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Preface

It is possible that you have this book in your hands because of its intriguing name
(Chaos) or simply by accident, but I hope that you will continue to read it for its
contents and then also recommend it to others.

In common parlance, the word ‘chaos,” derived from the Ancient Greek word
Xéoc, typically means a state lacking order or predictability; in other words, chaos
is synonymous to ‘randomness.” In modern dynamic systems science literature,
however, the term ‘chaos’ is used to refer to situations where complex and
‘random-looking’ behaviors arise from simple deterministic systems with sensitive
dependence on initial conditions; therefore, chaos and randomness are quite dif-
ferent. This latter definition has important implications for system modeling and
prediction: randomness is irreproducible and unpredictable, while chaos is repro-
ducible and predictable in the short term (due to determinism) but irreproducible
and unpredictable only in the long term (due to sensitivity to initial conditions).

The three fundamental properties inherent in the above definition of chaos,
namely (a) nonlinear interdependence; (b) hidden order and determinism; and
(c) sensitivity to initial conditions, are highly relevant in almost all real systems. In
hydrology, for instance: (a) nonlinear interactions are dominant among the com-
ponents and mechanisms in the hydrologic cycle; (b) determinism and order are
prevalent in daily temperature and annual river flow; and (c) contaminant transport
in surface and sub-surface waters is highly sensitive to the time (e.g., rainy or dry
season) at which the contaminants were released. The first property represents the
‘general’ nature of hydrologic phenomena, whereas the second and third represent
their ‘deterministic’ and ‘stochastic’ natures, respectively. Further, despite their
complexity and random-looking behavior, hydrologic phenomena may be governed
only by a few degrees of freedom, another basic idea of chaos theory; for instance,
runoff in a well-developed urban catchment depends essentially on rainfall.

This book is intended to address a fundamental question researchers in
hydrology commonly grapple with: is the complex, irregular, and random-looking
behavior of hydrologic phenomena simply the outcome of random (or stochastic)
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viii Preface

system dynamics, or is there some kind of order and determinism hidden behind? In
other words, since simple deterministic systems can produce complex and
random-looking outputs, as has been shown through numerous synthetic examples,
is it reasonable then to ask if hydrologic systems can also belong to this category? A
reliable answer to this question is important for proper identification of the type and
complexity of hydrologic models to be developed, evaluation of data and computer
requirements, determination of maximum predictability horizon for hydrologic
processes, and assessment, planning, and management of water resources.

I approach the above question in a very systematic manner, by first discussing
the general and specific characteristics of hydrologic systems, next reviewing the
tools available at our disposal to study such systems, and then presenting the
applications of such tools to various hydrologic systems, processes, and problems.
In the end, I argue that chaos theory offers a balanced and middle-ground approach
between the deterministic and stochastic extreme paradigms that are prevalent in
hydrology (and in almost every other field) and, thus, serves as a bridge connecting
the two paradigms.

The book is divided into four major parts, focusing on specific topics that I deem
necessary to meet the intended goal. Part A (Hydrologic Systems and Modeling)
covers the introduction to hydrology (Chap. 1), characteristics of hydrologic sys-
tems (Chap. 2), stochastic time series methods (Chap. 3), and modern nonlinear
time series methods (Chap. 4). Part B (Nonlinear Dynamics and Chaos) details the
fundamentals of chaos theory (Chap. 5), chaos identification and prediction (Chap.
6), and issues associated with chaos methods (Chap. 7), especially in their appli-
cations to real data. Part C (Applications of Chaos Theory in Hydrology) details the
applications of chaos theory in hydrology, first with an overview of hydrologic
applications (Chap. 8), followed by applications to rainfall (Chap. 9), river flow
(Chap. 10), and other hydrologic data (Chap. 11), and then with studies on
hydrologic data-related issues (Chap. 12). Part D (A Look Ahead) summarizes the
current status (Chap. 13), offers future directions (Chap. 14), and includes a broader
discussion of philosophical and pragmatic views of chaos theory in hydrology
(Chap. 15).

I must emphasize that this book is about hydrology (and not about chaos theory),
with focus on the applications of nonlinear dynamic and chaos concepts in
hydrologic systems. Consequently, a significant portion of the presentation is
devoted to hydrologic system characteristics, time series modeling in hydrology,
relevance of nonlinear dynamic and chaos concepts in hydrology, and their
applications and advances in hydrology, especially from an engineering perspec-
tive. The presentation about the fundamentals of chaos theory, methods for iden-
tification and prediction, and relevant issues in their applications is by no means
exhaustive, and is deliberately kept to a minimum level that is needed to meet the
above goal. However, the amount of literature cited on the theoretical aspects of
chaos theory and methodological developments is extensive, which should guide
the interested reader to further details. For the benefit of the reader, and especially
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for someone new to the field, I also attempt to be descriptive in reviewing the
theoretical concepts, detailing the applications, and interpreting the outcomes. All
this, I believe, makes this book suitable for both experienced researchers and new
ones in hydrology and water resources engineering, and beyond.

Sydney, Australia and Davis, USA Bellie Sivakumar
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Chapter 1
Introduction

Abstract In simple terms, hydrology is the study of the waters of the Earth,
including their occurrence, distribution, and movement. The constant circulation of
water and its change in physical state is called the hydrologic cycle. The study of
water started at least a few thousands years ago, but the modern scientific approach
to the hydrologic cycle started in the seventeenth century. Since then, hydrology
has witnessed a tremendous growth, especially over the last century, with signifi-
cant advances in computational power and hydrologic data measurements. This
chapter presents a general and introductory account of hydrology. First, the concept
of the hydrologic cycle is described. Next, a brief history of the scientific devel-
opment of hydrology is presented. Then, the concept of hydrologic system is
explained, followed by a description of the hydrologic system model and model
classification. Finally, the role of hydrologic data and time series modeling as well
as the physical basis of time series modeling are highlighted.

1.1 Definition of Hydrology

The name ‘hydrology’ was derived from the Greek words ‘hydro’ (water) and
‘logos’ (study), and roughly translates into ‘study of water.” Different textbooks
may offer different definitions, but all of them generally reflect the following
working definition:

Hydrology is the science that treats the waters of the Earth, their occurrence, circulation and
distribution, their chemical and physical properties, and their interactions with their envi-
ronments, including their relations to living things.

Within hydrology, various sub-fields exist. In keeping with the essential ingre-
dients of the above definition, these sub-fields may depend on the region (e.g. over
the land surface, below the land surface, mountains, urban areas) or property (e.g.
physical, chemical, isotope) or interactions (e.g. atmosphere, environment,
ecosystem) or other aspects (e.g. tools used for studies) of water. There may also be
significant overlaps between two or more sub-fields, and even inter-change of
terminologies depending on the emphasis for water in studies of the
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Earth-ocean-atmospheric system. Some of the popular sub-fields within hydrology
are:

e Surface hydrology—study of hydrologic processes that operate at or near the
Earth’s surface

e Sub-surface hydrology (or Groundwater hydrology or Hydrogeology)—study of
the presence and movement of water below the Earth’s surface

e Vadose zone hydrology—study of the movement of water between the top of
the Earth’s surface and the groundwater table

e Hydrometeorology—study of the transfer of water and energy between land and
water body surfaces and the lower atmosphere

e Hydroclimatology—study of the interactions between climate processes and
hydrologic processes

e Paleohydrology—study of the movement of water and sediment as they existed

during previous periods of the Earth’s history

Snow hydrology—study of the formation, movement, and effects of snow

Urban hydrology—study of the hydrologic processes in urban areas

Physical hydrology—study of the physical mechanisms of hydrologic processes

Chemical hydrology—study of the chemical characteristics of water

Isotope hydrology—study of the isotopic signatures of water

Ecohydrology (or Hydroecology)—study of the interactions between hydrologic

processes and organisms

e Hydroinformatics—the adaptation of information technology to hydrology and
water resources applications.

1.2 Hydrologic Cycle

The constant movement of water and its change in physical state on the Earth (in
ocean, land, and atmosphere) is called the hydrologic cycle or, quite simply, water
cycle. The hydrologic cycle is the central focus of hydrology. A schematic repre-
sentation of the hydrologic cycle is shown in Fig. 1.1. A description of the
hydrologic cycle can begin at any point and return to that same point, with a
number of processes continuously occurring during the cycle; however, oceans are
usually considered as the origin. In addition, depending upon the scope or focus of
the study, certain processes (or components) of the hydrologic cycle may assume
far more importance over the others and, hence, such may be described in far more
detail. In what follows, the hydrologic cycle is described with oceans as the origin
and processes on and above/below the land surface assuming more importance. For
further details, including other descriptions of the hydrologic cycle, the reader is
referred to Freeze and Cherry (1979), Driscoll (1986), Chahine (1992), Maidment
(1993), and Horden (1998), among others.

Water in the ocean evaporates and becomes atmospheric water vapor (i.e.
moisture). Some of this water vapor is transported and lifted in the atmosphere until
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Fig. 1.1 Schematic representation of hydrologic cycle (source US Geological Survey, http://
water.usgs.gov/edu/watercycle.html; accessed May 5, 2015)

it condenses and falls as precipitation, which sometimes evaporates or gets inter-
cepted by vegetation before it can reach the land surface. Of the water that reaches
the land surface by precipitation, some may evaporate where it falls, some may
infiltrate the soil, and some may run off overland to evaporate or infiltrate elsewhere
or to enter streams. The water that infiltrates the ground may evaporate, be absorbed
by plant roots, and then transpired by the plants, or percolate downward to
groundwater reservoirs (also called aquifers). Water that enters groundwater
reservoirs may either move laterally until it is close enough to the surface to be
subject to evaporation or transpiration, reach the land surface and form springs,
seeps or lakes, or flow directly into streams or into the ocean. Stream water can
accumulate in lakes and surface reservoirs, evaporate or be transpired by riparian
vegetation, seep downward into groundwater reservoirs or flow back into the ocean,
where the cycle begins again.

Although the concept of the hydrologic cycle is simple, the phenomenon is
enormously complex and intricate. It is not just one large cycle but rather composed
of many inter-related cycles of continental, regional, and local extent. Each phase of
the hydrologic cycle also provides opportunities for temporary accumulation and
storage of water, such as snow and ice on the land surface, moisture in the soil and
groundwater reservoirs, water in ponds, lakes, and surface reservoirs, and vapor in
the atmosphere. Although the total volume of water in the global hydrologic cycle
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