

Joseph C. McCarthy
Philip C. Noble
Richard N. Villar
Editors

Hip Joint Restoration

Worldwide Advances in
Arthroscopy, Arthroplasty,
Osteotomy and Joint
Preservation Surgery

Hip Joint Restoration

Joseph C. McCarthy • Philip C. Noble
Richard N. Villar
Editors

Hip Joint Restoration

Worldwide Advances in Arthroscopy,
Arthroplasty, Osteotomy and Joint
Preservation Surgery

Editors

Joseph C. McCarthy, MD
Orthopedic Surgery
Hip Joint Arthroplasty
Hip Arthroscopy Massachusetts General Hospital
Boston, MA, USA

Chief of Joint Surgery
Director Kaplan Joint Center
Newton-Wellesley Hospital
Newton, MA, USA

Richard N. Villar, MSc(Hons), MA, FRCS
Consultant Orthopedic Surgeon Orthopedics
The Villar Bajwa Practice
Spire Cambridge Lea Hospital
Cambridge, UK

Philip C. Noble, BE, MEngSci, PhD
Director of Research
Institute of Orthopedic Research and Education
Houston, TX, USA

Orthopedic Research
Joseph Barnhart Department of Orthopedic
Surgery
Baylor College of Medicine
Houston, TX, USA

ISBN 978-1-4614-0693-8 ISBN 978-1-4614-0694-5 (eBook)
DOI 10.1007/978-1-4614-0694-5

Library of Congress Control Number: 2016937008

© Springer Science+Business Media LLC 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer Science+Business Media LLC
The registered company address is: 233 Spring Street, New York, NY 10013, U.S.A.

Preface

Those of us who treat patients with hip pain know that the surgical treatment of hip disease has undergone tremendous growth during the last decade. Prior books on the hip have either addressed arthroplasty, in providing prosthetic solutions for end-stage hip arthritis, or focused on minimally invasive arthroscopy of the hip. Many of them were technical treatises. Yet hip surgery has moved on greatly from the days when all that might be offered was fracture fixation or arthroplasty and, for the younger patient, the instruction to wait until they had reached sufficient age to justify a prosthesis. The thrust of most surgeons in the twenty-first century is to achieve as much benefit as possible for the patient while keeping surgical trauma to a minimum. Fulfillment of this ambition requires an understanding of new concepts and new procedures, as well as new training to accompany them.

The authors of this book believe that hip disease presents as a spectrum of symptoms and pathology, and so any comprehensive text must include the accurate diagnosis and treatment of both the biologic and the prosthetic hip. With the explosion of information on hip disease in the literature, particularly in the treatment of younger patients, the authors felt that it was time for a comprehensive treatise on this subject. Arthroscopy of the Hip, according to many, is the fastest growing specialty area within orthopedics. Accordingly, an extensive amount of this book is devoted to determining proper surgical indications as well as knowledge of surgical techniques and outcomes for the expanding number of surgical procedures in this area.

This book is divided into 16 parts. Pathology within the hip is best understood in contradistinction to normal growth and development. Early chapters also focus on discerning extra-articular from intra-articular etiologies of hip pain. Digital imaging, including CT, MRI, and ultrasound, has immensely increased our diagnostic understanding of the joint and the periaricular soft tissues. At times, MR imaging may disclose combined issues in pathology such as intra-articular loose bodies in combination with osteonecrosis of the hip or, similarly, an acetabular labral tear in combination with abductor muscle attenuation.

The spectrum of treatment of hip disease importantly includes hip osteotomies, whether of the femur or the acetabulum, or in combination. Knowledge of these procedures and their indications is a critical prerequisite for successful outcomes, especially in young patients. However, some young patients do require total hip arthroplasty, typically secondary to osteonecrosis, tumors, trauma, or collagen disease. Several chapters are devoted to the latest evidence-based information on bearing surfaces, and implant selection as well as surgical techniques.

A critically important area for increased understanding is patient outcomes following hip arthroscopy, osteotomy, or total joint replacement. Importantly, world experts in validated outcome measures and quality of life indicators are authors of chapters in this book. Another unique feature of this volume is a section describing the growth and development of hip arthroscopic surgery in each of the world's continents, authored by experts in each of these geographical areas. Finally, there is an entire section devoted to research and future developments. The robustness of the information as well as the development in these areas adds significantly to the depth of knowledge contained within this book.

There has never been such an exciting time to be a specialist in hip surgery, nor such a time to feel so proud. This book brings together a large number of specialists in the field, each of whom has given up valuable hours to prepare their text. As editors we are enormously grateful to them. Our authors are excellent clinicians, respected practitioners, but, more than anything, good personal friends. So join us on the tidal wave of surgical development shown on these pages, the tidal wave in the surgical treatment of hip disease.

In conclusion, this book has been a truly collaborative effort but would never have been possible without the tireless efforts of Connie Walsh, Miranda Finch and Kristopher Spring at Springer whose expertise, patience, and attention to detail have been vital. We also profusely thank our colleagues and fellow members of ISHA (The International Society of Hip Arthroscopy) who have pitched in as authors and section editors to share their knowledge and understanding of hip disease in making this work an important treatise. And finally, we thank our spouses and families for their support and understanding during this extensive endeavor.

Newton, MA, USA
Houston, TX, USA
Impington, UK

Joseph C. McCarthy, MD
Philip C. Noble, PhD
Richard N. Villar, BSc(Hons), MA, FRCS

Abbreviations

ADL	Activities of daily living
AIIS	Anterior inferior iliac spine
ASIS	Anterior superior iliac spine
AVN	Avascular necrosis
BMP	Bone morphogenic proteins
BW	Body weight
CMI	Core muscle injury
COPD	Chronic obstructive pulmonary disease
CT	Computerized tomography
DEXRIT	Dynamic external rotatory impingement test
DGS	Deep gluteal syndrome
DHS	Dynamic hip screw
DIRI	Dynamic internal rotatory impingement test
EMG	Electromyography
FABER	Flexion, abduction, external rotation
FADDIR	Flexion adduction internal rotation test
FAI	Femoroacetabular impingement
GRF	Ground reaction force(s)
HHS	Harris hip score
HHSm	Modified Harris hip score
HPI	History of present illness
iHOT	international hip outcome tool
IPI	Iliopsoas impingement
ITB	Iliotibial band
L	Left
MAHORN	Multicenter arthroscopy of the hip outcomes research network
MFCA	Medial femoral circumflex artery
MRI	Magnetic resonance imaging
NAHS	Nonarthritic hip score
NSAIDS	Nonsteroidal anti-inflammatory drugs
OA	Osteoarthritis
ON	Osteonecrosis
ONFH	Osteonecrosis of the femoral head
PRP	Platelet rich plasma
R	Right
ROM	Range of motion
SCFE	Slipped capital femoral epiphysis
SI	Sacroiliac

TFL	Tensor fasciae latae
THA	Total hip arthroplasty
VAS	Visual Analog Pain Scale
WOMAC	Western Ontario and McMaster University

Contents

Part I Structure and Function of the Tissues of the Hip (Normal and Diseased) Richard E. Field

1 Development of the Hip: Phylogeny and Ontogeny	3
Tom Hogervorst, Karl-Philipp Kienle, and Moritz Tannast	
2 Anatomy: Cartilage	15
Veronica Ulici, Antonia F. Chen, Anthony W.M. Cheng, and Rocky S. Tuan	
3 Anatomy: Labrum	23
Michael L. Nguyen and Marc R. Safran	
4 Anatomy: Capsule and Synovium	27
Richard E. Field, Caroline Blakey, and Francesc Malagelada	
5 Fundamental and Clinical Considerations of the Muscles of the Hip	35
Donald Anthony Neumann	
6 Ligamentum Teres: Anatomy, Structure and Function	53
Alexandra Dimitrakopoulou and Richard N. Villar	
7 Functional Mechanics of the Human Hip	57
Philip C. Noble, Maureen K. Dwyer, Mohammed S. Gobba, and Joshua D. Harris	

Part II Clinical Evaluation of Hip Function Allston J. Stubbs

8 Function of the Normal Hip	77
Michael R. Torry, Michael J. Decker, Jeffrey C. Cowley, David Keeley, Thomas W. Kerozek, and Kevin B. Shelburne	
9 Outcome Instruments for Assessment of Hip Function	91
Simon W. Young and Marc R. Safran	
10 Gait Analysis	115
Maureen K. Dwyer	
11 Evaluation of the Painful Hip	123
Joshua A. Tuck, Michael A. Flaherty, and Brian D. Busconi	
12 Clinical Evaluation of Hip Function: Essential Features in the History	139
Allston J. Stubbs and Elizabeth A. Howse	
13 Essential Findings in the Clinical Exam	145
Hal David Martin, Ian James Palmer, and Munif Hatem	

Part III Hip Pathology

Brian D. Busconi

14	Osteoarthritis of the Hip	159
	Matthew A. Popa, Victor M. Goldberg, and Glenn D. Wera	
15	Hip Disease Etiologies: FAI and Dysmorphias.....	169
	Xavier Flecher, Sebastien Parratte, and Jean-Noel Argenson	
16	Synovial Pathology of the Hip.....	177
	Thierry Boyer and Virginie Legre-Boyer	
17	Hip Pathology: Overload Syndromes.....	189
	Allston J. Stubbs and Elizabeth A. Howse	
18	Hip Disease Etiologies: Trauma.....	197
	Joshua A. Tuck, Scott King, Craig M. Roberto, and Brian D. Busconi	
19	The Understanding of Hip Etiologies: Osteonecrosis of the Femoral Head.....	205
	Bhaveen H. Kapadia, Kimona Issa, Samik Banerjee, and Michael A. Mont	

Part IV Imaging Advances

Victor M. Ilizaliturri Jr

20	The Bony Morphology of Femoroacetabular Impingement	213
	Paul Whittingham-Jones and Paul E. Beaulé	
21	Imaging of Cartilage Patho-anatomy.....	221
	Steven S. Chua, Jason D. Alder, Joshua D. Harris, Andrew R. Palisch, Collin D. Bray, and Philip C. Noble	
22	Magnetic Resonance Imaging of the Hip Labrum, Capsule, and Synovium	231
	Brett Lurie, Stephanie L. Gold, and Hollis G. Potter	
23	Extra-articular Pathology of the Hip	247
	Scott S. Lenobel, Adriana M.L. Oliveira, and Miriam A. Bredella	
24	Magnetic Resonance Imaging of the Hip	259
	Srinath C. Sampath, Srihari C. Sampath, and William E. Palmer	
25	Imaging the Previously Operated Hip	271
	Philip J. Glassner and Joseph C. McCarthy	
26	Advances in 2D and 3D Imaging for FAI Surgical Planning	277
	Jaron P. Sullivan, Timothy Bryan Griffith, Caroline N. Park, and Anil S. Ranawat	

Part V Non Arthroscopic Treatment of Hip Disease

Jason Brockwell

27	The Natural History of Untreated Osteoarthritis of the Hip	289
	S. David Stulberg	
28	Nonsurgical Treatment (Indications, Limitations, Outcomes): Injections	299
	Omar El Abd, João E.D. Amadera, Daniel Camargo Pimentel, and Amit Bhargava	
29	Groin Pain in Athletes: Assessment and Nonsurgical Treatment.....	315
	Per Hölmich and Kristian Thorborg	

30	The Painful Groin	323
	Alexandra Dimitrakopoulou and Ernest Schilders	
31	Limited Open Procedures	329
	Aaron Glynn and Javad Parvizi	
32	Limitations of Open and Arthroscopic Surgical Technique for the Treatment of Femoroacetabular Impingement.....	337
	Sangmin Ryan Shin and Scott D. Martin	
33	Open Surgical Treatment: Advantages and Potential Complications of Modern Surgical Approaches.....	345
	Hany Bedair	

Part VI Arthroscopic Treatment of Hip Disease

Michael J. Salata

34	The History of Hip Arthroscopy.....	353
	Sachin Daivajna, Richard N. Villar, and Narendra Ramisetty	
35	Indications for Hip Arthroscopy	359
	Catherine A. Nosal, Asheesh Bedi, Rebecca M. Stone, and Christopher M. Larson	
36	Arthroscopic Treatment: Surgical Anatomy	367
	Allston J. Stubbs, Todd C. Johnson, and Elizabeth A. Howse	
37	Hip Arthroscopy: Anatomy and Technical Pearls of the Procedure	377
	Scott D. Martin and David M. Privitera	
38	Arthroscopic Treatment: Principles of Hip Distraction	391
	Hassan Sadri	
39	Arthroscopic Treatment: Fundamentals of Hip Joint Instrumentation	397
	Sean Mc Millan, Brian D. Busconi, and Craig M. Roberto	
40	Arthroscopic Treatment: Principles and Devices for Hip Joint Access	405
	J.W. Thomas Byrd	
41	Arthroscopic Treatment: Layout of the Operating Room Surgical Approaches—Lateral	425
	Thomas G. Sampson	
42	Arthroscopic Treatment: Layout of the Operating Room—Surgical Approaches, Supine	439
	Carlos A. Guanche	
43	Optimizing Exposure and Accessibility for Arthroscopic Correction of Femoroacetabular Impingement	445
	Christopher M. Larson	
44	Anesthesia and Analgesia for Hip Surgery.....	455
	Sunit Ghosh, Amo Oduro, and Stephen Webb	

Part VII Surgical Treatment of Specific Hip Conditions

Rodrigo Mardones

45	Biologic Labrum.....	463
	Joseph C. McCarthy, Leah Elson, and JoAnn Lee	

46	Specific Tissues and Conditions: Chondral Lesions	469
	Daniel L. Skinner, Edward D.R. Bray, Giles H. Stafford, and Richard N. Villar	
47	Special Patients and Conditions: Femoroacetabular Impingement	475
	Óliver Marín-Peña and Lissette Horna	
48	Arthroscopic Treatment of Combined Cam- and Pincer-Type Femoroacetabular Impingement	489
	Christopher M. Larson, Rebecca M. Stone, and Patrick M. Birmingham	
49	Special Patients and Conditions: Other Forms of Impingement (Ischiofemoral, Pectineofoveal).....	503
	J.W. Thomas Byrd	
50	Synovial Disease	511
	J.W. Thomas Byrd	
51	Surgical Treatment of Specific Hip Conditions: Ligamentum Teres Injuries.....	521
	Alexandra Dimitrakopoulou and Richard N. Villar	
52	Treatment of Specific Conditions: Loose Bodies.....	527
	Matías Salineros and Rodrigo Mardones	
53	Specific Tissues and Conditions: Trauma.....	531
	Christopher Betz, Michael A. Flaherty, Craig M. Roberto, Scott King, Joshua A. Tuck, and Brian D. Busconi	
54	Arthroscopic Treatment: Bony Lesions	541
	Thomas G. Sampson	
55	Specific Tissues and Conditions: Osteonecrosis, Avascular Necrosis.....	555
	Athanasiou V. Papavasiliou and Ioannis Gliatis	
56	Specific Tissues and Conditions: Pediatric Conditions	561
	Giancarlo C. Polesello, Miguel Akkari, and Marcelo C. Queiroz	
57	Specific Tissues and Conditions: Extra-articular Pathologic Conditions.....	571
	Shane J. Nho, Richard C. Mather III, Andrew E. Federer, Ryan Freedman, Frank McCormick, and Michael J. Salata	

Part VIII Special Patients and Conditions

John M. O'Donnell

58	Special Patients and Conditions: Elite Athletes	585
	John M. O'Donnell, Michael George Pritchard, Mohamed S. Gobba, George Chukwuka Ozoude, Philip C. Noble, and Parminder J. Singh	
59	Special Patients and Conditions: Capsular Laxity Including Ehlers-Danlos.....	595
	Lourenço P. Peixoto, Peter Goljan, Brian M. Devitt, and Marc J. Philippon	
60	Current Procedures and Techniques for the Treatment of Osteonecrosis of the Hip.....	601
	Samik Banerjee, Bhaveen H. Kapadia, Jeffrey J. Cherian, and Michael A. Mont	
61	Special Patients and Conditions: Sports Hernia	619
	Michael A. Flaherty, Joshua A. Tuck, Jeffrey F. Murray, and Brian D. Busconi	

62	Acetabular Dysplasia: Aetiological Classification.....	631
	Jason Brockwell, John N. O'Hara, and David A. Young	
63	Quality-of-Life After Hip Arthroscopic Surgery	643
	Nicholas G.H. Mohtadi	
64	Evaluating the Outcome of Hip Preserving Procedures: Patient Function, Satisfaction, and Impairment	649
	Maureen K. Dwyer and Philip C. Noble	

Part IX Articular Lesions: Prevention and Treatment

Marc R. Safran

65	Biology of Cartilage Regeneration	657
	Cecilia Pascual-Garrido and Scott A. Rodeo	
66	Microfracture in the Hip	665
	Fernando Portilho Ferro, Peter Goljan, and Marc J. Philippon	
67	Cartilage Grafting.....	671
	Andrea Fontana	
68	The Use of Fibrin Adhesive for Cartilage Repair in Hip Arthroscopy	681
	Samuel J. Barke, Giles H. Stafford, and Richard N. Villar	
69	Novel Techniques in the Treatment of Chondral Lesions of the Hip	687
	Rodrigo Mardones and Catalina Larraín Birrell	
70	Osteochondral Allografting of the Hip	695
	Simon Görtz and William D. Bugbee	

Part X Hip Osteotomies

Richard F. Santore

71	Special Patients and Conditions: Acetabular Dysplasia.....	703
	Cara Beth Lee and Young-Jo Kim	
72	Hip Osteotomies: Acetabular	713
	Richard F. Santore	
73	Birmingham Interlocking Peri-Aacetabular Osteotomy	723
	Jason Brockwell, John N. O'Hara, and David A. Young	
74	Mini-Incision Periacetabular Osteotomy	731
	Kjeld Søballe and Anders Troelsen	
75	Results of Periacetabular Osteotomy (PAO).....	739
	Brian T. Barlow and Richard F. Santore	
76	Proximal Femoral Osteotomy in Hip Preservation.....	747
	Jaclyn F. Hill, Nicole I. Montgomery, and Scott B. Rosenfeld	
77	Combined Periacetabular Osteotomy and Proximal Femoral Osteotomy for Severe Hip Deformity	755
	Stephen T. Duncan and John C. Clohisy	

Part XI Joint Replacement

Philip C. Noble

78	Partial Joint Replacement	763
	Lourenço P. Peixoto, Peter Goljan, and Marc J. Philippon	
79	Metal on Metal Hip Resurfacing: Current Indications and Results	769
	Vikram Chatrath and Paul E. Beaulé	
80	Total Hip Replacement in the Young Patient	777
	Hernan A. Prieto, Atul F. Kamath, and David G. Lewallen	
81	Short-Stem Total Hip Replacement	787
	Carl C. Berasi IV and Adolph V. Lombardi Jr	
82	Hip Replacement in the Athlete	793
	Fintan Doyle and Matthew J. Wilson	
83	Arthroscopy Following Total Hip Replacement	799
	Joseph C. McCarthy, Leah Elson, and Joann Lee	

Part XII Functional Outcomes

Nicholas G.H. Mohtadi

84	Activities, Symptoms, and Expectations of Patients Undergoing Hip Surgery	805
	Michael G. Hogen, Maureen K. Dwyer, Ugo N. Ihekweazu, Ardavan Ariel Saadat, Krissett A. Loya-Bodiford, and Philip C. Noble	
85	Rehabilitation After Hip Arthroscopy	815
	RobRoy L. Martin, Benjamin R. Kivlan, and Keelan R. Enseki	
86	The Importance of Validated Scoring Systems for the Hip	825
	Nicholas G.H. Mohtadi	
87	Survivorship and Clinical Results After Hip Arthroscopy: How Should We Define a Good Treatment Option?	831
	Philip C. Noble, Ardavan Ariel Saadat, Morteza Meftah, Katherine E. Garrett, and Joshua D. Harris	

Part XIII Worldwide Experience with Hip Arthroscopy

A.J.M.D. Tony Andrade

88	UK and European Experience with Hip Arthroscopy	843
	A.J.M.D. (Tony) Andrade and Tom Pollard	
89	Africa	855
	Josip Nenad Cakic	
90	History of Hip Arthroscopy in the USA	867
	Joseph C. McCarthy, Leah Elson, and JoAnn Lee	
91	Worldwide Experience with Hip Arthroscopy: Australia	871
	John M. O'Donnell	
92	Worldwide Experience of Hip Arthroscopy: Mexican Experience	877
	Marco Acuña, Carlos Suarez-Ahedo, and Victor M. Ilizaliturri Jr.	

93 Worldwide Experience with Hip Arthroscopy: South America	885
Alexander Bent Tomic Loftkjaer and Rodrigo Mardones	
94 Hip Arthroscopy in India: A Perspective.....	889
Vijay D. Shetty	
95 The Worldwide Experience with Hip Arthroscopy—Japan	893
Nobuhiko Sugano and Takashi Nishii	
96 Hip Arthroscopy in China	897
Jason Brockwell	
 Part XIV Practice Management and Education	
Hatem Galal Said	
97 Setting Up a Hip Arthroscopy Service	909
Richard E. Field, Parminder J. Singh, Mahalingam Karupppiah, and Omer Mei-Dan	
98 Education and Hip Arthroscopy.....	915
Richard N. Villar	
 Part XV Research	
Josip Nenad Cakic	
99 Development Anatomy and Its Impact on Hip Function	921
Amardeep Singh and Paul E. Beaulé	
100 Research Advances in Understanding the Genetic Basis of Hip Disease.....	929
George Feldman, Javad Parvizi, and Hind Sawan	
101 Fluid Mechanics, Pre- and Post Capsulotomy.....	935
Richard E. Field, Francesc Malagelada, and Francesco Strambi	
102 Research into the Application of Imaging to the Diagnosis of Hip Disease.....	941
Jason D. Alder, Steven S. Chua, Collin D. Bray, Joshua D. Harris, Andrew R. Palisch, and Philip C. Noble	
103 Cell Therapy in Hip Surgery	949
M. Munir Khan, Paul Genever, James B. Richardson, and Andrew W. McCaskie	
104 Surgical Navigation of the Hip for Femoroacetabular Impingement	957
Jaron P. Sullivan, Timothy Bryan Griffith, Caroline N. Park, and Anil S. Ranawat	
105 Outcomes Following Hip Surgery	961
Nicholas G.H. Mohtadi	
106 The Critical Role of Registries in Documenting the Outcomes of Hip Preservation Surgery	967
Andrew John Timperley, Marcus J.K. Bankes, Siôn Glyn-Jones, and Sarah L. Whitehouse	
 Part XVI Future Developments	
107 The Future of Hip Arthroscopy.....	977
Joseph C. McCarthy, Philip C. Noble, and Richard N. Villar	
Index.....	981

Contributors

Marco Acuña, MD Department of Adult Joint Reconstruction, National Rehabilitation Institute of Mexico, Mexico City, Mexico

Miguel Akkari, MD, PhD Department of Orthopedic Surgery and Traumatology, Pediatric Orthopaedics, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil

Jason D. Alder, MD Department of Orthopaedic Surgery, Houston Methodist Hospital, Houston, TX, USA

João E.D. Amadera, MD, PhD Faculty of Medicine, Spine Center, University of São Paulo, São Paulo, Brazil

A J.M.D. (Tony) Andrade, MSc, FRCS(Tr&Orth) Department of Trauma and Orthopaedics, Royal Berkshire NHS Foundation Trust, Reading Orthopaedic Centre, Reading, Berkshire, UK

Jean-Noel Argenson, MD Department of Orthopedic Surgery, Institute for Locomotion, Sainte-Marguerite Hospital, Aix-Marseille University, Marseille, France

Samik Banerjee, MD Rubin Institute for Advanced Orthopedics, Center for Joint Preservation and Replacement, Sinai Hospital of Baltimore, Baltimore, MD, USA

Marcus J.K. Bankes, BSc, FRCS(Orth) Department of Orthopaedics, Guy's Hospital, London, UK

Samuel J. Barke, MBBS The Elective Orthopaedic Centre, Surrey, UK

Brian T. Barlow, MD Orthopaedic Surgery, Adult Reconstruction and Joint Replacement, Naval Medical Center San Diego, San Diego, CA, USA

Paul E. Beaulé, MD, FRCSC Orthopaedic Surgery Division, Surgery Department, The Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada

Hany Bedair, MD Department of Orthopaedic Surgery, Massachusetts General Hospital/Newton Wellesley Hospital, Boston, MA, USA

Asheesh Bedi, MD Division of Sports Medicine, Department of Orthopaedic Surgery, University of Michigan Hospital and Health Systems, Ann Arbor, MI, USA

Carl C. Berasi IV , MD Riverside Methodist Hospital, Columbus, OH, USA

Christopher Betz, DO Division of Sports Medicine, Department of Orthopaedics, University of Massachusetts, Worcester, MA, USA

Amit Bhargava, MD Advanced Pain and Sports Medical, Owings Mills, MD, USA

Patrick M. Birmingham, MD Division of Sports Medicine, Department of Orthopaedic Surgery, Northshore University Health System Chicago, Chicago, IL, USA

Catalina Larrain Birrell, MD Department of Orthopedic Surgery, Clinica Las Condes, Santiago, Región Metropolitana, Chile

Caroline Blakey, MBChB, MRCS, MD(res) Department of Orthopaedics, Sheffield Teaching Hospitals NHS Trust, Sheffield, South Yorkshire, UK

Thierry Boyer, MD Rheumatology, IAL Nollet Paris, Paris, France

Collin D. Bray, MD Department of Radiology, Musculoskeletal Imaging, Baylor College of Medicine, Houston, TX, USA

Edward D.R. Bray, MBBS, BSc (Hons) The EOC, Epsom General Hospital, Surrey, UK

Miriam A. Bredella, MD Department of Radiology, Musculoskeletal Imaging and Interventions, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA

Jason Brockwell, FRCSEdOrth, FHKAMOrth Orthopaedics Department, Hip and Pelvic Surgery, Asia Medical Specialists, Hong Kong, People's Republic of China

William D. Bugbee, MD Division of Orthopaedics, Scripps Clinic, University of California, San Diego, La Jolla, CA, USA

Brian D. Busconi, MD Division of Sports Medicine, Department of Orthopedics, University of Massachusetts Memorial Medical Center, Worcester, MA, USA

J.W. Thomas Byrd, MD Nashville Sports Medicine Foundation, Nashville, TN, USA

Department of Orthopaedic Surgery and Rehabilitation, Vanderbilt University, Nashville, TN, USA

Josip Nenad Cakic, MD, PhD, FSC(SA)Orth, MMed(Orth), WITS Orthopaedic Surgery, Private Practice, Life Fourways Hospital, Johannesburg, South Africa

Vikram Chatrath, MS, MCh(Ortho) Orthopedics Department, Adult Reconstruction and Trauma Surgery, Halifax Infirmary, Dalhousie University, Halifax, NS, Canada

Antonia F. Chen, MD, MBA Department of Orthopaedics, University of Pittsburgh, Pittsburgh, PA, USA

Anthony W.M. Cheng, PhD (Deceased) Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh, Pittsburgh, PA, USA

Jeffrey J. Cherian, DO Rubin Institute for Advanced Orthopedics, Center for Joint Preservation and Replacement, Sinai Hospital of Baltimore, Baltimore, MD, USA

Steven S. Chua, MD, PhD Department of Radiology, Baylor College of Medicine, Houston, TX, USA

John C. Clohisy, MD Orthopaedics Department, Adult Reconstruction and Hip Preservation, Washington University School of Medicine, St. Louis, MO, USA

Jeffrey C. Cowley, MS School of Kinesiology and Recreation, Illinois State University, Normal, IL, USA

Sachin Daivajna, MBBS, FRCS (Orth) The Villar Bajwa Practice, Spire Cambridge Lea Hospital, Cambridge, UK

Michael J. Decker, PhD Center of Orthopaedic Biomechanics, Mechanical and Materials Engineering Department, Felix Ritchie School of Engineering and Computer Science, University of Denver, Denver, CO, USA

Brian M. Devitt, MD, FRCSI Center for Outcomes-based Orthopaedic Research, The Steadman Philippon Research Institute, Vail, CO, USA

Alexandra Dimitrakopoulou, MD The London Hip Arthroscopy Center, Orthopaedics, The Wellington Hospital and Leeds Metropolitan University, London, UK

Leeds Metropolitan University, Leeds, UK

Fintan Doyle, MBBCh, BAO, MSc, FRCS(Orth) Princess Elizabeth Orthopaedic Centre, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK

Stephen T. Duncan, MD Orthopaedics Department, Adult Reconstruction and Hip Preservation, Washington University School of Medicine, St. Louis, MO, USA

Maureen K. Dwyer, PhD, ATC Department of Orthopedics, Kaplan Joint Center, Newton Wellesley Hospital, Newton, MA, USA

Department of Orthopedics, Massachusetts General Hospital, Boston, MA, USA

Omar El Abd, MD Newton Wellesley Interventional Spine, Wellesley, MA, USA

Internal Medicine, PM&R, Newton Wellesley Hospital, Wellesley, MA, USA

Leah Elson, BSc Harris Laboratory, Department of Orthopedics, Massachusetts General Hospital, Boston, MA, USA

Keelan R. Enseki, MS, PT, ATC, OCS, SCS, CSCS Centers for Rehab Services, University of Pittsburgh Center for Sports Medicine, Pittsburgh, PA, USA

Department of Physical Therapy, University of Pittsburgh School of Health and Rehabilitation Sciences, Pittsburgh, PA, USA

Andrew E. Federer, BS Department of Orthopedic Surgery, Hip Preservation Center, Section of Sports Medicine, Rush Medical College of Rush University, Chicago, IL, USA

George Feldman, DMD, PhD Orthopaedic Research, Jefferson Medical College, Philadelphia, PA, USA

Fernando Portilho Ferro, MD Steadman Philippon Research Institute, Hospital de Acidentados, Goiânia, Goiás, Brazil

Richard E. Field, PhD, FRCS, FRCS(Orth) St. George's University of London, Research, The South West London Elective Orthopaedic Centre, Epsom and St. Helier NHS Trust, London, UK

Michael A. Flaherty, MD Department of Orthopedic Surgery, Albany Medical College, Albany, NY, USA

Xavier Flecher, MD Department of Orthopedic Surgery, Institute for Locomotion, Sainte-Marguerite Hospital, Aix-Marseille University, Marseille, France

Andrea Fontana, MD Ortopedia, COF Lanzo Hospital, Como, Italy

Ryan Freedman, BS, MS Department of Orthopedic Surgery, Hip Preservation Center, Section of Sports Medicine, Rush Medical College of Rush University, Chicago, IL, USA

Katherine E. Garrett, BA Institute of Orthopedic Research and Education, University of Texas School of Public Health, Houston, TX, USA

Paul Genever, BSc, PhD Department of Biology, University of York, York, UK

Sunit Ghosh, BSc, MBBS, FRCA, FFICM Anaesthesia, Papworth Hospital, Cambridge, UK

Philip J. Glassner, MD Hunterdon Orthopaedic Institute, Flemington, NJ, USA

Ioannis Gliatis, MD, PhD Department of Orthopaedics, University Hospital of Patras, Patras, Greece

Siôn Glyn-Jones, MA(Cantab), MBBS, FRCS(Orth), DPhil(Oxon) Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Medical Sciences, University of Oxford, Oxford, UK
Nuffield Orthopaedic Centre, Oxford, UK

Aaron Glynn, MCh, FRCS Adult Lower Limb Reconstruction, Rothman Institute, Thomas Jefferson University Hospital, Philadelphia, PA, USA

Mohammed S. Gobba, MD Department of Orthopedics and Traumatology, Cairo University, Cairo, Egypt

Stephanie L. Gold, BA Magnetic Resonance Imaging Division, Department of Radiology, Hospital for Special Surgery, New York, NY, USA

Victor M. Goldberg†, MD Department of Orthopaedic Surgery, University Hospitals Case Western Medical Center, Cleveland, OH, USA

Peter Goljan, MD Center for Outcomes-Based Orthopaedic Research, The Steadman Philippon Research Institute, Vail, CO, USA

Simon Görtz, MD Division of Sports Medicine, Department of Orthopaedic Surgery, University of California, San Diego, San Diego, CA, USA

Division of Sports Medicine, Department of Orthopaedic Surgery, Washington University in St. Louis, Chesterfield, MO, USA

Timothy Bryan Griffith, MD Division of Sports Medicine, Department of Orthopaedic Surgery, Peachtree Orthopaedic Clinic, Atlanta, GA, USA

Carlos A. Guanche, MD Southern California Orthopedic Institute, Van Nuys, CA, USA

Joshua D. Harris, MD Department of Orthopaedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA

Clinical Orthopaedics, Weill Cornell Medical College, New York, NY, USA

Munif Hatem, MD Hip Preservation Center, Baylor University Medical Center, Dallas, TX, USA

Jaclyn F. Hill, MD Department of Pediatric Orthopaedic Surgery, Texas Children's Hospital, Houston, TX, USA

Department of Orthopaedic Surgery, Baylor College of Medicine, Houston, TX, USA

Michael G. Hogen, BA Institute of Orthopedic Research and Education, Houston, TX, USA

Tom Hogervorst, MD, PhD Orthopaedics, Haga, Den Haag, The Netherlands

Per Hölmich, DMSc Sports Orthopedic Research Center—Copenhagen, Arthroscopic Center Amager, Copenhagen University Hospital, Copenhagen, Denmark

Sports Groin Pain Center, Aspetar—Orthopedic and Sports Medicine Hospital, Doha, Qatar

Lissette Horna, MD Orthopedic and Traumatology Department, Hip Unit, University Hospital Infanta Leonor, Madrid, Spain

Elizabeth A. Howse, MD Department of Emergency Medicine, Hofstra North Shore-LIJ School of Medicine, Long Island Jewish Medical Center, New Hyde Park, NY, USA

Ugo N. Ihekweazu, MD, BS Department of Orthopaedic Surgery, Baylor College of Medicine, Houston, TX, USA

Victor M. Ilizaliturri Jr, MD Department of Adult Joint Reconstruction, National Rehabilitation Institute of Mexico, Mexico D.F., Mexico

Kimona Issa, MD Rubin Institute for Advanced Orthopedics, Center for Joint Preservation and Replacement, Sinai Hospital of Baltimore, Baltimore, MD, USA

Todd C. Johnson, MD Division of Sports Medicine, Department of Orthopaedics, Wake Forest University, Winston-Salem, NC, USA

Atul F. Kamath, MD Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA

Bhaveen H. Kapadia, MD Department of Orthopaedic Surgery and Rehabilitation Medicine, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY, USA

Rubin Institute for Advanced Orthopedics, Center for Joint Preservation and Replacement, Sinai Hospital of Baltimore, Baltimore, MD, USA

Mahalingam Karuppiah, MBBS, FRCS Consultant Orthopaedic Surgeon, Cork, Ireland

David Keeley, PhD Department of Human Performance Dance and Recreation, New Mexico State University, Las Cruces, NM, USA

Thomas W. Kernozeck, FACSM, PhD Health Professions Department, Physical Therapy Program, University of Wisconsin-La Crosse, La Crosse, WI, USA

M. Munir Khan, MBBS, MRCS, PhD Division of Orthopaedics, Department of Trauma and Orthopaedics, Freeman Hospital, Sunderland, Tyne and Wear, UK

Karl-Philipp Kienle, MD Department of Orthopedic Surgery, University Bern, Bern, Switzerland

Young-Jo Kim, MD, PhD Department of Orthopaedics, Child and Adult Hip Program, Harvard School of Medicine, Children's Hospital Boston, Boston, MA, USA

Scott King, DO Division of Sports Medicine, Department of Orthopaedics, University of Massachusetts, Worcester, MA, USA

Benjamin R. Kivlan, PT, OCS, SCS, CSCS John G Rangos Sr School of Health Sciences, Duquesne University, Pittsburgh, PA, USA

Christopher M. Larson, MD Minnesota Orthopedic Sports Medicine Institute at Twin Cities Orthopedics, Edina, MN, USA

Cara Beth Lee, MD Department of Orthopaedics, Center for Hip Preservation, Virginia Mason Medical Center, Seattle, WA, USA

Joann Lee, MS Department of Orthopedics, Newton Wellesley Hospital, Newton, MA, USA

Virginie Legre-Boyer, MD Rheumatology, IAL Nollet Paris, Paris, France

Rheumatology, American Hospital of Paris, Paris, France

Neuilly Sur Seine, Neuilly, France

Scott S. Lenobel, MD Department of Radiology, Musculoskeletal Imaging and Interventions, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA

David G. Lewallen, MD Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA

Alexander Bent Tomic Loftkjaer, MD Orthopedic Surgery, Hip Surgery, Clinica Las Condes, Santiago, Chile

Orthopedic Surgery, Hip Surgery, Hospital Militar de Santiago, Santiago, Chile

Adolph V. Lombardi Jr , MD, FACS Joint Implant Surgeons, Inc., Columbus, OH, USA

Mount Carmel Health System, Columbus, OH, USA

Department of Orthopaedics, The Ohio State University, Columbus, OH, USA

Krissett A. Loya-Bodiford, MPH, BS Clinical Division, Orthopedic Department, Institute of Orthopedic Research and Education, Houston, TX, USA

Brett Lurie, BSc(Med), MBBS(Hons1) Magnetic Resonance Imaging Division, Department of Radiology, Hospital for Special Surgery, New York, NY, USA

Francesc Malagelada, MD Department of Orthopaedics, South West London Elective Orthopaedic Centre, Surrey, UK

Rodrigo Mardones, MD Tissue Engineering Lab, Orthopedics Department, Clinica Las Condes, Santiago, Chile

Oliver Marín-Peña, MD Orthopedic Surgery and Traumatology, Hip and Knee Orthopedic Surgery, University Hospital Infanta Leonor, Madrid, Spain

Hal David Martin, DO Hip Preservation Center, Baylor University Medical Center, Dallas, TX, USA

RobRoy L. Martin, PhD, PT, CSCS Department of Physical Therapy, UPMC—Center for Sports Medicine, Duquesne University, Pittsburgh, PA, USA

Scott D. Martin, MD Division of Sports Medicine, Department of Orthopedic Surgery, Brigham and Women's Hospital/Harvard Medical School, Boston, MA, USA

Richard C. Mather III, MD Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, USA

Sean Mc Millan, DO Orthopedic Sports Medicine, Lourdes Medical Associates, Burlington, NJ, USA

Andrew W. McCaskie, MB ChB, MMus, MD, FRCS, FRCS(T&O) Division of Trauma and Orthopaedic Surgery, Department of Surgery, University of Cambridge, Cambridge University Hospitals NHS Foundation Trust, Cambridge, Cambridgeshire, UK

Frank McCormick, MD Department of Orthopedic Surgery, Sports Medicine, Rush University, Chicago, IL, USA

Morteza Meftah, MD Orthopaedic Surgery, New York University School of Medicine, Hospital for Joint Disease, New York, NY, USA

Omer Mei-Dan, MD Department of Orthopaedics, University of Colorado, Boulder, CO, USA

Nicholas G.H. Mohtadi, MD, MSc, FRCSC Division of Orthopaedics, Department of Surgery, Peter Longheed Centre, University of Calgary, Calgary, AB, Canada

Michael A. Mont, MD Rubin Institute for Advanced Orthopedics, Center for Joint Preservation and Replacement, Sinai Hospital of Baltimore, Baltimore, MD, USA

Nicole I. Montgomery, MD Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, USA

Jeffrey F. Murray, DO Division of Sports Medicine, Department of Orthopedics, University of Massachusetts Memorial Medical Center, Worcester, MA, USA

Donald Anthony Neumann, PT, PhD, FAPTA Department of Physical Therapy, Marquette University, Milwaukee, WI, USA

Michael L. Nguyen, MD Division of Sports Medicine, Department of Orthopedic Surgery, Stanford University Medical Center, Redwood City, CA, USA

Shane J. Nho, MD, MS Department of Orthopedic Surgery, Hip Preservation Center, Section of Sports Medicine, Rush Medical College of Rush University, Chicago, IL, USA

Takashi Nishii, MD, PhD Department of Orthopaedic Medical Engineering, Osaka University Graduate School of Medicine, Suita, Japan

Catherine A. Nosal, BS University of Michigan, Ann Arbor, MI, USA

John M. O'Donnell, MBBS, FRACS, FAOrthA Hip Arthroscopy Australia, St. Vincents Private Hospital, Richmond, VIC, Australia

John N. O'Hara, FRCS, FRCR, MCh The Birmingham Hip Clinic, Birmingham, UK

Amo Oduro, MBBS, FRCA, FRCP Anaesthesia, Papworth Hospital, Cambridge, UK

Adriana M.L. Oliveira, MD Department of Radiology, Musculoskeletal Imaging and Interventions, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA

George Chukwuka Ozoude, MD Division of Sports Medicine, Department of Orthopaedic Surgery, University of Texas Health Science Center at Houston, Houston, TX, USA

Andrew R. Palisch, MD Department of Radiology, Baylor College of Medicine, Houston, TX, USA

Ian James Palmer, PhD Hip Preservation Center, Baylor University Medical Center, Dallas, TX, USA

William E. Palmer, MD Division of Musculoskeletal Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA

Athanasis V. Papavasileiou, BSc, MD, PhD Department of Physical Education and Sports Science, Aristotle University of Thessaloniki, Thessaloniki, Greece

Sports Injuries Lab, St. Lukes General Hospital, Thessaloniki, Greece

Sebastien Paratte, MD Department of Orthopedic Surgery, Institute for Locomotion, Sainte-Marguerite Hospital, Aix-Marseille University, Marseille, France

Caroline N. Park, BA Division of Clinical Research, Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, NY, USA

Javad Parvizi, MD, FRCS Adult Lower Limb Reconstruction, Rothman Institute, Thomas Jefferson University Hospital, Philadelphia, PA, USA

Cecilia Pascual-Garrido, MD Hip Preservation, Sports Medicine, University of Colorado, Boulder, CO, USA

Lourenço P. Peixoto, MD Center for Outcomes-Based Orthopaedic Research, The Steadman Philippon Research Institute, Vail, CO, USA

Marc J. Philippon, MD The Steadman Clinic, Vail, CO, USA

Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada

Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA

Daniel Camargo Pimentel, MD, PhD Department of Orthopedics and Traumatology, University of São Paulo, School of Medicine, Spine Center, São Paulo, Brazil

Giancarlo C. Polesello, PhD Department of Orthopedic Surgery and Traumatology, Hip Group, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil

Tom Pollard, MD, FRCS(Tr&Orth), BSc(Hons) Department of Orthopaedics, Royal Berkshire Hospital, Reading, UK

Matthew A. Popa, MD Department of Orthopaedic Surgery, University Hospitals Case Medical Center, Cleveland, OH, USA

Hollis G. Potter, MD MRI Research, Magnetic Resonance Imaging, Hospital for Special Surgery, New York, NY, USA

Department of Radiology, Weill Medical College of Cornell University, New York, NY, USA

Hernan A. Prieto, MD Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA

Michael George Pritchard, BMedSci, MBBS(Hons), FRACS(Orth) Wellington Orthopaedics, University of Tasmania, Calvary Hospital Hobart, Hobart, TAS, Australia

David M. Privitera, MD Division of Sports Medicine, Department of Orthopedic Surgery, Rochester Regional Health System, Rochester, NY, USA

Marcelo C. Queiroz, MD Department of Orthopedic Surgery and Traumatology, Hip Group, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil

Narendra Ramisetty, MBBS, AFRCS, FRCS (Orth) The Villar Bajwa Practice, Spire Cambridge Lea Hospital, Cambridge, UK

Anil S. Ranawat, MD Division of Sports Medicine and Joint Preservation, Hospital for Special Surgery, New York, NY, USA

James B. Richardson, MBChB, FRCS, MD Department of Orthopaedics, Keele University, Oswestry, UK

Craig M. Roberto, DO Division of Sports Medicine, Department of Orthopaedics, University of Massachusetts, Worcester, MA, USA

Scott A. Rodeo, MD Department of Orthopedic Surgery, Weill Medical College of Cornell University, New York, NY, USA

Orthopedics Department, Sports Medicine and Shoulder Service, The Hospital for Special Surgery, New York, NY, USA

New York Giants Football, New York, NY, USA

Scott B. Rosenfeld, MD Department of Pediatric Orthopaedic Surgery, Texas Children's Hospital, Houston, TX, USA

Department of Orthopaedic Surgery, Baylor College of Medicine, Houston, TX, USA

Ardavan Ariel Saadat, BS, MD Institute of Orthopedic Research and Education, Baylor College of Medicine, Houston, TX, USA

Department of Orthopaedic Surgery, University of Illinois College of Medicine at Chicago, Chicago, IL, USA

Hassan Sadri, MD Department of Orthopaedic Surgery, Clinique Bois-Cerf, Lausanne, Switzerland

Marc R. Safran, MD Division of Sports Medicine, Department of Orthopaedic Surgery, Stanford University, Redwood City, CA, USA

Hatem Galal Said, MD, FRCSI Orthopaedics & Traumatology, Arthroscopy, Assiut University Hospital, Assiut, Egypt

Michael J. Salata, MD Department of Orthopaedic Surgery, Center for Joint Preservation and Cartilage Restoration, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH, USA

Matías Salineros, MD Orthopaedic Department, Joint Reconstruction, Clinica Las Condes, Santiago, Chile

Orthopaedic Department, Universidad de los Andes, Santiago, Chile

Srihari C. Sampath, MD, PhD, MPhil Division of Musculoskeletal Imaging and Intervention, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA

Srinath C. Sampath, MD, PhD, MPhil Division of Musculoskeletal Imaging and Intervention, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA

Thomas G. Sampson, MD Hip Arthroscopy, Post Street Surgery, Post Street Orthopaedics and Sports Medicine, San Francisco, CA, USA

Richard F. Santore, MD Orthopaedic Surgery, Sharp Memorial Hospital, San Diego, CA, USA
Orthopaedic Surgery, University of California San Diego, San Diego, CA, USA

Hind Sawan, BS Department of Orthopaedic Research, The Rothman Institute at Thomas Jefferson University, Philadelphia, PA, USA

Ernest Schilders, MD, FRCS, FFSEM The London Hip Arthroscopy Center, Orthopaedics, The Wellington Hospital, London, UK
Leeds Metropolitan University, Leeds, UK

Kevin Shelburne, PhD Department of Mechanical and Materials Engineering, The University of Denver, Denver, CO, USA

Vijay D. Shetty, MS(Orth) Orthopaedic Division, Hiranandani Orthopaedic Medical Education (HOME), Dr. L. H. Hiranandani Hospital, Mumbai, Maharashtra, India

Sangmin Ryan Shin, MD Department of Orthopaedic Surgery, Southeast Permanente Med Group, Atlanta, GA, USA

Amardeep Singh, MBBS, MS Division of Orthopaedic Surgery, University of Ottawa, Ottawa, ON, Canada

Orthopaedic Surgery, The Ottawa Hospital, Ottawa, ON, Canada

Parminder J. Singh, MBBS, MRCS, FRCS(Tr&Orth), MS, FRACS Department of Orthopaedics, Maroondah Hospital, Monash University, Monash, VIC, Australia

Daniel L. Skinner, MBChB, BSc (Hons) Orthopaedic Department, Research Division, Elective Orthopaedic Centre, Epsom General Hospital, Surrey, England

Kjeld Søballe, MD, DMSc Department of Orthopaedics, Section for Hip Surgery, Aarhus University Hospital, Aarhus, Denmark

Giles H. Stafford, MBBS, BSc (Hons), FRCS The EOC, Epsom General Hospital, Surrey, UK

Rebecca M. Stone, MS, ATC Minnesota Orthopedic Sports Medicine Institute at Twin Cities Orthopedics, Edina, MN, USA

Francesco Strambi, MD Research Unit, South West London Elective Orthopaedic Centre, Surrey, UK

Allston J. Stubbs, MD, MBA Division of Sports Medicine, Department of Orthopaedic Surgery, Wake Forest University, Winston-Salem, NC, USA

S. David Stulberg, MD Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA

Carlos Suarez-Ahedo, MD Department of Adult Joint Reconstruction, National Rehabilitation Institute of Mexico, Mexico D.F., Mexico

Nobuhiko Sugano, MD, PhD Department of Orthopaedic Medical Engineering, Osaka University Graduate School of Medicine, Suita, Japan

Jaron P. Sullivan, MD Division of Sports Medicine, Department of Orthopaedic Surgery, Vanderbilt University, Nashville, TN, USA

Moritz Tannast, MD Department of Orthopaedic Surgery, University of Bern, Inselspital, Bern, Switzerland

Kristian Thorborg, PhD Sports Orthopedic Research Center—Copenhagen, Arthroscopic Center Amager, Copenhagen University Hospital, Copenhagen, Denmark

Andrew John Timperley, MBChB, FRCS, DPhil(Oxon) Centre for Hip Surgery (Exeter), Princess Elizabeth Orthopaedic Hospital, Royal Devon and Exeter Hospital NHS Foundation Trust, Exeter, UK

Michael R. Torry, PhD Biomechanics Division, College of Applied Science and Technology, Illinois State University, Normal, IL, USA

Anders Troelsen, MD, PhD, DMSc Clinical Orthopaedic Research Hvidovre and Department of Orthopaedics, Section for Hip and Knee Surgery, Copenhagen University Hospital, Hvidovre, Copenhagen, Denmark

Rocky S. Tuan, PhD Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh, Pittsburgh, PA, USA

Joshua A. Tuck, DO, MS Division of Sports Medicine, Department of Orthopaedic Surgery, University of Massachusetts Medical School, University of Massachusetts Memorial Medical Center, Worcester, MA, USA

Veronica Ulici, MD, PhD Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh, Pittsburgh, PA, USA

Stephen Webb, MBBCh, FRCA, FFICM Anaesthesia, Papworth Hospital, Cambridge, UK

Glenn D. Wera, MD Department of Orthopaedic Surgery, University Hospitals Case Medical Center, Cleveland, OH, USA

Sarah L. Whitehouse, PhD Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia

Paul Whittingham-Jones, MBBS, FRCS Trauma and Orthopaedics, Surgery, West Hertfordshire Hospitals NHS Trust, Watford and St. Albans City Hospital, Herts, UK

Matthew J. Wilson, FRCS(Eng), FRCS(Tr&Orth) Exeter Hip Unit, Princess Elizabeth Orthopaedic Centre, Exeter, UK

David A. Young, FRACS Melbourne Orthopaedic Group, Melbourne, Australia

Simon W. Young, FRACS Division of Sports Medicine, Department of Orthopaedic Surgery, Stanford University, Redwood City, CA, USA

About the Authors

Joseph C. McCarthy, MD is the chief of Reconstructive Hip and Knee Joint Surgery at Newton Wellesley Hospital, a member of the joint arthroplasty staff at Massachusetts General Hospital, and Associate professor of Orthopedic Surgery at Harvard University, part-time. He is also a clinical professor of Orthopedic Surgery at Tufts University for the past 20 years. He has had a long-standing interest in hip joint preservation and, along with Dr. James Glick, pioneered hip arthroscopy in the United States. This focus included published work on hip anatomy and morphology as well as minimally invasive surgical approaches, development of a dedicated hip distractor and instruments solely for use in hip arthroscopic procedures.

Dr. McCarthy completed his undergraduate education at the University of Notre Dame, during which time he played on the varsity hockey and baseball teams. He then matriculated to Georgetown University

medical school. Following a medical internship at Georgetown University Hospital, he completed surgical and orthopedic training at Tufts University in Boston. After residency, he completed a fellowship in hip and knee reconstructive joint surgery at Massachusetts General Hospital under the direction of Dr. William Harris and Hugh Chandler. Subsequently his entire practice career has been in Boston.

During his career he has served the American Academy of Orthopedic Surgeons as a member of the Committee on the Hip, program chair for the Hip Society, and has been on the board of directors for both the AAOS and the orthopedic research and education foundation (OREF). He has also been the chair of the board of specialty societies of the AAOS and chairman of the Shands Society of OREF. He is a founding member of the International Society of Hip Arthroscopy. He is also past president of the American Association of Hip and Knee Surgeons and the International Society of Hip Arthroscopy.

For his research he has received both the Otto Aufranc Award and the Frank Stinchfield Award from the Hip Society and the AAOS. Both of these awards were for work on understanding the acetabular labrum and, when injured, its relationship to degenerative arthritis of the hip joint. Dr. McCarthy has been Director of the biologic hip portion of the Harvard hip/knee course for the past 8 years and has been co-chairman of the AAOS Learning Center hip arthroscopy course for the past 12 years.

Dr. McCarthy has been committed to scholarship in the field of hip preservation, publishing the first validated hip outcomes scoring system for the native hip, as well as been an active member of MAHORN (Multi-center Arthroscopic Hip Outcomes Research Network). Most recently he has authored work on hip joint lubrication and EMG muscle effects associated with acetabular labral tears. Dr. McCarthy has authored over 175 peer-reviewed articles, posters, book chapters, and books.

Philip C. Noble, BE MEngSci PhD was educated in Australia in diverse subjects including Engineering, the Physical Sciences, and Classical Philosophy. After being awarded a Winston Churchill Fellowship in 1979, he traveled throughout Europe, the United Kingdom, and North America and eventually returned to Houston to work in the Texas Medical Center. He was awarded his PhD from the University of Strathclyde in Glasgow, Scotland, where he studied the biomechanics of the hip and hip replacement under the direction of Professor John Paul. He now serves as the Director of Research in the Institute of Orthopedic

Research and Education and holds the rank of Professor in the Department of Orthopaedic Surgery at Baylor College of Medicine.

Phil Noble's research interests include the biomechanics of the hip and knee joints and their replacements, the morphometry of human bones, the biology and biomechanics of cartilage, tendon, and ligaments, and the quantitative assessment of clinical outcomes. He has numerous publications related to the hip and is a frequent speaker at national and international conferences. He is also a member of The Hip Society, The Knee Society, The International Hip Society, and The American Academy of Orthopedic Surgeons. Dr. Noble is internationally renowned as a designer and innovator and is the holder of numerous patents. He has participated in the development of more than 20 designs of total hip and knee replacements and associated instrumentation.

Dr. Noble is active in philanthropic activities and is particularly interested in issues related to diversity and underrepresented minorities. He is also committed to mentorship and has been instrumental in the training and development of over 150 postgraduates interested in careers in orthopedic surgery and related research. His recreational interests include foreign travel, gardening, and ornamental glass.

Richard N. Villar, BSc (Hons) MA MS FRCS qualified in medicine at St. Thomas's Hospital in London (UK) before joining the military as the Regimental Medical Officer to the SAS. After leaving the Army he completed his surgical studies in Southampton and Cambridge, joining the consultant staff of Addenbrooke's Hospital (Cambridge) in 1988. It was there that he developed his interest in conservative hip surgery and now has one of the largest experiences of hip arthroscopic (keyhole) procedures in the world.

Now in independent practice, Richard is a Founding Member, and first President, of the International Society for Hip Arthroscopy. He has served as a member of Council of the British Orthopaedic Association, is an assessor for the General Medical Council, and is a member of the United Kingdom's Disaster Emergency Response Team.

In this latter capacity he was operational in the aftermaths of the Kashmir, Java, and Haiti earthquakes. Richard regards orthopedic surgery as both his profession and hobby.

When not dealing with problematic hips and knees, he can be found either playing his classical guitar or on a mountainside, maintaining his skills as an International Mountain Leader.

Part I

Structure and Function of the Tissues of the Hip (Normal and Diseased)

Richard E. Field

Development of the Hip: Phylogeny and Ontogeny

1

Tom Hogervorst, Karl-Philipp Kienle, and Moritz Tannast

Introduction

The human hip is a conceptually simple ball and socket joint, but functions as part of a complex anatomic unit consisting of the femur, the pelvis and the lumbosacral spine. This unit is highly variable between different species of animals. Human hip evolution is characterized by obligate bipedal gait and encephalization (development of a disproportionately enlarged brain). This makes the female pelvis the only skeletal element that conveys information about these two most peculiar traits of human evolution. It shows both the adaptations that occurred to facilitate a permanent bipedal gait and, at the same time, the adaptations to accommodate the birth of a large-brained baby.

Human hip morphogenesis can deviate from its normal pathway by developmental hip disorders. Common developmental hip disorders such as developmental dysplasia of the hip, slipped capital femoral epiphysis (SCFE) but also femoroacetabular impingement can be explained from an evolutionary perspective. Below, we review relevant aspects of evolution (phylogeny) and human hip morphogenesis (ontogeny) that are relevant to the understanding of hip morphotypes and related hip disorders.

Evolution of Bone and Locomotion

Mineralized tissues (enamel, dentine and bone) were a major breakthrough in evolution. Calcium carbonate (CaCO_3), the common constituent of rock, was always present in ocean water and started being used as reinforcement in organisms about half a billion years ago in the Cambrian era [1]. Since then, fossils demonstrate the calcified remains of life's evolution. But the fossil record will, by definition, always remain incomplete, and it is genetic studies that have revolutionized our understanding of the early stages in evolution of mineralized tissues. For example, a related family of genes that likely arose from a common ancestor produces the mineralized tissues for teeth (enamel, dentine) and skeletons (bone extracellular matrix) [2]. Teeth-like structures probably evolved first, allowing new forms of predation, followed by a dermal exoskeleton of dentine, enamel and bone [3]. Teeth produced big changes in feeding and predation while development of endo- and exoskeletons allowed radical changes in locomotion. Bone likely appeared as an attachment to dentine in scales [2] in exoskeletons. The stunning fossils from the Cambrian era document an explosion in the possible basic structures of bodies (body plans) [4, 5]. The vast majority of these have long gone extinct and the remaining body plans (i.e. at phylum and subphylum level) now show striking *invariability*, for which genetic explanations have been suggested recently [6]. In contrast, within phyla, a spectacular variety in animal form has developed. On the phylum level, the existence of an endo- versus an exoskeleton (e.g. Arthropodae) imparts major differences in function. An exoskeleton affords strength and allows limbs to be longer which enhances both protection and locomotion. An endoskeleton has the advantage over exoskeletons that it frees the skin to function as sensory and thermoregulatory organ.

Already in lobe-finned fishes such as the *Eusthenopteron* (Devonian period [415–375 million years ago]), we find the primordial tetrapod body structure consisting of a longitudinal body axis with four perpendicular appendages. Indeed, their paired breast and pelvic fins have the pattern of our

T. Hogervorst, MD, PhD (✉)
Haga Ziekenhuis, Lokatie Sportlaan,
Sportlaan 600, Den Haag 2566MJ, the Netherlands
e-mail: thogervorst@gmail.com

K.-P. Kienle, MD
Department of Orthopedic Surgery, University Bern,
Bern, Switzerland
e-mail: philipp.kienle@gmail.com

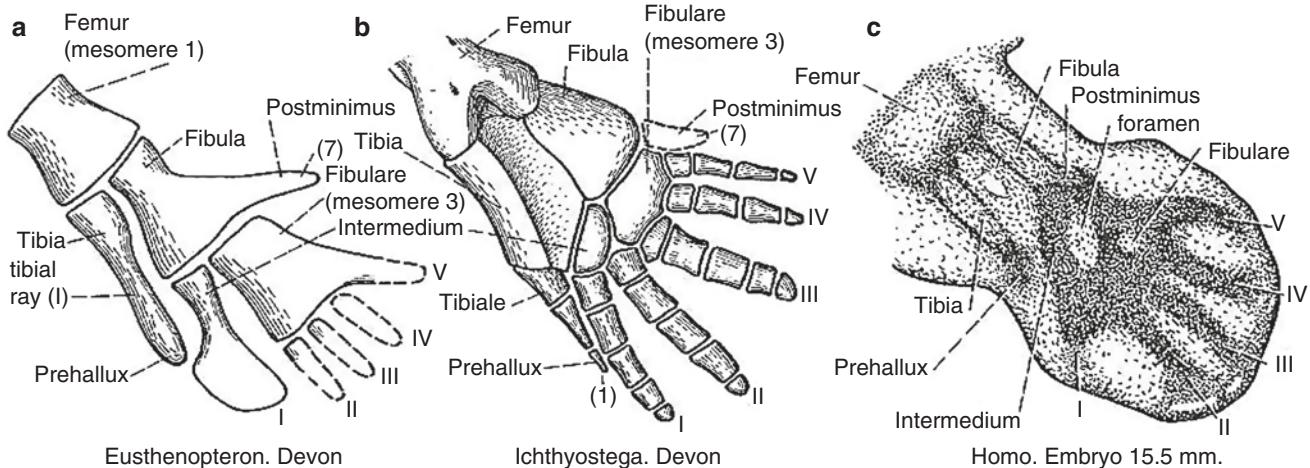
M. Tannast, MD
Department of Orthopaedic Surgery, University of Bern,
Inselspital, Murtenstrasse, Bern 3010, Switzerland
e-mail: moritz.tannast@insel.ch

limbs today: one proximal (femur and humerus) and two distal bones (tibia/fibula and radius/ulna, Fig. 1.1). Their pelvic fins had what can be interpreted as a proto-femur. Once “on land” a suite of further developments improved locomotion, both in endurance and speed.

Evolution of Tetrapod Gait

The development of terrestrial life forms hinged on the evolution of limbs from paired fins, limbs that, eventually, could bear the animal’s weight against gravity (Fig. 1.2). Molecular genetic studies now show the fin to limb transformation can be made by subtle changes in a relatively small number of genetic switches [7], i.e. without the need for extraordinary processes or genetic mechanisms. Amphibians started walking with a sprawling gait, with the limbs still perpendicular to the long axis of the body—as with the paired fins in fish. But on land this requires permanent elevation of the body above the plane of the appendages to prevent contact between the trunk and the ground (Fig. 1.3).

Much heavier loads can be carried by limbs that are vertical than those that are horizontal, and so, vertical limb alignment allowed dinosaurs to grow to a huge size. The emergence of vertical limb positions and rounding of the hip joint also enabled increased stride length, while adoption of an erect posture decoupled walking from breathing. This increased stamina, as running no longer counteracted breathing [8].


Mammalian Hip Types

Mammals display large variation in hip morphology. Conceptually, two types of hip can be distinguished, *coxa recta* and *coxa rotunda* [9, 10], based on differences in proximal

femoral concavity [11]. Concavity is a compound measure, influenced by the relative dimensions of the femoral head and neck (*head-neck ratio*), the roundness of the femoral head (*sphericity*) and the position of the femoral head relative to the neck [12]. Concavity thus determines the potential for femoral impingement (the acetabular parameters are depth and sphericity). Concavity can be quantified by angular measurements, e.g. alpha [13], beta, gamma and delta angles [12] and linear measurements (offset) or ratios. Coxa recta and rotunda relate to the ossification pattern of the proximal femur [14] and locomotor categories. Specifically, a single coalescence of the proximal femur is seen in coxa recta, whereas separation of the trochanteric and capital epiphysis is seen in coxa rotunda. Typically, coxa recta is seen in runners and jumpers, rotunda in climbers, amphibians and swimmers (Fig. 1.4. horse/walrus). In humans (and in the nonhuman apes), the two epiphyses of the proximal femur separate, i.e. a coxa rotunda ossification pattern. However, some morphotypes of the human hip appear to mimic the normal morphology of species with “coalesced” epiphyses [14], i.e. a coxa recta or “cam-type” hip [15].

Locomotion in the Nonhuman Apes

The nonhuman apes have a varied repertoire of locomotion including arm slinging, climbing, quadrupedal knuckle walking and bipedal walking. The nonhuman apes (chimpanzee, bonobo, gorilla, gibbon, orangutan) do not run bipedally [16], and their bipedal walking is not the true upright walking seen in modern humans. Due to a stiff spine [17], bipedal walking in the nonhuman apes requires flexion in both hips and knees to position the trunk over the feet (Fig. 1.5). Bipedal walking in the nonhuman apes therefore requires constant activity of hip extensors (hamstrings) and

Fig. 1.1 The ancient building plan of (hind) limbs. Eusthenopteron is a lobe-finned fish, Ichthyostega is a *fishapod*, comparable to Acanthostega (Fig. 1.2) From [81] and Hogervorst T, Bouma HW,

de Vos J. Evolution of the hip and pelvis. Acta Orthop Suppl. 2009 Aug;80(336):1–39. Reprinted with permission from Informa Healthcare