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    Chapter 1   
 Introduction                     

    Abstract     Plant innate immune system is a surveillance system against possible 
attack by pathogens. It is quiescent in normal healthy plants. It is a sleeping giant 
and when awakened by specifi c signals it triggers expression of several defense 
genes. Unlike, transgenic plants developed by engineering disease resistance genes 
against specifi c pathogens, plants overexpressing the plant immune system awak-
ened by the alarm signals PAMP and PIMP trigger expression of hundreds of 
defense genes conferring resistance against wide range of pathogens. Both PAMPs 
and PIMPs are perceived by plants as alarm signals by specifi c receptors called pat-
tern recognition receptors (PRRs). PAMPs activate expression of the genes encod-
ing various PRRs. Besides PAMP molecules, pathogens secrete another type of 
molecules called effectors. While the pathogen-derived PAMPs are involved in 
switching-on the plant immune responses, the effectors are involved in switching- 
off the PAMP-triggered innate immunity. The effectors may also bind with PRRs 
and disrupt binding of PAMP with PRR in PAMP-PRR signaling complex to impede 
PAMP-triggered plant immunity. Effectors may bind with the PRR signal amplifi er 
BAK1 and block the function of PAMP-PRR signaling complex. Early and robust 
activation of PAMP-PRR signaling complex before the pathogens invade and 
secrete virulence effectors seems to be necessary for triggering strong defense 
responses. Several PAMP formulations have been developed and foliar application 
of the formulations triggers the induction of plant immune responses. The time of 
application is very critical in enhancing the effi cacy of the PAMPs in controlling 
diseases. The PAMPs should be applied prior to pathogen invasion. The concentra-
tion of the PAMP applied also determines the effi cacy of the treatment in controlling 
diseases. Oligogalacturonates (OGAs), plant elicitor peptides (Peps), and PAMP- 
induced Peptides (PIPs) are the important PIMPs capable of switching on plant 
innate immune responses. Bioengineering technologies have been exploited to uti-
lize PIMPs to develop transgenic plants expressing enhanced disease resistance. 
Bioengineering PRRs has been shown to be another potential technology to awaken 
the quiescent plant innate immunity for effective management of crop diseases. 
Intergeneric transfer of PRR has been achieved to develop disease-resistant crop 
plants. Transcription factors are the master switches, which regulate expression of 
defense genes in the PAMP-triggered plant immune signaling systems. Several tran-
scription factors have been shown to trigger “priming” of defense responses and 
induce “Systemic Acquired resistance (SAR)” in plants. The plant defense activa-
tors benzothiadiazole, probenazole, tiadinil and ergosterol trigger the expression of 
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transcription factors which modulate the expression of defense genes inducing dis-
ease resistance. The rhizobacterial strain  Pseudomonas fl uorescens  WCS417r 
induces systemic resistance (ISR) by activating the transcription factor MYB72. 
The MYC2 transcription factor also has been shown to be involved in  P. fl uorescens  
WCS417r-induced priming to trigger ISR. Several WRKY, MYB, MYC, bZIP, 
EREBP, and NAC transcription factors have been engineered in various crop plants 
to develop disease resistant plants. Some transcription factors have been found to 
negatively regulate the expression of defense signaling systems. Silencing of the 
negative regulator transcription factors may be a useful strategy in developing 
disease- resistant plants. Several bioengineering and molecular manipulation tech-
nologies have been developed to switch on the ‘sleeping’ plant innate immune sys-
tem, which has potential to detect and suppress the development of a wide range of 
plant pathogens in economically important crop plants. Enhancing disease resis-
tance through altered regulation of plant immunity signaling systems would be 
durable and publicly acceptable.  

1.1                Plant Innate Immunity Is a Sleeping Giant to Fight 
against Pathogens 

 Diseases caused by oomycete, fungal, bacterial, and viral pathogens cause enor-
mous crop losses and in some areas the crop may be completely devastated 
(Vidhyasekaran  2004 ; Byamukama et al.  2015 ; Cohen et al.  2015 ; Han et al.  2015 ; 
Handiseni et al.  2015 ; Holmes et al.  2015 ; Sharma-Poudyal et al.  2015 ; Strehlow 
et al.  2015 ). Chemical control is widely practiced to manage fungal and oomycete 
pathogens (Gent et al.  2015 ; Handiseni et al.  2015 ). Frequent development of resis-
tance to the modern fungicides in the fi eld population of fungal/oomycete patho-
gens is a challenging problem in using the fungicides to manage these diseases 
(Miles et al.  2012 ; Gudmestad et al.  2013 ; Tymon and Johnson  2014 ; Fernández- 
Ortuňo et al.  2015 ; Hu et al.  2015 ; Keinath  2015 ; Saville et al.  2015 ; Zeng et al. 
 2015 ). Effective chemicals are still not available to control bacterial, viral, viroid, 
and phytoplasma diseases (Jones  2001 ; Vidhyasekaran  2004 ; Bradley  2008 ; Kanetis 
et al.  2008 ). Breeding varieties with built-in resistance may be the sound approach 
to manage diseases (Vidhyasekaran  2007 ; Singh et al.  2008 ; Tagle et al.  2015 ). 
However, new races of pathogens appear frequently and the resistance often breaks 
down (Sørensen et al.  2014 ; Kitner et al.  2015 ; Maccaferri et al.  2015 ). Breeding for 
quantitative resistance is useful (Yasuda et al.  2015 ), but it is diffi cult to achieve 
(Vidhyasekaran  2007 ; St Clair  2010 ; Zhang et al.  2015 ). Breeding for resistance 
against broad-spectrum of pathogens will be ideal, but the traditional breeding 
methods are ineffi cient (Vleeshouwers et al.  2008 ; Tran et al.  2015 ). An alternative 
technology based on switching on plant innate immunity using pathogen-associated 
molecular patterns (PAMPs) and pathogen-induced molecular patterns (PIMP)/
host-associated molecular patterns (HAMPs) has been developed recently for 
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management of viral and bacterial diseases (Li et al.  2011 ; Pavli et al.  2011 ,  2012 ; 
Choi et al.  2012 ; Li et al.  2012 ), and also for management of a wide range of biotro-
phic, hemibiotrophic, and necrotrophic fungal and oomycete pathogens (Miao et al. 
 2010 ; Xu et al.  2010 ; Choi et al.  2012 ; Miao and Wang  2013 ). 

 Plant innate immune system is a surveillance system against possible attack by 
pathogens. It is quiescent in normal healthy plants. It is a sleeping giant and when 
awakened by specifi c signals it triggers expression of several defense genes. Several 
hundreds of defense genes have been detected in plants and these are involved in 
plant immunity (Coram and Pang  2005 ; Vega-Sánchez et al.  2005 ; Wang et al.  2005 ; 
Wilkinson et al.  2005 ; Hermosa et al.  2006 ; Vidhyasekaran  2007 ; Sun et al.  2008 ). 
These defense genes encode different pathogenesis-related proteins (Anand et al. 
 2003 ; Zhu et al.  2006 ; Sun et al.  2008 ) most of which inhibit growth of oomycete 
(Lee et al.  2000 ), fungal (Moravčikova et al.  2004 ; Pervieux et al.  2004 ; Chen et al. 
 2006 ; Zhu et al.  2006 ; Hernández-Blanco et al.  2007 ) and bacterial pathogens 
(Vidhyasekaran  2002 ). Several defense-related genes encode enzymes involved in 
biosynthesis of toxic compounds such as phytoalexins (Nawar and Kuti  2003 ; Liu 
et al.  2006 ; Chassot et al.  2008 ), phenylpropanoids and isofl avonoids (Farag et al. 
 2008 ), and terpenoids (Keeling et al.  2008 ), or enzymes involved in cell wall- 
fortifi cation (Hamiduzzaman et al.  2005 ; Flors et al.  2008 ). The triggered plant 
immune responses include accumulation of pathogenesis-related proteins, deposi-
tion of lignin and callose in the cell wall, and production of anti-microbial com-
pounds (Tsuda and Katagiri  2010 ; Gimenez-Ibanez and Rathjen  2010 ). Plant innate 
immunity is a powerful weapon to fi ght against a wide range of plant pathogens. 
Plants have innate immunity system (Nicaise  2014 ; Vidhyasekaran  2014 ,  2015 ; 
Piasecka et al.  2015 ; Robinson and Bostock  2015 ; Schwessinger et al.  2015 ; Tena 
 2015 ) and this system provides basic protective functions against broadest range of 
pathogens (Boller and He  2009 ; Boutrot et al.  2010 ; Chen et al.  2010a ,  b ; Dodds and 
Rathjen  2010 ; Park et al.  2010b ; Shimizu et al.  2010 ; Segonzac and Zipfel  2011 ; 
Zamioudis and Peterse  2012 ; Li et al.  2014a ,  b ; Vidhyasekaran  2014 ).  

1.2     Potential Signals to Switch on Plant Immune System 

 The plant innate immune systems have high potential to fi ght against viral, bacte-
rial, oomycete, and fungal pathogens and protect the crop plants against wide range 
of diseases (Knecht et al.  2010 ; Lacombe et al.  2010 ; D’Amelio et al.  2011 ; Hwang 
and Hwang  2011 ; Alkan et al.  2012 ). However, these plant immune systems are 
quiescent in healthy normal plants. Specifi c signals are needed to switch on the 
sleeping giant for exploiting the quiescent immune system for combating diseases. 
These signals are derived from invading pathogens and called ‘pathogen-associated 
molecular patterns’ (PAMPs). The immune system is activated on perception of the 
PAMP of invading pathogens (Nürnberger and Kufner  2011 ; Segonzac and Zipfel 
 2011 ). Potential pathogens contain several PAMPs and they serve as alarm signals 
to activate the plant innate immunity (Böhm et al.  2014 ; Vidhyasekaran  2014 ; 
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Zhang et al.  2014 ). PAMPs are detected not only in pathogens, but also in sapro-
phytes, probably in all microbes. Hence the PAMPs are also called as microbe- 
associated molecular patterns (MAMPs) (Jeworutzki et al.  2010 ; Thomma et al. 
 2011 ). PAMPs/MAMPS are potential tools to activate plant immune systems and 
can be effectively used to manage crop diseases (Iriti et al.  2011 ; Choi et al.  2012 ; 
Dafermos et al.  2012 ; Li et al.  2012 ; Sanchez et al.  2012 ; Quang et al.  2015 ; 
Sathiyabama et al.  2014 ). 

 Besides the microbe-derived elicitors (MAMPs), some host plant-derived elici-
tors called pathogen-induced molecular patterns (PIMPs) or host-associated molec-
ular patterns (HAMPs) have been shown to activate the plant innate immune system 
(Yamaguchi and Huffaker  2011 ; Vallarino and Osorio  2012 ; Bellincampi et al. 
 2014 ; Hou et al.  2014 ). The PIMPs/HAMPs (host-derived elicitors) function almost 
in the same fashion as the PAMPs function in switching on plant innate immunity 
(Denoux et al.  2008 ; Ferrari et al.  2013 ). PIMPs and PAMPs activate similar down-
stream responses using many of the same molecular components (Ryan et al.  2007 ; 
Krol et al.  2010 ; Postel et al.  2010 ; Qi et al.  2010 ; Yamaguchi et al.  2010 ; Huffaker 
et al.  2011 ). Both of them bind specifi c LRR receptors and both activate the same 
downstream signaling events (Yamaguchi et al.  2006 ; Huffaker and Ryan  2007 ; 
Krol et al.  2010 ). 

 Both PAMPs and PIMPs are perceived by plants as alarm signals by specifi c 
receptors called pattern recognition receptors (PRRs) (Nicaise et al.  2009 ; Brutus 
et al.  2010 ; Petutschnig et al.  2010 ; Shinya et al.  2010 ; Schulze et al.  2010 ; Segonzac 
and Zipfel  2011 ; Hann et al.  2014 ). Plants utilize the PRRs to recognize PAMPs/
MAMPs (Böhm et al.  2014 ; Macho and Zipfel  2014 ; Zhang et al.  2014 ). Most of the 
PRRs identifi ed are receptor-like kinases (RLKs) and receptor-like proteins (RLPs) 
(Yang et al.  2012 ; Zhang et al.  2013 ; Zipfel  2014 ). PAMPs activate expression of the 
genes encoding various PRRs (Zipfel et al.  2004 ,  2006 ; Qutob et al.  2006 ; Lohmann 
et al.  2010 ). PRRs bind with PAMPs for their activation (Boutrot et al.  2010 ; 
Petutschnig et al.  2010 ). The PRRs recognize PAMPs and PIMPs and switch on the 
plant innate immunity (Mentlak et al.  2012 ).  

1.3     Pathogens Possess Weapons to Switch-Off Plant Immune 
Systems 

 Besides PAMP molecules, pathogens secrete another type of molecules called effec-
tors (Wu et al.  2011 ; Vleeshouwers and Oliver  2014 ). While the pathogen-derived 
PAMPs are involved in switching-on the plant immune responses, the effectors are 
involved in switching-off the PAMP-triggered innate immunity (Thomma et al. 
 2011 ; Wu et al.  2011 ; Cheng et al.  2012 ). The effectors secreted by various patho-
gens have been shown to suppress the PAMP-triggered immunity (Shan et al.  2008 ; 
de Jonge et al.  2010 ). Effectors induce susceptibility, mostly by suppressing PAMP- 
induced immune responses. The effector proteins target basic innate immunity in 
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plants (Boller and He  2009 ; Song and Yang  2010 ; Szczesny et al.  2010 ; Rajput et al. 
 2014 ; Zheng et al.  2014 ). Several bacterial pathogens use a specialized type III 
secretion system to deliver effector proteins into host cells to subvert PAMP- 
triggered host defense mechanisms, thereby promoting pathogenesis (Song and 
Yang  2010 ; Szczesny et al.  2010 ; Zhang et al.  2010 ; Wu et al.  2011 ; Akimoto- 
Tomiyama et al.  2012 ). 

 The effectors may also bind with PRRs and block plant defense responses in the 
plant cell (Xiang et al.  2008 ; Zeng et al.  2012 ; Rosli et al.  2013 ; Xin and He  2013 ). 
Effectors may disrupt binding of PAMP with PRR in PAMP-PRR signaling com-
plex to impede PAMP-triggered plant immunity (Mentlak et al.  2012 ). Some effec-
tors have been shown to degrade the PRRs through ubiquitin-proteasome pathway 
and inhibit PAMP-triggered immunity (Göhre et al.  2008 ; Gimenez-Ibanez et al. 
 2009a ,  b ). Effectors may also target the kinase domains of PRR and inhibit the PRR 
receptor kinase activity to block PAMP-triggered immunity (Shan et al.  2008 ; Xiang 
et al.  2008 ; Zipfel and Rathjen  2008 ; Xiang et al.  2011 ). The effectors may also 
inhibit the autophosphorylation of PRRs to suppress the PAMP-triggered immune 
system (Xiang et al.  2008 ). The effectors may prevent the activation of PRR signal-
ing complex by inhibiting the autophosphorylation of PRRs (Hann and Rathjen 
 2007 ). Effectors may bind with the PRR signal amplifi er BAK1 and block the func-
tion of PAMP-PRR signaling complex (Shan et al.  2008 ; Xiang et al.  2008 ; Hann 
et al.  2010 ).  

1.4     Bioengineering and Molecular Manipulation 
Technologies to Switch on the Sleeping Quiescent Plant 
Immune System to Win the War against Pathogens 

 Several bioengineering and molecular manipulation technologies have been devel-
oped for management of a broad-spectrum of diseases caused by a wide-range of 
viral, bacterial, fungal and oomycete pathogens, exploiting the potential of plant 
innate immunity (Ferrari et al.  2008 ; Lacombe et al.  2010 ; Hwang and Hwang  2011 ; 
Volpi et al.  2011 ; Alkan et al.  2012 ; Ferrari et al.  2012 ; Li et al.  2012 ; Wang et al. 
 2013 ; Fu et al.  2014 ; Lloyd et al.  2014 ; Macho and Zipfel  2014 ; Trouvelot et al. 
 2014 ). The crop diseases can be controlled by switching on plant innate immunity 
by manipulating PAMP-PIMP-PRR signaling complex. Early, rapid and strong acti-
vation of plant innate immune system is necessary to induce strong defense 
responses against pathogens. Early and robust activation of PAMP-PRR signaling 
complex before the pathogens invade and secrete virulence effectors seems to be 
necessary for triggering strong defense responses and for effective management of 
crop diseases (Orlowska et al.  2011 ; Aghnoum and Niks  2012 ; Lanubile et al. 
 2012 ). 

 Several PAMP formulations have been developed and foliar application of the 
formulations triggered the induction of plant immune responses (Dong et al.  2004 ; 
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Elmer and Reglinski  2006 ; de Capdeville et al.  2008 ; Shao et al.  2008 ; Iriti et al. 
 2011 ; Dafermos et al.  2012 ; Chuang et al.  2014 ). Several factors such as environ-
ment, genotype, and crop nutrition determine the effi cacy of the PAMPs in control-
ling diseases under fi eld conditions (Walters et al.  2005 ). The time of application is 
very critical in enhancing the effi cacy of the PAMPs in controlling diseases (de 
Capdeville et al.  2002 ; Agostini et al.  2003 ). The PAMPs should be applied 2–5 days 
prior to pathogen invasion (Qiu et al.  2001 ; de Capdeville et al.  2002 ,  2003 ). The 
concentration of the PAMP applied also determines the effi cacy of the treatment in 
controlling diseases (de Capdeville et al.  2002 ; Chen et al.  2008 ). Variability in 
structure and function has been reported among various PAMPs (Che et al.  2000 ; 
Tanaka et al.  2003 ; Fujiwara et al.  2004 ). The time of induction (Luna et al.  2011 ), 
intensity of induction (Lecourieux et al.  2002 ,  2005 ), and duration of induction 
(Aziz et al.  2007 ) of the defense signals may vary depending on the type of PAMPs. 
Effi cacy of PAMPs in controlling diseases may also vary depending on the chal-
lenging pathogens (Agostini et al.  2003 ). Hence, suitable PAMPs have to be selected 
for management of various crop diseases. 

 Bioengineering PAMP genes has been shown to be powerful tool to trigger plant 
immune responses (Keller et al.  1999 ; Li and Fan  1999 ; Belbahri et al.  2001 ; Choi 
et al.  2004 ; Donghua et al.  2004 ; Peng et al.  2004 ; Takakura et al.  2004 ,  2008 ; 
Malnoy et al.  2005 ; Jang et al.  2006 ; Ren et al.  2006a ,  b ; Cai et al.  2007 ; Sohn et al. 
 2007 ; Shao et al.  2008 ; Qiu et al.  2009 ; Huo et al.  2010 ; Miao et al.  2010 ; Xu et al. 
 2010 ; Pavli et al.  2011 ,  2012 ; Choi et al.  2012 ; Li et al.  2012 ; Miao and Wang  2013 ; 
Quang et al.  2015 ). Levels of PAMP gene expression may vary among different 
transgenic plant lines developed by bioengineering technologies (Peng et al.  2004 ). 
The line, which shows high level of PAMP gene expression, shows very high level 
of resistance against pathogens, while the line, which shows low level of expression 
of the PAMP gene shows only low level of resistance (Peng et al.  2004 ). Hence, the 
transgenic lines should be carefully selected to generate highly useful disease- 
resistant cultivars. Expression of PAMP genes can be enhanced by properly select-
ing the promoter for gene transcription (Takakura et al.  2004 ). The transgenic plants 
expressing introduced gene may have side effects, showing retardation of plant 
growth and reduced crop yield potential. However, transgenic plants expressing the 
PAMP harpin gene show good agronomic characters (Xu et al.  2010 ; Li et al.  2011 ; 
Pavli et al.  2011 ). Selection of suitable pathogen-inducible promoter for expressing 
the PAMP gene appears to be a perquisite for developing disease-resistant plants 
without any reduction in yield potential (Choi et al.  2004 ; Donghua et al.  2004 ) 

 Bioengineering technologies have been exploited to utilize PIMPs/HAMPs to 
develop transgenic plants expressing enhanced disease resistance. 
Oligogalacturonides are the best-characterized plant cell wall-derived PIMPs/
HAMPs (Vallarino and Osorio  2012 ). However, not all OGAs are capable of elicit-
ing a defense response. Their ability to elicit defense responses depends on length 
(degree of polymerization), degree of methyl esterifi cation and the level of 
 acetylation (Côté and Hahn  1994 ; Vidhyasekaran  1997 ,  2007 ; Wiethölter et al. 
 2003 ; Aziz et al.  2004 ; Ferrari et al.  2007 ; Osorio et al.  2008 ; Vallarino and Osorio 
 2012 ). 
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 Both the degrees of substitution (methylesterifi cation and/or acetylation) and 
polymerization can be controlled by specifi c enzymes such as pectin methylester-
ases (PMEs), pectin acetylesterases (PAEs), polygalacturonases (PGs), or pectate 
lyases-like (PLLs) (  Sẻnẻchal et al.  2014 ). PME can modify the structure of OGAs 
and the modifi ed OGAs will be highly active in triggering plant innate immune 
signaling systems. Transgenic plants expressing pectin methyl esterase gene ( PME ) 
generate oligogalacturonides, which act as host-derived elicitor/PIMP/HAMP. These 
transgenic plants show enhanced expression of plant immune responses and 
enhanced disease resistance (Lionetti et al.  2007 ,  2014 ; Osorio et al.  2008 ,  2011 ). 
PME activity is tightly regulated by an inhibitor protein called pectin methylester-
ase inhibitor protein (PMEI) (Giovane et al.  2004 ; Di Matteo et al.  2005 ). Transgenic 
plants overexpressing genes encoding PME inhibitor proteins show enhanced dis-
ease resistance (Lionetti et al.  2007 ,  2014 ; An et al  2008 ). 

 Transgenic plants expressing PG gene show enhanced disease resistance (Ferrari 
et al.  2008 ). Polygalacturonase-inhibiting proteins (PGIPs) play important role in 
switching on plant immune signaling systems (Manfredini et al.  2005 ; Federici 
et al.  2006 ; Alexandersson et al.  2011 ). Transgenic plants expressing  PGIP  genes 
also show enhanced disease resistance (Joubert et al.  2006 ,  2007 ; Alexandersson 
et al.  2011 ; Borras-Hidalgo et al.  2012 ; Nguema-Ona et al.  2013 ; Wang et al.  2013 ). 
The expression of  PGIP  genes does not affect the agronomic characters of the trans-
formed plants (Powell et al.  2000 ; Capodicasa et al.  2004 ; Agüero et al.  2005 ; 
Borras-Hidalgo et al.  2012 ; Nguema-Ona et al.  2013 ). 

 Plant elicitor peptides (Peps) are the other group of PIMPs/HAMPs (Huffaker 
et al.  2011 ; Logemann et al.  2013 ; Hann et al.  2014 ). The Pep proteins are processed 
from the precursor PROPEP proteins. Transgenic plants overexpressing  PROPEP  
genes show enhanced disease resistance (Huffaker et al.  2006 ). Transgenic plants 
overexpressing PIP (PAMP-induced Peptides) and systemin switch on plant innate 
immunity and show enhanced disease resistance (Coppola et al.  2014 ; Hou et al. 
 2014 ). PIMPs/HAMPs appear to be powerful tools to engineer disease resistance in 
fi eld crops. 

 Bioengineering PRRs has been shown to be another potential technology to 
awaken the quiescent plant innate immunity for effective management of crop dis-
eases. Intergeneric transfer of PRR from the weed plant Arabidopsis to various crop 
species has been achieved to develop disease-resistant crop plants. EFR is a 
Brassicaceae-specifi c PRR (Zipfel et al.  2006 ). Transfer of EFR from  Arabidopsis  
to various crop plants is highly useful for crop disease management. Pathogens that 
are adapted to a particular host plant may be adept at suppressing the PRRs of that 
host by their effectors. The effectors of the pathogens might not recognize PRRs 
from other host plants and development of transgenic plants expressing PRRs from 
other plant species may provide good resistance against various bacterial pathogens 
possessing the PAMP EF-Tu (Lacombe et al.  2010 ). Transgenic tomato plants 
expressing  EFR  gene from  Arabidopsis  show enhanced resistance against the 
tomato wilt pathogen  Ralstonia solanacearum  (Lacombe et al.  2010 ). Transgenic 
tobacco expressing EFR also show resistance against  Agrobacterium. tumefaciens  
(Brutus et al.  2010 ). Transgenic banana plants expressing the rice PRR  XA21  gene 
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showed complete resistance to  Xanthomonas campestris  pv.  musacearum  (Tripathi 
et al.  2014 ). Transgenic  Citrus sinensis  plants expressing the rice PRR  XA21  gene 
enhance resistance against the citrus canker pathogen  Xanthomonas axonopodis  pv. 
 citri  (Mendes et al.  2010 ). Transgenic rice plants overexpressing  Xa21  gene showed 
enhanced resistance against the rice bacterial blight pathogen  Xanthomonas oryzae  
pv.  oryzae  (Park et al.  2008 ,  2010a ,  b ; Chen et al.  2014 ). Transgenic  Arabidopsis  
plants expressing  FLS2  gene showed increased resistance against  Pseudomonas 
syringae  pv.  tomato  DC3000 (De Lorenzo et al.  2011 ). The transgenic rice plants 
overexpressing the HAMP receptor  WAK1  show enhanced disease resistance (Li 
et al.  2009 ). 

 Transcription factors are the master switches, which regulate expression of 
defense genes in the PAMP-triggered plant immune signaling systems (Century 
et al.  2008 ; Moreau et al.  2012 ). PAMPs and PIMPs/HAMPs switch on the expres-
sion of various transcription factor genes involved in plant defense responses 
(Denoux et al.  2008 ; Higashi et al.  2008 ; Chujo et al.  2013 ; McLellan et al.  2013 ). 
Several transcription factors have been shown to trigger “priming” of defense 
responses and induce “Systemic Acquired resistance (SAR)” in plants (Chavan and 
Kamble  2013 ; Nakayama et al.  2013 ). The plant defense activators benzothiadia-
zole, probenazole, and tiadinil trigger the expression of transcription factors which 
modulate the expression of defense genes inducing disease resistance (Shimono 
et al.  2007 ,  2012 ). DL-3-aminobutyric acid (β-aminobutyric acid, BABA) has been 
found to induce priming of WRKY transcription factors and trigger systemic resis-
tance (Jakab et al.  2001 ). Foliar spray with BABA led to a signifi cant reduction of 
lesion development in  Brassica carinata  caused by  Alternaria brassicae  (Chavan 
and Kamble  2013 ). Ergosterol treatment triggered a 23-fold increase of  VvWRKY  
gene expression in grape plantlets and induced resistance against the necrotrophic 
fungal pathogen  Botrytis cinerea  (Laquitaine et al.  2006 ). The rhizobacterial strain 
 Pseudomonas fl uorescens  WCS417r induces systemic resistance (ISR) in  A. thali-
ana  by activating the transcription factor MYB72 (Van der Ent et al.  2008 ). The 
MYC2 transcription factor also has been shown to be involved in  P. fl uorescens  
WCS417r-induced priming to trigger ISR (Pozo et al.  2008 ). 

 Several WRKY, MYB, MYC, bZIP, EREBP, and NAC transcription factors, have 
been engineered in various crop plants to develop disease resistant plants (He et al. 
 2001 ; Shin et al.  2002 ; Fischer and Dröge-Laser  2004 ; Guo et al.  2004 ; Cao et al. 
 2006 ; Waller et al.  2006 ; Chujo et al.  2007 ; Kim et al.  2007 ; Marchive et al.  2007 ; 
Mzid et al.  2007 ; Qiu et al.  2007 ; Wang et al.  2007 ; Zuo et al.  2007 ; Dai et al.  2008 ; 
Zhang et al.  2008 ; Bahrini et al.  2011a ,  b ; Fan et al.  2011 ; Abbruscato et al.  2012 ; 
Liu et al.  2012 ; Peng et al.  2012 ; Shimono et al.  2012 ; Yu et al.  2012 ; Zhu et al. 
 2012 ; Han et al.  2013 ; Lee et al.  2013 ; Marchive et al.  2013 ; Wei et al.  2013 ; Chujo 
et al.  2014 ; Dang et al.  2014 ; Yokotani et al.  2014 ; Cao et al.  2016 ; Cheng et al. 
 2015 ; Jisha et al.  2015 ; Li et al.  2015 ; Shan et al.  2015 ). 

 Most of the successful stories in management of crop diseases using transcrip-
tion factors are in rice plants. Transgenic rice plants overexpressing  OsWRKY13  
showed enhanced blast ( Magnaporthe oryzae ) and bacterial blight ( Xanthomonas 
oryzae  pv.  oryzae ) disease resistance (Qiu et al.  2007 ; Cheng et al.  2015 ). WRKY30- 
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overexpressing rice plants show resistance against the rice blast pathogen  M. ory-
zae , the sheath blight pathogen  Rhizoctonia solani  and the bacterial blight pathogen 
 X. oryzae  pv.  oryzae  (Peng et al.  2012 ; Han et al.  2013 ; Lee et al.  2013 ) Transgenic 
rice plants overexpressing  OsWRKY31  (Zhang et al.  2008 ),  WRKY45  (Shimono 
et al.  2007 ,  2012 ; Goto et al.  2015 ),  OsWRKY47  (Wei et al.  2013 ),  WRKY53  (Chujo 
et al.  2007 ,  2014 ), OsWRKY89 (Wei et al.  2013 ) show enhanced resistance to  M. 
oryzae.  Transgenic rice plants overexpressing  OsWRKY71  showed enhanced resis-
tance to the bacterial blight pathogen  Xanthomonas oryzae  pv.  oryzae  (Liu et al. 
 2007 ). 

 Some transcription factors have been found to negatively regulate the expression 
of defense signaling systems. Silencing of the negative regulator transcription fac-
tors may be a useful strategy in developing disease-resistant plants. The  TaNAC1  
gene-silenced wheat plants showed enhanced resistance against the stripe rust 
pathogen (Wang et al.  2015 ).  WRKY42 -suppressing ( WRKY42 -RNA interference 
[RNAi]) rice plants were developed and these plants showed increased resistance to 
 M. oryzae  (Cheng et al.  2015 ).  

1.5     Switching on Plant Innate Immunity Using PAMP- 
PIMP- PRR-Transcription Factor Is the Most Potential 
Biotechnological Approach for Management of Crop 
Diseases 

 Susceptibility and resistance are two sides of the same coin (Vidhyasekaran  2007 ). 
The plant immune system is induced faster and to a higher level in resistant interac-
tions (Makandar et al.  2006 ). The major differences between susceptible and resis-
tant interactions are the magnitude and timing of induction of plant immune 
signaling system (Makandar et al.  2006 ; Rinaldi et al.  2007 ; Asselbergh et al.  2008 ). 
Higher and faster expression of genes involved in signal transduction systems has 
been found to be associated with improved tolerance to pathogens (Coppinger et al. 
 2004 ; Waller et al.  2006 ; Yamamizo et al.  2006 ; Zhang et al.  2006 ; Brader et al. 
 2007 ; Qiu et al.  2007 ). PAMP-induced defense in susceptible host plants is insuffi -
cient to stop infection; nonetheless, it is referred to as basal resistance (Nürnberger 
and Lipka  2005 ; Fung et al.  2008 ). Early, rapid and strong activation of plant innate 
immune system is necessary to induce strong defense responses against pathogens 
(Orlowska et al.  2011 ; Aghnoum and Niks  2012 ; Lanubile et al.  2010 ,  2012 ,  2014 ; 
Groβkinsky et al.  2012 ). Strong signals are needed to switch on early and strong 
activation of plant immunity. Engineering and/or proper application of PAMP/PRR 
products much before pathogen invasion results in early switching on the plant 
immune system. 

 Recently several bioengineering and molecular manipulation technologies have 
been developed to switch on the ‘sleeping’ plant innate immune system, which has 
potential to detect and suppress the development of a wide range of plant pathogens 
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in economically important crop plants (Lacombe et al.  2010 ). Enhancing disease 
resistance through altered regulation of plant immunity signaling systems would be 
durable and publicly acceptable (Yamamizo et al.  2006 ; Shao et al.  2008 ; Gust et al. 
 2010 ; Lacombe et al.  2010 ). The plant innate immune systems have high potential 
to fi ght against viral, bacterial, oomycete, and fungal pathogens and protect the crop 
plants against wide range of diseases (Knecht et al.  2010 ; Lacombe et al.  2010 ; 
D’Amelio et al.  2011 ; Hwang and Hwang  2011 ; Alkan et al.  2012 ). This book 
describes various bioengineering and molecular manipulation technologies 
employed to trigger defense responses and manage crop diseases.     
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