount of time. The material for this book has been gathered over many years and constantly updated over time. However, a significant part of the writing has been undertaken only during the past 2–3 years. I would like to thank the Australian Research Council (ARC) for the financial support through the Future Fellowship grant (FT110100328). This support has allowed me the time and flexibility to focus on the book more than it would have been otherwise possible.

My sincere thanks to the entire Springer team for their encouragement and support throughout the preparation of this book. Petra van Steenbergen and Hermine Vloemans deserve special mention, not only for their encouragement and support, but also for their patience and understanding.

Finally, I am grateful to my family, for their constant love, encouragement, and support, without which writing a book would have remained only a dream.

Sydney, Australia and Davis, USA

Bellie Sivakumar

Contents

Part I Hydrologic Systems and Modeling

1	Introd	luction	3
	1.1	Definition of Hydrology	3
	1.2	Hydrologic Cycle	4
	1.3	Scientific Development of Hydrology	6
	1.4	Concept of Hydrologic System	9
	1.5	Hydrologic System Model	11
	1.6	Hydrologic Model Classification	13
		1.6.1 Physical Models.	13
		1.6.2 Abstract Models.	14
		1.6.3 Remarks	15
	1.7	Hydrologic Data and Time Series Modeling	15
	1.8	Physical Basis of Time Series Modeling.	17
	1.9	Scope and Organization of the Book	19
	Refere	ences	21
2	Chara	acteristics of Hydrologic Systems	29
-	2.1	Introduction	29
	2.2	Complexity	30
	2.3	Correlation and Connection	32
	2.4	Trend	34
	2.5	Periodicity, Cyclicity, and Seasonality	34
	2.6	Intermittency	36
	2.7	Stationarity and Nonstationarity	36
	2.8	Linearity and Nonlinearity	38
	2.9	Determinism and Randomness	39
	2.10	Scale, Scaling, and Scale-invariance	41
	2.11	Self-organization and Self-organized Criticality	43
	2.12	Threshold	44
	2.13	Emergence	46
	2.14	Feedback	47

	2.15	Sensitiv	vity to Initial Conditions.	48
	2.16	The Cla	ass of Nonlinear Determinism and Chaos	49
	2.17	Summa	ry	50
	Refere	ences		50
3	Stoch	astic Tim	e Series Methods	63
	3.1	Introduc	ction	63
	3.2	Brief H	istory of Development of Stochastic Methods	65
	3.3	Hydrolo	ogic Time Series and Classification	66
	3.4	Relevan	It Statistical Characteristics and Estimators	67
		3.4.1	Mean	68
		3.4.2	Variance	68
		3.4.3	Coefficient of Variation	69
		3.4.4	Skewness Coefficient	69
		3.4.5	Autocorrelation Function	69
		3.4.6	Power Spectrum.	70
	3.5	Paramet	tric Methods	71
		3.5.1	Autoregressive (AR) Models	71
		3.5.2	Moving Average (MA) Models	73
		3.5.3	Autoregressive Moving Average (ARMA) Models	73
		3.5.4	Gamma Autoregressive (GAR) Models	75
		3.5.5	Periodic Models: PAR, PARMA, and PGAR	
			Models	76
		3.5.6	Extension of AR, ARMA, PAR, and PARMA	
			Models to Multiple Variables	79
		3.5.7	Disaggregation Models	80
		3.5.8	Markov Chain Models	82
		3.5.9	Point Process Models.	84
		3.5.10	Other Models	87
		3.5.11	Remarks	88
	3.6	Nonpara	ametric Methods	88
		3.6.1	Bootstrap and Block Bootstrap	89
		3.6.2	Kernel Density Estimate	90
		3.6.3	k-Nearest Neighbor Resampling (KNNR)	92
		3.6.4	k-Nearest Neighbors with Local Polynomial	
			Regression	94
		3.6.5	Others	95
	3.7	Summa	ry	96
	Refere	ences		96
4	Mode	rn Nonlir	near Time Series Methods	111
	4.1	Introduc	ction	111
	4.2	Nonline	ear Stochastic Methods	112
	4.3	Data-ba	sed Mechanistic Models	113
	4.4	Artificia	al Neural Networks	115

4.5	Support Vector Machines	118
4.6	Wavelets	120
4.7	Evolutionary Computing	123
4.8	Fuzzy Logic	126
4.9	Entropy-based Models	128
4.10	Nonlinear Dynamics and Chaos	129
4.11	Summary	130
Refere	nces	131

Part II Nonlinear Dynamics and Chaos

5	Funda	amentals of Chaos Theory	149
	5.1	Introduction	149
	5.2	Definition of Chaos.	150
	5.3	Brief History of the Development of Chaos Theory	151
	5.4	Dynamical Systems and Stability Analysis	153
	5.5	Attractors	154
	5.6	Bifurcations	156
	5.7	Interaction and Interdependence	157
	5.8	Sensitivity to Initial Conditions.	158
	5.9	State Space and Phase Space	159
	5.10	Fractal and Fractal Dimension	161
	5.11	Examples of Chaotic Dynamic Equations	161
		5.11.1 Logistic Map	162
		5.11.2 Henon Map	164
		5.11.3 Lorenz System	164
		5.11.4 Rössler System	167
	5.12	Summary	168
	Refere	ences	169
6	Chaos	s Identification and Prediction Methods	173
	6.1	Introduction	173
	6.2	Linear Tools and Limitations	175
	6.3	Phase Space Reconstruction	177
	6.4	Correlation Dimension Method	179
		6.4.1 Basic Concept	179
		6.4.2 The Grassberger–Procaccia (G–P) Algorithm	180
		6.4.3 Identification of Number of System Variables	181
		6.4.4 An Example	181
		6.4.5 Improvements to the G–P Algorithm	182
	6.5	False Nearest Neighbor (FNN) Algorithm	183
	6.6	Lyapunov Exponent Method.	184
	6.7	Kolmogorov Entropy Method	186
	0.7	Leanegere, Enderfy medical	100

	6.8	Surroga	te Data Method	187
	6.9	Poincar	é Maps	189
	6.10	Close R	Leturns Plot	189
	6.11	Nonline	ar Prediction	191
		6.11.1	Local Approximation Prediction	191
		6.11.2	Inverse Approach to Chaos Identification	192
	6.12	Summa	ry	193
	Refere	ences	·	194
7	Issues	in Chao	s Identification and Prediction	199
	7.1	Introduc	ction	199
	7.2	Delay T	Time	200
		7.2.1	Delay Time Selection	201
		7.2.2	Delay Window Selection	203
		7.2.3	Remarks.	204
	7.3	Data Si	ze	205
		7.3.1	Effects of Data Size	206
		7.3.2	Minimum Data Size	207
	7.4	Data No	bise	211
		7.4.1	Effects of Noise	212
		7.4.2	Noise Level Determination	214
		7.4.3	Noise Reduction	216
		7.4.4	Coupled Noise Level Determination	
			and Reduction: An Example	219
	7.5	Zeros ir	1 Data	222
	7.6	Other Is	ssues	223
	7.7	Summa	ry	223
	Refere	ences		224

Part III Applications of Chaos Theory in Hydrology

8	Overv	iew	231
	8.1	Introduction	231
	8.2	Early Stage (1980s–1990s)	232
	8.3	Change of Course (2000–2006)	236
	8.4	Looking at Global-scale challenges (2007–)	237
	8.5	Summary	239
	Refere	nces	239
9	Applic	ations to Rainfall Data	245
	9.1	Introduction	245
	9.2	Identification and Prediction	246
		9.2.1 Chaos Analysis of Rainfall: An Example—Göta	
		River Basin	250

	9.3	Scaling and Disaggregation/Downscaling	252
		9.5.1 Chaolie Scale-Invariance. An Example—Lear River Basin	252
		0.3.2 Chaotic Disaggregation: An Example Leaf River	232
		Basin	255
		033 Others	255
	94	Snatial Variability and Classification	260
	9. 4 9.5	Others (Data Size Noise Reduction Zeros)	261
	9.5	Summary	263
	Refere	nces	263
10	Annlic	pations to River Flow Data	267
10	10.1	Introduction	267
	10.1	Identification and Prediction	267
	10.2	10.2.1 Choos Analysis in Diver Flow:	200
		An Example—Coaracy Nunes/Araguari	
		River Basin	272
	10.3	Scaling and Disaggregation	272
	10.5	10.3.1 Chaos and Scaling	276
		10.3.2 Chaotic Disaggregation of River Flow	270
	10.4	Spatial Variability and Classification	285
	10.4		205
	10.5	Summary	202
	Refere	nces.	292
11	A	ertiene te Other Helerlerie Dete	207
11	Applic	ations to Other Hydrologic Data	297
	11.1		297
	11.2		298
	11.3		301
	11.4	Sediment Transport	302
	11.5		310
		11.5.1 Solute Transport	311
	11.0	11.5.2 Arsenic Contamination	315
	11.0	Others	310
	11./ D.f.	Summary	317
	Refere	nces	318
12	Studie	s on Hydrologic Data Issues	321
	12.1	Introduction	321
	12.2	Delay Time	322
	12.3	Data Size	325
	12.4	Data Noise	329
	12.5	Zeros in Data	332
	12.6	Others	335
	12.7	Summary	336
	Refere	nces	336

Part IV A Look Ahead

13	Curren	nt Status	343
	13.1	Introduction	343
	13.2	Reliable Identification	344
	13.3	Encouraging Predictions	346
	13.4	Successful Extensions	347
	13.5	Limitations and Concerns	349
	13.6	Discussions and Debates	351
	13.7	Summary	352
	Refere	nces	352
14	The F	uture	357
	14.1	Introduction	357
	14.2	Parameter Estimation	358
	14.3	Model Simplification.	359
	14.4	Integration of Concepts	362
	14.5	Catchment Classification Framework	363
	14.6	Multi-variable Analysis	365
	14.7	Reconstruction of System Equations	366
	14.8	Downscaling of Global Climate Model Outputs	367
	14.9	Linking Theory, Data, and Physics	368
	14.10	Summary	369
	Refere	nces	370
15	Final 7	Thoughts: Philosophy and Pragmatism	375
	15.1	Introduction	375
	15.2	Philosophy	376
	15.3	Pragmatism	378
	15.4	Closing Remarks	380
	Refere	nces	381
Ind	ex		383

About the Author

Bellie Sivakumar received his Bachelor degree in Civil Engineering from Bharathiar University (India) in 1992, Master degree in Hydrology and Water Resources Engineering from Anna University (India) in 1994, and Ph.D. degree in Civil Engineering from the National University of Singapore in 1999. After a one-year postdoctoral research at the University of Arizona, Tucson, USA, he joined University of California, Davis (UCDavis). At UCDavis, he held the positions of postgraduate researcher and Associate Project Scientist, and now holds an Associate position. He joined the University of New South Wales, Sydney, Australia in 2010, where he is currently an Associate Professor.

Bellie Sivakumar's research interests are in the field of hydrology and water resources, with particular emphasis on nonlinear dynamics, chaos, scaling, and complex networks. He has authored one book and more than 130 peer-reviewed journal papers. He has been an associate editor for several journals, including Hydrological Sciences Journal, Journal of Hydrology, Journal of Hydrologic Engineering, and Stochastic Environmental Research and Risk Assessment. He has received a number of fellowships throughout his career, including the ICSC World Laboratory Fellowship, Japan Society for the Promotion of Science Fellowship, Korea Science and Technology Societies' Brainpool Fellowship, and Australian Research Council Future Fellowship.

List of Figures

Figure 1.1	Schematic representation of hydrologic cycle (source US	
	Geological Survey, http://water.usgs.gov/edu/watercycle.	
	html; accessed May 5, 2015)	5
Figure 1.2	An example of a hydrologic time series: monthly rainfall	
	data	16
Figure 4.1	Structure of a typical multi-layer perceptron with one	
-	hidden layer (source Sivakumar et al. (2002b))	116
Figure 4.2	Structure of a typical node in the hidden layer or output	
-	layer (source Sivakumar et al. (2002b))	116
Figure 4.3	Illustration of the wavelet transform process of	
-	a Mexican hat mother wavelet; and $\hat{\mathbf{b}}$ its daughter	
	wavelet for c annual precipitation of the whole Pearl	
	River basin of South China, resulting in d wavelet	
	coefficient map (source Jun Niu, personal	
	communication)	122
Figure 4.4	Schematic representation of flow of information	
	in a typical evolutionary computing algorithm	124
Figure 4.5	Components of a fuzzy rule system	
	(source Hundecha et al. (2001))	126
Figure 5.1	Attractors: a fixed point; b limit cycle;	
	and c strange (<i>source</i> Kantz and Schreiber (2004))	155
Figure 5.2	Bifurcation diagram (source Carlos E. Puente,	
	personal communication)	157
Figure 5.3	Streamflow dynamics represented as: a state space	
	(rainfall and temperature); and b phase space	160
Figure 5.4	Logistic map: a time series generated using $x_0 = 0.97$	
	and $k = 2.827$ (top), $x_0 = 0.97$ and $k = 3.50$ (middle),	
	and $x_0 = 0.90$ and $k = 3.98$ (<i>bottom</i>); and b phase space	
	diagram (source Hong-Bo Xie, personal	
	communication)	163

Figure 5.5 Figure 5.6	Henon map: a time series; and b phase space diagram \ldots . Lorenz system: a time series (first component); and b phase space diagram (source Hong Po Xia	165
Figure 5.7	and b phase space diagram (source Hong-bo Are, personal communication) Rössler system: (<i>left</i>) time series: and (<i>right</i>) phase space	166
	diagram (<i>source</i> Hong-Bo Xie, personal communication)	168
Figure 6.1	Stochastic system (<i>left</i>) versus chaotic system (<i>right</i>): a , b time series; c , d autocorrelation function;	
	and e , I power spectrum (source Sivelumer et al. (2007))	176
Figure 6.2	Stochastic system (<i>left</i>) versus chaotic system (<i>right</i>): phase space diagram (<i>source</i> Sivakumar et al. (2007))	170
Figure 6.3	Stochastic system (<i>left</i>) versus chaotic system (<i>right</i>): correlation dimension (<i>source</i> Siyakumar et al. (2007))	182
Figure 6.4	Lyapunov exponent computation: Wolf et al. (1985) algorithm (<i>source</i> Vastano and Kostelich	102
	(1986))	185
Figure 7.1	Time series plot of a stochastic series (artificial random series); and b chaotic series (artificial Henon map)	
	(<i>source</i> Sivakumar (2005a))	208
Figure 7.2	Correlation dimension results for stochastic series with a 100 points; b 200 points; c 300 points; d 500 points; e 1000 points; and f 5000 points. Embedding dimension m = 1-10 (from <i>left</i> to <i>right</i>) (<i>source</i> Sivakumar (2005a))	209
Figure 7.3	Correlation dimension results for chaotic series with a 100 points; b 200 points; c 300 points; d 500 points; e 1000 points; and f 5000 points. Embedding dimension m = 1-10 (from <i>left</i> to <i>right</i>) (<i>source</i> Sivakumar (2005a))	210
Figure 7.4	Phase space plots for Henon data: a noise-free; b 8 % noisy; c 4.1 % noise-reduced; d 8.2 % noise-reduced; and e 12.3 % noise-reduced (<i>source</i> Sivakumar et al. (1999b))	220
Figure 7.5	Local slopes versus Log r for Henon data: a noise-free; b 8 % noisy; c 4.1 % noise-reduced; d 8.2 % noise-reduced; and e 12.3 % noise-reduced	220
Figure 7.6	(<i>source</i> Sivakumar et al. (1999b)) Relationship between correlation exponent and embedding dimension for noise-free, 8 % noisy,	221
	and noise-reduced Henon data (source Sivakumar et al. (1999b))	222

Figure 9.1	Chaos analysis of monthly rainfall from Göta River basin: a time series; b phase space; c Log C(r) versus Log r; d relationship between correlation exponent and embedding dimension; e relationship between correlation coefficient and embedding dimension; and f comparison between time series plot of predicted and observed values (source Singleumer et al. (2000, 2001a))	251
Figure 9.2	(<i>source</i> Sivakumar et al. (2000, 2001a)) Correlation dimension analysis of rainfall data at different temporal scales from the Leaf River basin: a time series of daily data; b Log C(r) versus Log r plot for daily data; c correlation exponent versus embedding dimension for daily data; and d correlation dimension versus embedding dimension for daily, 2-, 4-,	251
Figure 9.3	and 8-day data (<i>source</i> Sivakumar (2001a))	254
Figure 9.4	 scales (<i>source</i> Sivakumar et al. (2001b)) Correlation dimension analysis of distributions of weights of rainfall data in the Leaf River basin: a time series of weights between 12- and 6-h resolutions; b Log C(r) versus Log r for a; c correlation exponent versus embedding dimension for a; and d correlation exponent versus embedding dimension for distributions of weights of rainfall data between different successively doubled resolutions (<i>source</i> Sivakumar et al. (2001b)) 	255
Figure 9.5	Chaotic disaggregation of rainfall data from 12-h resolution to 6-h resolution in the Leaf River basin: a relationship between correlation coefficient and number of neighbors ($m_{opt} = 4$); b relationship between correlation coefficient and embedding dimension ($k'_{opt} = 10$); c comparison between time series of modeled and observed rainfall values ($m_{opt} = 4$; $k'_{opt} = 10$); and d scatterplot of modeled and observed rainfall values ($m_{opt} = 4$; $k'_{opt} = 10$) (source Sivalumar et al. (2001b))	250
Figure 9.6	(<i>source</i> Sivakumar et al. (2001b))	259
	dimension (source Sivakumar et al. (2014))	262

Figure 10.1	Correlation dimension analysis of monthly runoff from	
	Coaracy Nunes/Araguari River basin in Brazil: a time	
	series; b phase space; c Log C(r) versus Log r;	
	and d relationship between correlation exponent	
	and embedding dimension	
	(<i>source</i> Sivakumar et al. (2001b, 2005))	272
Figure 10.2	Nonlinear local approximation prediction analysis	
	of monthly runoff from Coaracy Nunes/Araguari River	
	basin in Brazil: a correlation coefficient; b RMSE;	
	and c coefficient of efficiency	
	(source Sivakumar et al. (2001b))	274
Figure 10.3	Nonlinear local approximation prediction analysis	
C	of monthly runoff from Coaracy Nunes/Araguari River	
	basin in Brazil: a time series comparison	
	(source Sivakumar et al. (2002c)); and b scatter plot	
	(source Sivakumar et al. (2001b))	275
Figure 10.4	Nonlinear local approximation prediction analysis	
U	of monthly runoff from Coaracy Nunes/Araguari River	
	basin in Brazil for different lead times: a correlation	
	coefficient: b RMSE: and c coefficient of efficiency	
	(source Sivakumar et al. (2001b))	277
Figure 10.5	Correlation dimension of streamflow at different	
8	temporal scales: a Kentucky River, Kentucky, USA:	
	b Merced River, California, USA: and c Stillaguamish	
	River, Washington State, USA (<i>source</i> Regonda et al.	
	(2004))	278
Figure 10.6	Chaotic disaggregation of streamflow from 2-day to daily	
118410 1010	scale in the Mississippi River basin at St. Louis.	
	Missouri USA—effect of number of neighbors	
	a relationship between correlation coefficient and	
	number of neighbors: and b relationship between root	
	mean square error and number of neighbors	
	(source Sivakumar et al. (2004))	282
Figure 10.7	Chaotic disaggregation of streamflow between	202
riguie 10.7	successively doubled resolutions in the Mississinni	
	River basin at St. Louis. Missouri, USA: a 2-day to daily	
	(m - 3, k' - 3): h 4-day to 2-day $(m - 3, k' - 5)$: c 8-day	
	(m - 3, K - 3), b + day (0 2 - day (m - 3, K - 3), c - day to 4 day (m - 2, k' - 50); and d 16 day to 8 day	
	(m - 3; k' - 20) (source Siyahumar et al. (2004))	283
Figure 10.8	$(m = 5, \kappa = 20)$ (source sivakullar et al. (2004)) Western United States and locations of 117 streamflow	205
1 iguit 10.0	stations (source Sivalumar and Singh (2012))	286
	stations (source strakullar and siligh (2012))	200

List of Figures

Figure 10.9	Phase space diagram: a Station #10032000; b Station #13317000; c Station 11315000; d Station #11381500; e Station #12093500; f Station #14185000; g Station #8408500; and h Station #11124500 (<i>source</i> Sivakumar	•
Figure 10.10	and Singh (2012)) Station #10032000; b Station #13317000; c Station 11315000; d Station #11381500; e Station #12093500; f Station #14185000; g Station #8408500; and h Station #11124500 (<i>source</i> Sivakumar	288
Figure 10.11	and Singh (2012)) Grouping of streamflow stations according to correlation dimension (d) estimates: low dimensional ($d \le 3$); medium dimensional ($3 < d \le 6$); high dimensional ($d \ge 6.0$); and unidentifiable (d not identifiable)	290
Figure 11.1	 (source Sivakumar and Singh (2012)). Correlation dimension analysis of monthly runoff coefficient from Göta River basin: a time series; b phase space; c log C(r) versus Log r; and d relationship between correlation exponent and embedding dimension 	291
Figure 11.2	(<i>source</i> Sivakumar et al. (2000, 2001a)) Nonlinear local approximation prediction analysis of monthly runoff coefficient from Göta River basin: a relationship between correlation coefficient and embedding dimension; and b comparison between time series plots of predicted and observed values	299
Figure 11.3	(<i>source</i> Sivakumar et al. (2000))	300
Figure 11.4	Phase space plots for sediment data from the Mississippi River basin at St. Louis, Missouri, USA: a discharge; b suspended sediment concentration; and c suspended sediment load (<i>source</i> Sivakumar and Wallender (2005))	303
Figure 11.5	Correlation dimension results for sediment data from the Mississippi River basin at St. Louis, Missouri, USA: a , b discharge; c , d suspended sediment concentration and e , f suspended sediment load (<i>source</i> Sivakumar and Jayawardena (2002))	305

Figure 11.6	One-day ahead prediction accuracy versus embedding dimension for daily discharge, suspended sediment concentration, and suspended sediment load in the Mississippi River basin at St. Louis, Missouri, USA:	
Figure 11.7	(source Sivakumar and Wallender (2005))	306
E'	 a, b discharge; c, d suspended sediment concentration; and e, f suspended sediment load (<i>source</i> Sivakumar and Wallender (2005))	308
Figure 11.8	suspended sediment concentration, and suspended sediment load in the Mississippi River basin at St. Louis, Missouri, USA: a correlation coefficient; and b coefficient of efficiency. Embedding dimension	
Figure 11.9	(<i>m</i>) = 3 (<i>source</i> Sivakumar and Wallender (2005)) Correlation dimension analysis of solute transport process in two facies medium (sand 20 %, clay 80 %) with anisotropy condition 2:1 and 50:1: a time series	309
Figure 11.10	plot; b phase space diagram; c Log C(r) versus Log r plot; and d correlation exponent versus embedding dimension (<i>source</i> Sivakumar et al. (2005)) Correlation dimension analysis of solute transport process in three facies medium (sand 21.26 %, clay 53.28 %, loam 25.46 %) with anisotropy condition 2:1 and 50:1 and field entropy: a time series plot; b phase	311
Figure 11.11	space diagram; c Log C(r) versus Log r plot; and d correlation exponent versus embedding dimension (<i>source</i> Sivakumar et al. (2005))	312
Figure 11.12	(<i>source</i> Sivakumar et al. (2005))	313
Figure 11.13	sand 20 %, clay 80 % (<i>source</i> Sivakumar et al. (2005)) Effect of entropy on solute transport behavior in three facies medium (sand 21.26 %, clay 53.28 %, loam 25.46 %) with anisotropy condition 5:1 and 300:1	313
	(source Sivakumar et al. (2005))	314

List of Figures

			٠	٠
х	х	V	1	1

Figure 11.14	Relationship between correlation exponent	
	and embedding dimension for three different regions:	
	a region A (whole of Bangladesh) focal well A-1;	
	b region B (Holocene) focal well B-1; and c region C	
	(Pleistocene) focal well C-1 (source Hossain and	
	Sivakumar (2006))	316
Figure 12.1	Relationship between percentage of false nearest	
	neighbors and embedding dimension for monthly	
	streamflow time series from the Quinebaug River at	
	Jewett City (USGS Station #1127000) in Connecticut,	
	USA: effect of delay time	324
Figure 12.2	False nearest neighbor dimensions for monthly	
	streamflow time series from 639 stations in the United	
	States: a delay time $\tau = 1$; b delay time $\tau = 3$; c delay time	
	$\tau = 12$; d delay time $\tau = ACF$ value; and e delay time	
	τ = AMI value (<i>source</i> Vignesh et al. (2015))	325
Figure 12.3	Monthly runoff time series from Göta River basin,	
	Sweden (source Sivakumar (2005a))	327
Figure 12.4	Correlation dimension results for runoff time series from	
	Göta River basin, Sweden: a 120 points; b 240 points;	
	c 360 points; d 600 points; e 1080 points; and f 1560	
	points. Embedding dimension $m = 1$ to 10 (from <i>left</i> to	
	right) (source Sivakumar (2005a))	328
Figure 12.5	Noise reduction results for daily rainfall data from	
C	Station 05: a relationship between noise level removed	
	and number of iterations for different neighborhood sizes	
	(r) with 4.6 % noise level (estimated) to be removed; and	
	b relationship between correlation coefficient and	
	embedding dimension for original and 4.6 %	
	noise-reduced rainfall data with different neighborhood	
	sizes; and \mathbf{c} relationship between correlation coefficient	
	and embedding dimension for original and different	
	levels of noise-reduced rainfall data (source Sivakumar	
	et al. (1999c))	330
Figure 12.6	Correlation dimension results for rainfall data of different	
C	resolutions in the Leaf River basin, Mississippi, USA:	
	a data with zeros; and b data without zeros (<i>source</i>)	
	Sivakumar (2005b))	334

List of Tables

Table 8.1	A short list of chaos studies in hydrology	233
Table 9.1	Statistics and correlation dimension results for rainfall data	
	at different temporal scales in the Leaf River basin,	
	Mississippi, USA (source Sivakumar (2001a))	253
Table 9.2	Characteristics and correlation dimension results	
	for rainfall weights between different resolutions in the	
	Leaf River basin, Mississippi, USA	
	(source Sivakumar et al. (2001b))	256
Table 9.3	Results of rainfall disaggregation in the Leaf River basin,	
	Mississippi, USA (<i>source</i> Sivakumar et al. (2001b))	260
Table 10.1	Nonlinear local approximation prediction results	
	for monthly runoff data from the Coaracy Nunes/Araguari	
	River in Brazil (<i>source</i> Sivakumar et al. (2001b))	277
Table 10.2	Statistics of streamflow data at different temporal	
	resolutions in the Mississippi River basin at St. Louis,	
	Missouri, USA (unit = $m^3 s^{-1} d_s$, where d_s is the scale	
	of observations in days) (<i>source</i> Sivakumar et al. (2004))	281
Table 10.3a	2-day to daily streamflow disaggregation results	
	in the Mississippi River basin at St. Louis, Missouri, USA	
	(source Sivakumar et al. (2004))	283
Table 10.3b	4-day to 2-day streamflow disaggregation results	
	in the Mississippi River basin at St. Louis, Missouri, USA	
	(source Sivakumar et al. (2004))	284
Table 10.3c	8-day to 4-day streamflow disaggregation results	
	in the Mississippi River basin at St. Louis, Missouri, USA	
	(source Sivakumar et al. (2004))	284
Table 10.3d	16-day to 8-day streamflow disaggregation results	
	in the Mississippi River basin at St. Louis, Missouri, USA	
	(source Sivakumar et al. (2004))	284
Table 10.4	Overall statistics of streamflow data at 117 stations	
	in the western United States	287

Table 11.1	Statistics of daily discharge, suspended sediment	
	concentration, and suspended sediment load data in the	
	Mississippi River basin at St. Louis, Missouri, USA	
	(source Sivakumar and Wallender (2005))	304
Table 11.2	One-day ahead $(T = 1)$ predictions for discharge,	
	suspended sediment concentration, and suspended	
	sediment load from the Mississippi River basin at St. Louis,	
	Missouri, USA (source Sivakumar and Wallender	
	(2005))	307
Table 11.3	Predictions for different lead times for discharge, suspended sediment concentration, and suspended sediment load from the Mississippi River at St. Louis,	
	Missouri, USA ($m = 3$ in all cases) (<i>source</i> Sivakumar and Wallender (2005))	309

Part I Hydrologic Systems and Modeling

Chapter 1 Introduction

Abstract In simple terms, hydrology is the study of the waters of the Earth, including their occurrence, distribution, and movement. The constant circulation of water and its change in physical state is called the *hydrologic cycle*. The study of water started at least a few thousands years ago, but the modern scientific approach to the hydrologic cycle started in the seventeenth century. Since then, hydrology has witnessed a tremendous growth, especially over the last century, with significant advances in computational power and hydrologic data measurements. This chapter presents a general and introductory account of hydrology. First, the concept of the hydrologic cycle is described. Next, a brief history of the scientific development of hydrology is presented. Then, the concept of hydrologic system is explained, followed by a description of the hydrologic system model and model classification. Finally, the role of hydrologic data and time series modeling as well as the physical basis of time series modeling are highlighted.

1.1 Definition of Hydrology

The name 'hydrology' was derived from the Greek words 'hydro' (water) and 'logos' (study), and roughly translates into 'study of water.' Different textbooks may offer different definitions, but all of them generally reflect the following working definition:

Hydrology is the science that treats the waters of the Earth, their occurrence, circulation and distribution, their chemical and physical properties, and their interactions with their environments, including their relations to living things.

Within hydrology, various sub-fields exist. In keeping with the essential ingredients of the above definition, these sub-fields may depend on the region (e.g. over the land surface, below the land surface, mountains, urban areas) or property (e.g. physical, chemical, isotope) or interactions (e.g. atmosphere, environment, ecosystem) or other aspects (e.g. tools used for studies) of water. There may also be significant overlaps between two or more sub-fields, and even inter-change of terminologies depending on the emphasis for water in studies of the

[©] Springer Science+Business Media Dordrecht 2017

B. Sivakumar, Chaos in Hydrology, DOI 10.1007/978-90-481-2552-4_1

Earth-ocean-atmospheric system. Some of the popular sub-fields within hydrology are:

- Surface hydrology—study of hydrologic processes that operate at or near the Earth's surface
- Sub-surface hydrology (or Groundwater hydrology or Hydrogeology)—study of the presence and movement of water below the Earth's surface
- Vadose zone hydrology—study of the movement of water between the top of the Earth's surface and the groundwater table
- Hydrometeorology—study of the transfer of water and energy between land and water body surfaces and the lower atmosphere
- Hydroclimatology—study of the interactions between climate processes and hydrologic processes
- Paleohydrology—study of the movement of water and sediment as they existed during previous periods of the Earth's history
- Snow hydrology-study of the formation, movement, and effects of snow
- Urban hydrology—study of the hydrologic processes in urban areas
- Physical hydrology-study of the physical mechanisms of hydrologic processes
- Chemical hydrology—study of the chemical characteristics of water
- Isotope hydrology—study of the isotopic signatures of water
- Ecohydrology (or Hydroecology)—study of the interactions between hydrologic processes and organisms
- Hydroinformatics—the adaptation of information technology to hydrology and water resources applications.

1.2 Hydrologic Cycle

The constant movement of water and its change in physical state on the Earth (in ocean, land, and atmosphere) is called the *hydrologic cycle* or, quite simply, *water cycle*. The hydrologic cycle is the central focus of hydrology. A schematic representation of the hydrologic cycle is shown in Fig. 1.1. A description of the hydrologic cycle can begin at any point and return to that same point, with a number of processes continuously occurring during the cycle; however, oceans are usually considered as the origin. In addition, depending upon the scope or focus of the study, certain processes (or components) of the hydrologic cycle may assume far more importance over the others and, hence, such may be described in far more detail. In what follows, the hydrologic cycle is described with oceans as the origin and processes on and above/below the land surface assuming more importance. For further details, including other descriptions of the hydrologic cycle, the reader is referred to Freeze and Cherry (1979), Driscoll (1986), Chahine (1992), Maidment (1993), and Horden (1998), among others.

Water in the ocean evaporates and becomes atmospheric water vapor (i.e. moisture). Some of this water vapor is transported and lifted in the atmosphere until

Fig. 1.1 Schematic representation of hydrologic cycle (*source* US Geological Survey, http://water.usgs.gov/edu/watercycle.html; accessed May 5, 2015)

it condenses and falls as precipitation, which sometimes evaporates or gets intercepted by vegetation before it can reach the land surface. Of the water that reaches the land surface by precipitation, some may evaporate where it falls, some may infiltrate the soil, and some may run off overland to evaporate or infiltrate elsewhere or to enter streams. The water that infiltrates the ground may evaporate, be absorbed by plant roots, and then transpired by the plants, or percolate downward to groundwater reservoirs (also called *aquifers*). Water that enters groundwater reservoirs may either move laterally until it is close enough to the surface to be subject to evaporation or transpiration, reach the land surface and form springs, seeps or lakes, or flow directly into streams or into the ocean. Stream water can accumulate in lakes and surface reservoirs, evaporate or be transpired by riparian vegetation, seep downward into groundwater reservoirs or flow back into the ocean, where the cycle begins again.

Although the concept of the hydrologic cycle is simple, the phenomenon is enormously complex and intricate. It is not just one large cycle but rather composed of many inter-related cycles of continental, regional, and local extent. Each phase of the hydrologic cycle also provides opportunities for temporary accumulation and storage of water, such as snow and ice on the land surface, moisture in the soil and groundwater reservoirs, water in ponds, lakes, and surface reservoirs, and vapor in the atmosphere. Although the total volume of water in the global hydrologic cycle