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Preface

The goal of the CORES series of conferences is the development of theories,
algorithms, and applications of pattern recognition methods. These conferences
have always served as a very useful forum where researchers, practitioners, and
students working in different areas of pattern recognition can come together and
help each other keeping up with this active field of research.

This book is collection of 79 carefully selected works, which have been carefully
reviewed by the experts from the domain and accepted for presentation during the
9th International Conference on Computer Recognition Systems CORES 2015.

We hope that the book can become the valuable source of information on
contemporary research trends and the most popular areas of application.

The chapters are grouped into seven parts on the basis of the main topics they
dealt with:

1. Features, Learning, and Classifiers consists of the works concerning new
classification and machine learning methods;

2. Biometrics presents innovative theories, methodologies, and applications in the
biometry;

3. Data Stream Classification and Big Data Analytics section concentrates on both
data stream classification and massive data analytics issues;

4. Image Processing and Computer Vision is devoted to the problems of image
processing and analysis;

5. Medical Applications presents chosen applications of intelligent methods into
medical decision support software;

6. Applications describes several applications of the computer pattern recognition
systems in the real decision problems;

7. RGB-D Perception: Recent Developments and Applications presents pattern
recognition and image processing algorithms aimed specifically at applications
in robotics.

Editors would like to express their deep thanks to authors for their valuable
submissions and all reviewers for their hard work. Especially we would like to
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thank Dr. Tomasz Kornuta, Prof. Włodzimierz Kasprzak, Warsaw University of
Technology, and Prof. Piotr Skrzypczyński, Poznań University of Technology, who
organized a special session entitled “RGB-D Perception: Recent Developments and
Applications.” We would like to also thank Prof. Jerzy Stefanowski from Poznań
University of Technology who helped Prof. Michał Woźniak and Bartosz
Krawczyk, Wroclaw University of Technology to organize a special session on data
stream classification and big data analytics.

We believe that this book could be a reference tool for scientists who deal with
the problems of designing computer pattern recognition systems.

CORES 2015 enjoyed outstanding keynote speeches by distinguished guest
speakers:

• Prof. Nitesh Chawla—University of Notre Dame, USA,
• Prof. Krzysztof J. Cios—Virginia Commonwealth University, USA,
• Prof. João Gama—University of Porto, Portugal,
• Prof. Francisco Herrera—University of Granada, Spain.

Last but not least, we would like to give special thanks to local organizing team
(Robert Burduk, Kondrad Jackowski, Dariusz Jankowski, Bartosz Krawczyk,
Maciej Krysmann, Jose Antonio Saez, Alex Savio, Paweł Trajdos, Marcin
Zmyślony, and Andrzej Żołnierek) who did a great job.

This edition of the CORES was organized under the framework the ENGINE
project, and thus the authors of the selected, best papers did not pay conference fee.
ENGINE has received funding from the European Union’s the Seventh Framework
Programme for research, technological development, and demonstration under
grant agreement no 316097. We would like to give our special thanks to the
management of the ENGINE project—Prof. Przemysław Kazienko and Dr. Piotr
Bródka—for this valuable sponsorship.

Also we would like to fully acknowledge the support from the Wrocław
University of Technology, especially Prof. Andrzej Kasprzak—Chairs of
Department of Systems and Computer Networks and vice Rector of the Wroclaw
University of Technology, Prof. Jan Zarzycki—Dean of Faculty of Electronics, and
Prof. Zdzisław Szalbierz—Dean of Faculty of Computer Science and Management,
which has also supported this event.

We believe that this book could be a great reference tool for scientists who deal
with the problems of designing computer pattern recognition systems.

Wrocław Robert Burduk
July 2015 Konrad Jackowski

Marek Kurzyński
Michał Woźniak

Andrzej Żołnierek
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New Ordering-Based Pruning Metrics
for Ensembles of Classifiers in Imbalanced
Datasets

Mikel Galar, Alberto Fernández, Edurne Barrenechea,
Humberto Bustince and Francisco Herrera

Abstract The task of classification with imbalanced datasets have attracted quite
interest from researchers in the last years. The reason behind this fact is that many
applications and real problems present this feature, causing standard learning algo-
rithms not reaching the expected performance. Accordingly, many approaches have
been designed to address this problem from different perspectives, i.e., data pre-
processing, algorithmic modification, and cost-sensitive learning. The extension of
the former techniques to ensembles of classifiers has shown to be very effective in
terms of quality of the output models. However, the optimal value for the number
of classifiers in the pool cannot be known a priori, which can alter the behaviour of
the system. For this reason, ordering-based pruning techniques have been proposed
to address this issue in standard classifier learning problems. The hitch is that those
metrics are not designed specifically for imbalanced classification, thus hindering
the performance in this context. In this work, we propose two novel adaptations for
ordering-based pruning metrics in imbalanced classification, specifically the mar-
gin distance minimization and the boosting-based approach. Throughout a complete
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experimental study, our analysis shows the goodness of both schemes in contrast
with the unpruned ensembles and the standard pruning metrics in Bagging-based
ensembles.

Keywords Imbalanced datasets · Ensembles · Ordering-based pruning · Bagging

1 Introduction

The unequal distribution among examples of different classes in classification tasks is
known as the problem of imbalanced datasets [9, 22]. The use of standard algorithms
in this framework lead to undesirable solutions as themodel is usually biased towards
the most represented concepts of the problem [13]. Therefore, several approaches
have been developed for addressing this issue, which can be divided into three large
groups including preprocessing for resampling the training set [3], algorithmic adap-
tation of standard methods [2], and cost-sensitive learning [25]. Additionally, all
these schemes can be integrated into an ensemble learning algorithm, increasing the
capabilities and performance of the baseline approach [7, 8, 13]. An ensembles is
a set of classifiers where its components are supposed to complement each other,
so that the learning space is completely covered and the generalization capability
is enhanced with respect to the single baseline learning classifier [18, 21]. When
classifying a new instance, all individual members are queried and their decision is
obtained in agreement. The total number of classifiers that compose an ensemble
is not a synonym of its quality and performance [27], since several issues that can
degrade its behavior must be taken into account: (1) the time elapsed in the learning
and prediction stages; (2) the memory requirements; and (3) contradictions and/or
redundancy among components of the ensemble. In accordance with the above, sev-
eral proposals have been developed to carry out a pruning of classifiers within the
ensemble [26]. Specifically, ordering-based pruning is based on a greedy approach
that adds classifiers iteratively to the final set with respect to the maximization of a
given heuristic metric, until a preestablished number of classifiers are selected [10,
16]. In this contribution, we aim at developing an adaptation of two popular metrics
towards the scenario of classification with imbalanced datasets, i.e., Margin Dis-
tance Minimization (MDM) and Boosting-Based pruning (BB) [6, 15]. Specifically,
we consider that the effect of each classifier in both classes must be analyzed after
the construction of the classifier and not only before (for example, rebalancing the
dataset). The goodness of this novel proposal is analyzed by means of a thorough
experimental study, including a number of 66 different imbalanced problems. We
have selected SMOTE-Bagging [23] and Under-Bagging [1] as ensemble learning
schemes which, despite of being simple approaches, have shown to achieve a higher
performance than many other more complex algorithms [7]. As in other related
studies, we have selected the well-known C4.5 algorithm as baseline classifier [20].
Finally, our results are supported by means of non-parametric statistical tests [5].
In order to do so, this work is organized as follows. Section2 briefly introduces
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the problem of imbalanced datasets. Then, Sect. 3 presents ordering-based pruning
methodology, in which we describe standard metrics for performing this process and
our adaptations to imbalanced classification. Next, the details about the experimental
framework are provided in Sect. 4. The analysis and discussion of the experimental
results are carried out in Sect. 5. Finally, Sect. 6 summarizes and concludes the work.

2 Basic Concepts on Classification with Imbalanced
Datasets

Classification with imbalanced datasets appears when the distribution of instances
between the classes of a given problem is quite different [13, 19]. Therefore, this
classification task needs a special treatment in order to carry out an accurate discrim-
ination between both concepts, independently of their representation. The presence
of classes with few data can generate sub-optimal classificationmodels, since there is
a bias towards the majority class when the learning process is guided by the standard
accuracy metric. Furthermore, recent studies have shown that other data intrinsic
characteristics have a significant influence for the correct identification of the minor-
ity class examples [13]. Some examples are overlapping, small-disjuncts, noise, and
dataset shift. Solutions developed to address this problem can be categorized into
three large groups [13]: (1) data level solutions [3], (2) algorithmic level solutions
[2], and (3) cost-sensitive solutions [25]. Additionally, when the former approaches
are integrated within an ensemble of classifiers, their effectiveness is enhanced [7,
13]. Finally, in order to evaluate the performance in such a particular classification
scenario, the metrics used must be designed to take into account the class distribu-
tion. One commonly considered alternative is the Area Under the ROC curve (AUC)
[11]. In those cases where the used classifier outputs a single solution, this measure
can be simply computed by the following formula:

AUC = 1+ T Prate − F Prate

2
(1)

where T Prate = T P
T P+F N and F Prate = F P

T N+F P .

3 A Proposal for Ordering-Based Pruning Scheme
for Ensembles in Imbalanced Domains

Ensemble-based classifiers [18] are composed by a set of so-called weak learners,
i.e., low changes in data produce big changes in the induced models. Diversity is
quite significant in the performance of this type of approach, implying that individual
classifiers must be focused on different parts of the problem space [12]. There are
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mainly two types of ensemble techniques: Bagging [4] and Boosting [6]. In this
work, we will focus on the first scheme, due to the simplicity for the integration of
data preprocessing techniques [7]. In this methodology, an ensemble of classifiers
is trained with different sets of random instances from the original training data.
When classifying a new sample, all individual classifiers are fired and a majority
or weighted vote is used to infer the class. The first parameter to take into account
when building these types of models is the number of classifiers considered in the
ensemble. In this sense, pruning methods were designed to obtain the “optimal”
number of classifiers by carrying out a selection from a given pool of components of
the ensemble. The hypothesis is that accuracy generally increases monotonically as
more elements are added to the ensemble [10, 15, 16]. Most of pruning techniques
make use of an heuristic function to seek for the reduced set of classifiers. In the
case of ordering-based pruning, a metric that measures the goodness of adding each
classifier to the ensemble is defined and the classifier with the highest value is added
to the final sub-ensemble. The same process is performed until the size of the sub-
ensemble reaches the specified parameter value. In this work, we study two popular
pruning metricsMDM and BB [6, 15].We describe both schemes and our adaptation
to imbalanced classification below:

• MDM is based on certain distances among the output vectors of the ensembles.
These output vectors have the length equal to the training set size, and their value
at the i th position is either 1 or −1 depending on whether the i th example is
classified or misclassified by the classifier. The signature vector of a sub-ensemble
is computed as the sum of the vectors of the selected classifiers. To summarize,
the aim is to add those classifiers with the objective of obtaining a signature vector
of the sub-ensemble where all the components are positive, i.e., all examples are
correctly predicted. For awider description please refer to [16]. Thismethod selects
the classifier to be added depending on the closest Euclidean distance between an
objective point (where every components are positive) and the signature vector
of the sub-ensemble after adding the corresponding classifier. As a consequence,
every example has the same weight in the computation of the distance, which can
bias the selection to those classifiers favoring the majority class. Therefore, we
compute the distance for the majority class examples and minority class examples
independently. Then, distances are normalized by the number of examples used
to compute them and added afterwards. That is, the same weight is given to both
classes in the distance. This new metric is noted as MDM-Imb.

• BB selects the classifier thatminimizes the costwith respect to the boosting scheme.
This means that boosting algorithm is applied to compute the weights (costs)
for each example in each iteration, but instead of training a classifier with these
weights, the one that obtains the lowest cost from those in the pool is added to the
sub-ensemble and weights are updated accordingly. Hence, it makes no difference
whether classifiers were already learned using a boosting scheme or not. Different
from the original boosting method, when no classifier has a weighted training
error below 50%, weights are reinitialized (equal weights for all the examples)
and the method continues (whereas in boosting it is stopped). Once classifiers are
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selected the scores assigned to each classifier by boosting are forgotten and not
taken into account in the aggregation phase. It is well-known that boosting by
itself is not capable of managing class imbalance problem [7]. For this reason,
we have also adapted this approach in a similar manner as in the case of MDM.
In boosting, every example has initially the same weight and these are updated
according to whether they are correctly classified or not. Even though minority
class instances should get largerweights if they aremisclassified, theseweights can
be negligible compared with those of the majority class examples. Hence, before
finding the classifier that minimizes the total cost, we normalize the weights of
the examples of each class by half of their sum, so that both classes has the same
importance when selecting the classifier (even though each example of each class
would have a different weight). This is only done before selecting the classifier,
and then weights are updated according to the original (non-normalized ones).
This working procedure tries to be similar to that successfully applied in several
boosting models such as EUS-Boost [8]. This second weighting approach is noted
as BB-Imb.

4 Experimental Framework

Table1 shows the benchmark problems selected for our study, in which the name,
number of examples, number of attributes, and IR (ratio between the majority and
minority class instances) are shown. Datasets are ordered with respect to their degree
of imbalance. Multi-class problems were modified to obtain two-class imbalanced
problems, defining the joint of one or more classes as positive and the joint of one or
more classes as negative, as defined in the name of the dataset. A wider description
for these problems can be found at http://www.keel.es/datasets.php. The estimates of
AUCmeasure are obtained by means of a Distribution Optimally Balanced Stratified
Cross-Validation (DOB-SCV) [17], as suggested in the specialized literature for
working in imbalanced classification [14]. Cross-validation procedure is carried out
using five folds, aiming to include enough positive class instances in the different
folds. In accordance with the stochastic nature of the learning methods, these five
folds are generated with five different seeds, and each one of the fivefold cross-
validation is run five times. Therefore, experimental results are computed with the
average of 125 runs. As ensemble techniques, we will make use of SMOTE-Bagging
[23] and Under-Bagging [1]. In order to apply the pruning procedure, we will learn a
number of 100 classifiers for each ensemble, choosing a subset of only 21 classifiers
as suggested in the specialized literature [16]. The baseline ensemble models for
comparison will use 40 classifiers as recommended in [7]. For SMOTE-Bagging,
SMOTE configurationwill be the standardwith a 50% class distribution, 5 neighbors
for generating the synthetic samples, and Heterogeneous Value Difference Metric
for computing the distance among the examples. Finally, both learning approaches
include the C4.5 decision tree [20] as baseline classifier, using a confidence level at

http://www.keel.es/datasets.php
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Table 1 Summary of imbalanced datasets used

Name #Ex. #Atts. IR Name #Ex. #Atts. IR

Glass1 214 9 1.82 Glass04vs5 92 9 9.22

Ecoli0vs1 220 7 1.86 Ecoli0346vs5 205 7 9.25

Wisconsin 683 9 1.86 Ecoli0347vs56 257 7 9.28

Pima 768 8 1.87 Yeast05679vs4 528 8 9.35

Iris0 150 4 2.00 Ecoli067vs5 220 6 10.00

Glass0 214 9 2.06 Vowel0 988 13 10.10

Yeast1 1484 8 2.46 Glass016vs2 192 9 10.29

Vehicle2 846 18 2.52 Glass2 214 9 10.39

Vehicle1 846 18 2.52 Ecoli0147vs2356 336 7 10.59

Vehicle3 846 18 2.52 Led7digit02456789vs1 443 7 10.97

Haberman 306 3 2.78 Ecoli01vs5 240 6 11.00

Glass0123vs456 214 9 3.19 Glass06vs5 108 9 11.00

Vehicle0 846 18 3.25 Glass0146vs2 205 9 11.06

Ecoli1 336 7 3.36 Ecoli0147vs56 332 6 12.28

Newthyroid2 215 5 4.92 Cleveland0vs4 1771 13 12.62

Newthyroid1 215 5 5.14 Ecoli0146vs5 280 6 13.00

Ecoli2 336 7 5.46 Ecoli4 336 7 13.84

Segment0 2308 19 6.01 Shuttle0vs4 1829 9 13.87

Glass6 214 9 6.38 Yeast1vs7 459 8 13.87

Yeast3 1484 8 8.11 Glass4 214 9 15.47

Ecoli3 336 7 8.19 Pageblocks13vs4 472 10 15.85

Pageblocks0 5472 10 8.77 Abalone918 731 8 16.68

Ecoli034vs5 200 7 9.00 Glass016vs5 184 9 19.44

Yeast2vs4 514 8 9.08 Shuttle2vs4 129 9 20.50

Ecoli067vs35 222 7 9.09 Yeast1458vs7 693 8 22.10

Ecoli0234vs5 202 7 9.10 Glass5 214 9 22.81

Glass015vs2 506 8 9.12 Yeast2vs8 482 8 23.10

Yeast0359vs78 172 9 9.12 Yeast4 1484 8 28.41

Yeast0256vs3789 1004 8 9.14 Yeast1289vs7 947 8 30.56

Yeast02579vs368 1004 8 9.14 Yeast5 1484 8 32.73

Ecoli046vs5 203 6 9.15 Yeast6 1484 8 41.40

Ecoli01vs235 244 7 9.17 Ecoli0137vs26 281 7 39.15

Ecoli0267vs35 244 7 9.18 Abalone19 4174 8 129.44
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0.25, with 2 as the minimum number of item-sets per leaf, and the application of
pruning will be used to obtain the final tree. Reader may refer to [7] in order to get
a thorough description of the former ensemble methods. Finally, we will make use
of Wilcoxon signed-rank test [24] to find out whether significant differences exist
between a pair of algorithms.

5 Experimental Study

Our analysis is focused on determining whether the new proposed metrics, specifi-
cally designed for dealing with class imbalance, are well-suited for this problemwith
respect to the original metrics, i.e., BB and MDM. Additionally, we will analyze the
improvement in the performance results with respect to the original ensemble model.
The average values for the experimental results are shown in Table2, whereas full
results are shown inTable3.Regarding the comparison between the pruning schemes,
in the case ofBB andBB-Imbwefind that for SMOTE-Bagging themetric adapted for
imbalanced classification achieves a higher average performance. Regarding Under-
Bagging, the relative differences are below 1% in favour of the standard approach.
On the other hand, the analysis for MDM and MDM-Imb metrics shows the need
for the imbalanced approach, as it stands out looking at the experimental results.
Finally, the robustness of the imbalanced metrics must be stressed in accordance
with the low standard deviation shown with respect to the standard case. In order to
determine statistically the best suited metric, we carry out a Wilcoxon pairwise test
in Table4. We have included a symbol for stressing whether significant differences
are found at 95% confidence degree (*) or at 90% (+). Results of these tests agree
with our previous remarks. The differences in the case of MDM are clear in favour
of the imbalanced version. In the case of BB, the behaviour vary depending on the
ensemble technique, where significant differences are obtained for SMOTE-Bagging
whereas none are found for Under-Bagging. Finally, when we contrast these results
versus the standard ensemble approach, we also observe a two-fold behaviour: in the
case of SMOTE-Bagging the pruning approach enables the definition of a simpler
ensemble with a low decrease of the performance, especially when the imbalanced
metric is selected. On the other hand, for Under-Bagging we observe a notorious
improvement of the results in all cases when the ordering-based pruning is applied,

Table 2 Average test results for the standard ensemble approach (Base) and the ordering-based
pruningwith the original (BB andMDM) and imbalanced pruningmetrics (BB-Imb andMDM-Imb)

Ensemble Base BB BB-Imb MDM MDM-Imb

SMOTE-
Bagging

0.8645 ±
0.0587

0.8602 ±
0.0632

0.8635 ±
0.0610

0.8596 ±
0.0629

0.8625 ±
0.0622

Under-
Bagging

0.8647 ±
0.0516

0.8755 ±
0.0564

0.8734 ±
0.0544

0.8653 ±
0.0563

0.8699 ±
0.0558
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Table 4 Wilcoxon test for pruning metrics: standard [R+] and imbalanced [R−]
Ensemble Comparison R+ R− p-value

SMOTE-Bagging BB versus
BB-Imb

540.0 1671.0 0.00028*

MDM versus
MDMimb

436.0 1775.0 0.00002

Under-Bagging BB versus
BB-Imb

1277.0 934.0 0.27939

MDM versus
MDMimb

831.5 1379.5 0.07246+

Table 5 Wilcoxon test to compare the standard ensemble approach (Std.) [R+] and the one with
imbalanced ordering-based pruning [R−]
Ensemble Comparison R+ R− p-value

SMOTE-bagging Std. versus
BB-Imb

1261.5 883.5 0.215579

Std. versus
MDMimb

1386.5 758.5 0.039856*

Under-bagging Std. versus
BB-Imb

502.0 1709.0 0.000114*

Std. versus
MDMimb

637.0 1574.0 0.002735*

showing a better behaviour for MDM-Imb and especially in BB-Imb (see Tables2
and 3). These findings are complemented by means of a Wilcoxon test (shown in
Table5), for which we observe significant differences in favour of the ordering-based
pruning for the Under-Bagging approach.

6 Concluding Remarks

Ordering-based pruning in ensembles of classifiers consists of carrying out a selec-
tion of those elements of the ensemble set that are expected to work with better
synergy. The former process is guided by a given metric of performance which is
focused on different capabilities of the ensemble. However, they have not been previ-
ously considered within been developed within the scenario of imbalanced datasets.
In this work, we have proposed two adaptations of metrics for ordering-based prun-
ing in imbalanced classification, namely BB-Imb and MDM-Imb. The experimental
analysis has shown the success of these novel metrics with respect to their original
definition, especially in the case of the SMOTE-Bagging approach. Additionally,
we have pointed out that a significant improvement in the behaviour of the Under-
Bagging ensemble is achieved by means of the application of the ordering-based
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pruning, outperforming the results with respect to the original model. As future
work, we plan to include a larger number of pruning metrics and ensemble learn-
ing methodologies, aiming at giving additional support and strength to the findings
obtained in this contribution.
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A Variant of the K-Means Clustering
Algorithm for Continuous-Nominal Data

Aleksander Denisiuk and Michał Grabowski

Abstract The core idea of the proposed algorithm is to embed the considered dataset
into a metric space. Two spaces for embedding of nominal part with the Hamming
metric are considered: Euclidean space (the classical approach) and the standard
unit sphere S (our new approach). We proved that the distortion of embedding into
the unit sphere is at least 75% better than that of the classical approach. In our
model, combinations of continuous and nominal data are interpreted as points of a
cylinder R

p × S, where p is the dimension of continuous data. We use a version of
the gradient algorithm to compute centroids of finite sets on a cylinder. Experimental
results show certain advances of the new algorithm. Specifically, it produces better
clusters in tests with predefined groups.

1 Introduction

From the very beginning we define a dissimilarity function or a metric on com-
binations of continuous and nominal (categorical) data. There is a huge collection
of dissimilarity functions on vectors of nominal data, used in data exploration. For
example, the Hamming distance, the Jaccard distance, the distance defined after the
Bayesian numerical codding of nominal values, and other concepts [6, 8]. In this
paper we follow the approach with the Hamming distance. Let (x, n) be a record
of continuous (x) and nominal (n) data, where x ∈ R

p. We define metric on the
space of such records as dist

(
(x1, n1), (x2, n2)

) = K
(
d(x1, x2), H(n1, n2)

)
, where
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