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Preface

June 23, 2012 was Alan Turing’s 100th birthday. In the months preceding and
following this date, there were widespread events commemorating his life and
work. Those of us who had been writing about his work received more invitations
to participate than we could accommodate. Speakers at one of the many Turing
conferences were often invited to contribute to an associated volume of essays. This
book developed from such a meeting, sponsored by the Swiss Logic Society, in
Zurich in October 2012. The table of contents hints at the breadth of developments
arising from Turing’s insights. However, there was little public understanding of this
at the time of Turing’s tragic early death in 1954.

Thinking back on my own 65 years of involvement with Turing’s contributions,
I see my own dawning appreciation of the full significance of work I had been
viewing in a narrow technical way, as part of a gradual shift in the understanding
of the crucial role of his contributions by the general educated public. In 1951,
learning to program the new ORDVAC computer shortly after I had taught a course
on computability theory based on Turing machines, it became clear to me that the
craft of making computer programs was the same as that of constructing Turing
machines. But I was still far from realizing how deep the connection is. In the
preface to my 1958 Computability & Unsolvability, I wrote:

The existence of universal Turing machines confirms the belief . . . that it is possible to
construct a single “all purpose” digital computer on which can be programmed (subject of
course to limitations of time and memory capacity) any problem that could be programmed
for any conceivable deterministic digital computer.. . . I was very pleased when [it was]
suggested the book be included in [the] Information Processing and Computers Series.

My next publication that commented explicitly on Turing’s work and its implica-
tions was for a collection of essays on various aspects of current mathematical work
that appeared in 1978. My essay [3] began:

. . . during the Second World War . . . the British were able to systematically decipher [the
German] secret codes. These codes were based on a special machine, the “Enigma” . . . Alan
Turing had designed a special machine for . . . decoding messages enciphered using the
Enigma.

v
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. . . around 1936 [Turing gave] a cogent and complete logical analysis of the notion of
“computation.” . . . [This] led to the conclusion that it should be possible to construct
“universal” computers which could be programmed to carry out any possible computation.

The absolute secrecy surrounding information about the remarkable British effort
to break the German codes had evidently been at least partially lifted. It began
to be widely realized that Turing had made an important contribution to the war
effort. For myself, I had come to understand that the relationship between Turing’s
mathematical construction that he called a “universal machine” and the actual
computers being built in the postwar years was much more than a suggestive
analogy. Rather it was the purely mathematical abstraction that suggested that,
given appropriate underlying technology, an “all-purpose” computing device could
be built.

The pieces began to come together when the paper [1], published in 1977,
explained that Turing had been involved in a serious effort to build a working gen-
eral purpose stored-program computer, his Automatic Computing Engine (ACE).
Andrew Hodges’s wonderful biography (1983) [5] filled in some of the gaps. Finally
Turing’s remarkably prescient view of the future role of computers became clear
when, in [2], Turing’s actual design for the ACE as well as the text of an address
he delivered to the London Mathematical Society on the future role of digital
computers were published. It was in this new heady atmosphere that I wrote my
essay [4] in which I insisted that it was Turing’s abstract universal machine, which
itself had developed in the context of decades of theoretical research in mathe-
matical logic, that had provided the underlying model for the all-purpose stored
program digital computer. This was very much against the views then dominant
in publications about the history of computers, at least in the USA. Meanwhile,
noting that 1986 marked the 50th anniversary of Turing’s universal machine, Rolf
Herken organized a collection of essays in commemoration. There were 28 essays
by mathematicians, physicists, computer scientists, and philosophers, reflecting the
breadth and significance of Turing’s work.

June 28, 2004, 5 days after Turing’s 90th birthday, was Turing Day in Lausanne.
Turing Day was celebrated with a conference at the Swiss Federal Institute of
Technology organized by Christof Teuscher, at the time still a graduate student
there. There were nine speakers at this one-day conference with over 200 attendees.
Teuscher also edited the follow-up volume of essays [7] to which there were 25
contributors from remarkably diverse fields of interest. Of note were two essays
on generally neglected aspects of Turing’s work. One, written by Teuscher himself,
was about Turing’s work on neural nets written in 1948. The other recalled Turing’s
work during the final month’s of his life on mathematical biology, particularly
on morphogenesis: Turing had provided a model showing how patterns such as
the markings on a cow’s hide could be produced by the interactions of two
chemicals. A more bizarre topic, discussed in a number of the essays, which had
developed at the time under the name hypercomputation, sought ways to compute
the uncomputable, in effect proposing to carry out infinitely many actions in a finite
time. This was particularly ironic because computer scientists were finding that mere
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Turing computability was insufficient for practical computation and were seeking to
classify algorithms according to criteria for feasibility.

As Turing’s centenary approached, there was a crescendo of events bringing
Turing’s importance to the attention of the public. An apology by the British
government for his barbaric mistreatment along with a commemorative postage
stamp was a belated attempt to rectify the unrectifiable. I myself spoke about
Turing at various places in the USA and Britain and also in Mexico, Peru, Belgium,
Switzerland, and Italy, crossing and recrossing the Atlantic Ocean several times
in a few months’ time. A high point was attending a banquet at King’s College,
Cambridge (Turing’s college), with members of Turing’s family present, celebrating
his actual 100th birthday. I’m very fond of Zurich and was delighted to speak
at the conference there from which this volume derives. The perhaps inevitable
consequence of Alan Turing’s developing fame was Hollywood providing in The
Imitation Game its utterly distorted version of his life and work.

Considering the authors whose contributions the editors have managed to gather
for this volume, I feel honored to be included among them. When it turned out
that my good friend Wilfried Sieg and I were writing on very similar subjects,
we agreed to join forces, providing for me a very enjoyable experience. Among
the varied contributions, I particularly enjoyed reading the essay by Jack Copeland
and Giovanni Sommaruga on Zuse’s early work on computers. I had been properly
chastised for omitting mention of Zuse in my The Universal Computer, and I did
add a paragraph about him in the updated version of the book for Turing’s centenary.
However, I had never really studied his work and I have learned a good deal about it
from this excellent essay. The writings of Sol Feferman can always be depended on
to show deep and careful thought. I very much enjoyed hearing Stewart Shapiro’s
talk at the conference in Zurich, and I look forward to reading his essay. Barry
Cooper has, of course, been a driving force in the 2012 celebrations of Alan Turing
and in the “Computability in Europe” movement. Finally, I want to thank Giovanni
Sommaruga and Thomas Strahm for bringing together these authors and editing this
appealing volume.

Berkeley, CA, USA Martin Davis
February 2015
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Introduction

During the beginning and about half of Turing’s short life as a scientist and
philosopher, the notions of computation and computability dazzled the mind of a
lot of the most brilliant logicians and mathematicians. Some of the most prominent
figures of this group of people are Alonzo Church, Kurt Gödel, Jacques Herbrand,
Stephen Kleene, and Emil Post—and of course Alan Turing. The second quarter
of the twentieth century was such a melting pot of ideas, conceptions, theses, and
theories that it is worthwhile to come back to it and to dive into it over and over
again. That’s what this volume’s first part is about.

What is the point of looking back, of turning back to the past? What is the good
of looking at the history, e.g., of the notion of computability? The look backwards
serves to better understand the present. One gets to understand the origin, the core
ideas, or notions at the beginning of a whole development. The systematical value
of the historical perspective may also lie in the insight that there is more to the past
than being the origin of the present, that there is a potential there for alternative
developments, that things could have developed differently, and even that things
could still develop differently. The past and especially a look at the past may thereby
become a source of inspiration for new developments. Looking at the past may
contribute to planning the future, if one starts to wonder: Where do we come from?
Where are we going to? And where do we want to go?

In the second half of the last century and up to this very day, these ideas,
conceptions, etc. and in particular Turing’s gave rise to a plethora of new logical
and mathematical theories, fields of research, some of them extensions or variations,
and others novel applications of Turing’s conceptions and theories. This volume’s
second part aims at presenting a survey of a considerable part of subsequent
and contemporary logical and mathematical research influenced and sparked off,
directly or indirectly, by Turing’s logical mathematical ideas, ideas concerning
computability and computation.

These generalizations can take on different shapes and go in different directions.
It is possible to generalize concepts, theses, or theories of Turing’s (e.g., gener-
alizing his thesis to other structures, or his machine concept to also account for
the infinite). But it is equally possible to take Turing’s fulcrum and by varying it

ix
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think of new alternatives to it. Furthermore, seeds of notions or conceptions can
be unfolded into full-blown theories (e.g., of Turing degrees). Or one can take a
problem of Turing’s and search for or discover solutions to it, new and different
from Turing’s own solution (e.g., transfinite rec. progressions). And what is the
meaning of those generalizations in a broad sense? They all can be understood as
explorations of Turing’s own rich conceptual space (even still roughly restricted to
the topic of computability). They all mean to further research into its wealth and its
many dimensions, to analyze and transgress it, to widen and enrich it. And they all
hint at the “fact” that there is yet more to be found in this mine of technical ideas.

Thus, Part I goes back to the roots of Turing’s own as well as to the ideas of
some of his contemporaries. Part II is dedicated to the utterly prolific outgrow of
these ideas. Bringing Parts I and II together raises some questions such as: How
was it possible that these original ideas, conceptions, and theories lead to such an
explosion of new and highly innovative approaches in computability theory and
theoretical computer science? How is this phenomenon to be understood? And what
does it mean? Is there perhaps even more to this past which might be fruitful and of
great interest in and for the future? A reflection on computability theory in general
and Turing’s in particular is what Part III of this volume is all about.

Turing’s discoveries, important mathematical logical results and theses, etc. have
also set off more penetrating, more daring, or more speculative questions reaching
to the outskirts or to the core of mathematics. They raise questions concerning the
computable and the incomputable, and concerning the meaning of computability
and incomputability w.r.t. the real world. And the philosophical entanglements of
Turing’s thesis stir up questions such as: What is a proof? What is a theorem and
what is a thesis? And different Turing ways lead to the same question, namely:
What is mathematics? And what are its visions and its dreams? This needn’t be idle
speculation. If well and carefully done, it may in turn spark off new mathematical
ideas and/or new mathematical research insights. But even if it doesn’t, there can be
plenty of meaning to it.

The spirit of the first part might be characterized as: There’s a future to the past.
The second part’s spirit may be captured by: There’s a future and a past to the
present. And the third part’s spirit might be put in the formula: Even if there isn’t a
path from the present to the future, there needn’t by no means be nothing.

This volume makes no claim to completeness of coverage of the whole range of
mathematical and logical research initiated or triggered off by Turing’s respective
ideas: Nothing is said or written about Turing and computational complexity theory,
no mention is made of Turing computation and probability theory either, to list just
a couple of examples. Even less so do Turing’s ideas on number theory, cryptology,
artificial intelligence, or mathematical biology and the offsprings of those ideas
play any role in this volume.

Let’s now turn to what actually can be found in this volume:
In 1936, two models of computation were proposed in England and in the

USA, resp., which are virtually identical. Davis and Sieg claim that this is not
a mere coincidence, but a natural consequence of the way in which Turing and
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Post conceived of steps in mechanical procedures on finite strings. Davis and
Sieg also claim that the unity of their approaches, Post’s mathematical work on
normal forms of production systems on the one side, and Turing’s philosophical
analysis of mechanical procedures on the other, is of deep significance for the
theory of computability. Moreover, Davis and Sieg point out that the investigation
by mathematical logicians like Hilbert, Bernays, Herbrand, Gödel, and others of
mechanical procedures on syntactic configurations were following a line of research
very different from the one of Post and Turing. While the former were concentrating
on paradigmatic recursive procedures for calculating the values of number-theoretic
functions, the latter were struck by the fundamental and powerful character of
string manipulations. In what Davis and Sieg call “Turing’s Central Thesis,”
Turing correlates the informal notion of “symbolic configuration” with the precise
mathematical one of “finite string of symbols.” This thesis has methodologically the
problematic status of a statement somewhere between a definition and a theorem.
Davis and Sieg finally raise the question whether there is a way of avoiding appeal
to such a “Central Thesis,” and answer it tentatively positively by referring to Sieg’s
representation theorem for computable discrete dynamical systems.

Thomas’ paper focuses on a specific and also very prominent aspect of Turing’s
heritage, namely on his analysis of a machine or algorithm, that is “a process of
symbolic computation fixed by an unambiguous and finite description.”1 Thomas
outlines the history of algorithms starting with what he calls its prehistory and
its most important figures, Al-Khwarizmi and Leibniz. The history proper may
already start with Boole and Frege, but it decidedly starts with Hilbert and his
Entscheidungsproblem, i.e. the problem whether there exists an algorithm for
deciding the validity or satisfiability resp. of a given logical formula. Turing in
1936 solved this problem in the negative, and he did this by a radical reduction
of the notion of algorithm to some very elementary steps of symbolic computation
(later called a Turing machine). According to Thomas, Turing’s work and also the
one of his contemporaries Church, Kleene, Post, and others ended a centuries-old
struggle for an understanding of the notion of algorithm and its range of applicability
called computability. This success was made possible by merging two traditions in
symbolic computation, namely arithmetic and logic. But for Thomas, 1936 not only
marks a point of final achievement, but also a point of departure for the new and
rapidly growing discipline of computer science, the starting point of what might
be conceived of as posthistory. He claims that the subsequent rise of this new
discipline changed the conception of algorithm in two ways: “First, algorithmic
methods in computer science transcend the framework of symbolic manipulation
inherent in Turing’s analysis,” and Thomas then offers an overview of such methods.
Second, he emphasizes that algorithms are today understood in the context of highly
complex software systems governing our life. “The span of orders of magnitude
realized in huge data conglomerates and software systems” is so gigantic that diverse

1The quotations in this and the following sections are referring to the article which is summarized
in the resp. section.
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methodologies are required in computer science in order to study the rich landscape
of computer systems.

After presenting a biographical sketch of Konrad Zuse, Copeland and Som-
maruga “outline the early history of the stored-program concept in the UK and the
US,” and “compare and contrast Turing’s and John von Neumann’s contributions
to the development of the concept.” They go on to argue that, contrary to the recent
prominent suggestions, the stored-program concept played a key role in computing’s
pioneering days, and they provide a logical analysis of the concept, distinguishing
four different layers (or “onion skins”) comprising the concept. This layered model
allows them to classify the contributions made by Turing, von Neumann, Eckert
and Mauchly, Clippinger, and others, and especially Zuse. Furthermore, Copeland
and Sommaruga discuss whether Zuse developed a universal computer (as he
himself claimed) or rather a general-purpose computer. In their concluding remarks,
Copeland and Sommaruga “reprise the main events in the stored-program concept’s
early history.” The history they relate begins in 1936, the date of publication of
Turing’s famous article “On Computable Numbers,” and also of Zuse’s first patent
application for a calculating machine, and runs through to 1948, when the first
electronic stored-program computer—the Manchester “Baby”—began working.

Feferman starts with a detailed summary and discussion of versions of the
Church-Turing Thesis (CT) on concrete structures given by sets of finite symbolic
configurations. He addresses the works of Gandy, Sieg as well as Dershovitz and
Gurevich, which all have in common that they “proceed by isolating basic properties
of the informal notion of effective calculability or computation in axiomatic form
and proving that any function computed according to those axioms is Turing com-
putable.” Feferman continues to note that generalizations of CT to abstract structures
must be considered as theses for algorithms. He starts by reviewing Friedman’s
approach for a general theory of computation on first order structures and the work
of Tucker and Zucker on “While” schemata over abstract algebras. Special emphasis
is put on the structure of the real numbers; in this connection, Feferman also
discusses the Blum, Shub, and Smale model of computation. A notable proposal of a
generalization of CT to abstract structures is the Tucker–Zucker thesis for algebraic
computability. The general notion of algorithm it uses leads to the fundamental
question “What is an algorithm?,” which has been addressed under this title by
Moschovakis and Gurevich in very different ways. Towards the end of his article,
Feferman deals with a specific approach to generalized computability, which has its
roots in Platek’s thesis and uses a form of least fixed point recursion on abstract
structures. Feferman concludes with a sensible proposal, the so-called “Recursion
thesis,” saying that recursion on abstract first order structures (with Booleans {T,F})
belongs to the class he calls Abstract Recursion Procedures, ARP (formerly Abstract
Computation Procedures, ACP).

Tucker and Zucker survey their work over the last few decades on generalizing
computability theory to various forms of abstract algebras. They start with the
fundamental distinction between abstract and concrete computability theory and
emphasize their working principle that “any computability theory should be focused
equally on the data types and the algorithms.” The first fundamental notion is
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the one of While computation on standard many sorted algebras, which is a high
level imperative programming language applied to many sorted signatures. After
a precise syntactical and semantical account of this language, Tucker and Zucker
address notions of universality. An interesting question is to consider various
possible definitions of semi-computability in the proposed setting. As it turns out,
different characterizations, extensionally equivalent in basic computability theory
over the natural numbers, are different in the Tucker and Zucker setting. A further
emphasis in the paper is laid on data types with continuous operations like the reals,
which leads to a general theory of many sorted partial topological algebras. Tucker
and Zucker conclude by comparing their models with related abstract models of
computation and by proposing various versions of a generalized Church–Turing
thesis for algebraic computability.

Welch gives a broad survey of models of infinitary computation, many of which
are rooted in infinite time Turing machines (ITTMs). It is the latter model that
has sparked a renewed interest in generalized computability in the last decade.
After explaining the crucial notion of “computation in the limit,” various important
properties of ITTMs are reviewed, in particular, their relationship to Kleene’s higher
type recursion. Furthermore, Welch elaborates on degree theory and the complexity
of ITTM computations as well as on a close relationship between ITTMs, Burgess’
quasi-inductive definitions, and the revision theory of truth. He then considers
variants of the ITTM model that have longer tapes than the standard model.
Afterwards Welch turns to transfinite generalizations of register machines as devised
by Sheperdson and Sturgis, resulting in infinite time register machines (ITRMs) and
ordinal register machines (ORMs); the latter model also has registers for ordinal
values. The last models he explains are possible transfinite versions of the Blum–
Shub–Smale machine, the so-called IBSSMs. Welch concludes by mentioning the
extensional equivalence (on omega strings) of continuous IBSSMs, polynomial time
ITTMs, and the safe recursive set functions due to Beckmann, Buss, and Friedman.

Gurevich reviews various semantics-to-syntax analyses of the so-called species
of algorithms, i.e., particular classes of algorithms given by semantical constraints.
In order to find a syntactic definition of such a species, e.g., a machine model, one
often needs a fulcrum, i.e., a particular viewpoint to narrow down the definition of
the particular species in order to make a computational analysis possible. Gurevich
starts with Turing’s fundamental analysis of sequential algorithms performed by
idealized human computers. According to Gurevich, Turing’s fulcrum was to
“ignore what a human computer has in mind and concentrate on what the computer
does and what the observable behavior of the computer is.” Next, Gurevich turns
to the analysis of digital algorithms by Kolmogorov in terms of Kolmogorov–
Uspenski machines and identifies its fulcrum, namely that computation is thought
of as “a physical process developing in space and time.” Then Gurevich discusses
Gandy’s analysis of computation by discrete, deterministic mechanical devices and
identifies its fulcrum in Gandy’s Principle I, according to which the representation
and working of mechanical devices must be expressible in the framework of
hereditarily finite sets. The fourth example discussed is the author’s own analysis
of the species of sequential algorithms using abstract state machines. Its fulcrum
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is: “Every sequential algorithm has its native level of abstraction. On that level, the
states can be faithfully represented by first-order structures of fixed vocabulary in
such a way that the transitions can be expressed naturally in the language of that
fixed vocabulary.”

Turing (implicitly) introduced the notion of Turing reducibility in 1939 by
making use of oracle Turing machines. This preorder induces an equivalence
relation on the continuum, which identifies reals with the same information content
and whose equivalence classes are the so-called Turing degrees. Barmpalias and
Lewis survey order-theoretic properties of degrees of typical reals, whereby sensible
notions of typicality are derived from measure and category. Barmpalias and Lewis
present a detailed history of measure and category arguments in the Turing degrees
as well as recent results in this area of research. Their main purpose is to provide
“an explicit proposal for a systematic analysis of the order theoretically definable
properties satisfied by the typical Turing degree.” Barmpalias and Lewis identify
three very basic questions which remain open, namely: (1) Are the random degrees
dense? (2) What is the measure of minimal covers? (3) Which null classes of degrees
have null upward closure?

Beklemishev’s paper relates to Turing’s just mentioned paper entitled “Systems
of logic based on ordinals,” which is very well known for its highly influential
concepts of the oracle Turing machine and of relative computability. The main
body of Turing’s 1939 paper, however, belongs to a different area of logic, namely
proof theory. It deals with transfinite recursive progressions of theories in order
to overcome Gödelian incompleteness. Turing obtained a completeness result for
˘2 statements by iterating the local reflection principle, whereas Feferman in
1962 established completeness for arbitrary arithmetic statements by iteration of
the uniform reflection principle. Turing’s and Feferman’s results have the serious
drawback that the ordinal logics are not invariant under the choice of ordinal repre-
sentations and their completeness results depend on artificial such representations.
Beklemishev’s approach is to sacrifice completeness in favor of natural choices of
ordinals. He obtains a proof-theoretic analysis of the most prominent fragments
of first order arithmetic by using the so-called smooth progressions of iterated
reflection principles.

Juraj Hromkovic’s main claim is that to properly understand Alan Turing’s
contribution to science, one ought to understand what mathematics is and what
the role of mathematics in science is. Hromkovic answers these latter questions
by comparing mathematics with a new, somewhat artificial language: “one creates a
vocabulary, word by word, and uses this vocabulary to study objects, relationships”
and whatever is accessible to the language of mathematics at a certain stage of
its development. For Leibniz, mathematics offered an instrument for automatizing
the intellectual work of humans. One expresses part of reality in the language of
mathematics or in a mathematical model, and then one calculates by means of
arithmetic. The result of this calculation is again a truth about the investigated part of
reality. Leibniz’ “dream was to achieve the same for reasoning.” He was striving for
a formal system of reasoning, a formal system of logic, analogous to arithmetic, the
formal system for the calculation with numbers. Hilbert’s dream of the perfection
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of mathematics involved the idea that every piece of knowledge expressible as a
statement in the language of mathematics could be determined to be true or false,
and that “for each problem expressible in the language of mathematics, there exists
a method for solving it.” In particular, there has to be a method which for every
true mathematical statement yields a proof of the truth of it. Hilbert’s dream was
unlike Leibniz’ dream restricted to mathematics. New concepts and subsequently
new words are introduced into the mathematical language by a specific sort of
mathematical definition, namely by axioms. “The axioms form the fundamental
vocabulary of mathematics and unambiguously determine the expressive power
of mathematics.” Hromkovic also makes the point that inserting new axioms into
mathematics increases likewise the argumentative power of mathematics: by means
of these new axioms, it becomes possible to investigate and analyze things which
mathematics hitherto could not study. Thus, it is possible to reformulate Hilbert’s
dream in the following way: that the expressive power and the argumentative
power of mathematics coincide. Gödel destroyed Hilbert’s dream by proving that
as a matter of fact they do not coincide, that is that the expressive power of
mathematics is greater than the argumentative one, and that the gap between the two
is fundamental, i.e., not eliminable. Part of Hilbert’s dream was also that for each
problem expressible in the language of mathematics there be a method for solving
it. Turing did not share this conviction and he faced the problem of how to prove the
non-existence of a mathematical method of solution for a concrete problem. To solve
this problem, he had to turn the concept of a mathematical method of solution (an
algorithm) into a new mathematical concept and word. Doing this was, according
to Hromkovic, Alan Turing’s main contribution. With the new concept of algorithm
added to the language of mathematics, it was now possible to study the range and
limits of automation.

Starting point of Shapiro’s article is the received view, initiated by Church in
1936, that Church’s Thesis (CT) is not subject to rigorous mathematical proof
or refutation, since CT is the identification of an informal, intuitive notion with
a formal, precisely defined one. Kleene in 1952 asserts that the intuitive notion
of computability is vague and he claims that it is impossible to mathematically
prove things about “vague intuitive” notions. Gödel challenged the conclusion
based on the supposed vagueness of computability. Gödel’s own view seems to be
that there is a precise property or notion resp. somehow underlying the intuitive
notion of computability, which is to be captured by an analysis and progressive
sharpening of the intuitive, apparently vague one. Shapiro’s main question is:
“How does one prove that a proposed sharpening of an apparently vague notion
is the uniquely correct one” capturing the precise notion which was there already?
The received view referred to above was not only challenged by Gödel, but
eventually by several prominent philosophers, logicians, and historians such as
Gandy, Mendelson, or Sieg. Since the Gödel/Mendelson/Sieg–position generated
further discussions and critical reactions, the issues relating to CT “engage some
of the most fundamental questions in the philosophy of mathematics” such as:
“What is it to prove something? What counts as a proof? . . . What is mathematics
about?” Shapiro then sets out to show that the defenders of the position that CT is
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provable do not thereby mean provable by a ZFC-proof, nor could they possibly
mean provable by a formal proof. Thus, he reaches the conclusion that even though
CT is not entirely a formal or ZFC matter, this doesn’t preclude it from being
any less mathematical or from being provable. In order to defend this line of
argument, he opposes the foundationalist model of mathematical knowledge to a
holistic one. According to the latter model, it is possible to explain why Sieg’s proof
of CT might justifiably be called so, although it is neither a purely formal nor a
ZFC proof. It can be called a proof because it is formally sound and because its
premises are sufficiently evident. This according to Shapiro doesn’t say that the
proof may not beg any questions. But he concludes that at least “Sieg’s discourse
and, for that matter, Turing’s are no more question-begging than any other deductive
argumentation. The present theme is more to highlight the holistic elements that go
into the choice of premises, both in deductions generally and in discourses that are
rightly called “proofs,” at least in certain intellectual contexts.”

Soare sets off explaining what Turing’s Thesis (TT) and what Gandy’s Thesis M
is. After characterizing the concept of a thesis as opposed to that of a statement of
facts or a theorem, Soare considers the question whether Turing proved his assertion
(that a function on the integers is effectively calculable iff it is computable by a
so-called Turing machine) “beyond any reasonable doubt or whether it is merely
a thesis, in need of continual verification.” In his sketchy presentation of Turing’s
1936 paper, Soare points out that in Turing’s analysis of the notion of a mechanical
procedure, Turing broke up the steps of such a procedure into the smallest steps,
which could not be further subdivided. And when going through Turing’s analysis,
one is left with something very close to a Turing machine designed to carry out those
elementary steps. Soare then relates on Gödel’s, Church’s, and Kleene’s reaction to
Turing’s 1936 paper. In 1936, Post independently formulated an assertion analogous
to Turing’s, and he called it a working hypothesis. Somewhat in the same vein,
Kleene in 1943 and especially in 1952 called Turing’s assertion a thesis, which in
the sequel led to the standard usage of “Turing’s Thesis.” Already in 1937, Church
objected to Post’s working hypothesis and in 1980 and 1988 Gandy challenged
Kleene’s claim that Turing’s assertion is a thesis (i.e., could not be proved). Soare
emphasizes that not only Gandy, but later on also Sieg, Dershowitz, and Gurevich
as well as Kripke have presented proofs of Turing’s assertion. Since Soare endorses
those proofs, he gets to the conclusion that “Turing’s Thesis” TT shouldn’t be called
that way any longer, it should rather be called Turing’s Theorem.

Barry Cooper’s aim is “to make clearer the relationship between the typing of
information—a framework basic to all of Turing’s work—and the computability
theoretic character of emergent structures in the real universe.” Cooper starts off
with the question where incomputability comes from. He notes that there is no
notion of incomputability without an underlying model of computation, which is
here provided by the classical Turing machine model. He then observes that whereas
from a logical point of view, a Turing machine is fairly simple, any embodiment of
a particular universal Turing machine as an actual machine is highly non-trivial.
“The physical complexities have been packaged in a logical structure, digitally
coded,” and “the logical view has reduced the type of the information embodied in
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the computer.” Cooper first considers the relationship between incomputability and
randomness. The notion of randomness used to describe the lack of predictability
is sometimes taken to be more intuitive than the one of incomputability. Cooper
argues that randomness turns out to be a far more complicated notion, and that
all that could be substantiated “building on generally accepted assumptions about
physics, was incomputability.” He then proceeds from the observation that “global
patterns can often be clearly observed as emergent patterns in nature and in social
environments, with hard to identify global connection to the underlying computa-
tional causal context.” Cooper discusses this gap by reflecting on the relationship
between the halting problem (one of the classical paradigms of incomputability)
and the Mandelbrot set. For him, the Mandelbrot set “provides an illuminating link
between the pure abstraction of the halting problem, and the strikingly embodied
examples of emergence in nature.” Cooper generalizes his observations about this
link by introducing the mathematics of definability. The higher properties of a
structure (those important to understand in the real world) are the large-scale,
emergent relations of the structure, and the connection between these and their
underlying local structure is mathematically formalized in terms of definability.
“Such definability can be viewed as computation over higher type data.” However,
as Cooper explains, “computation over higher-type information cannot be expected
to have the reliability or precision of the classical model.” And he uses the example
of the human brain and its hosting of complex mentality to illustrate this. The
mathematics to be used for this new type of computation is based on the theory of
degrees of incomputability (the so-called Turing degrees) and the characterization
of the Turing definable relations over the structure of the Turing degrees.

We have to close this introduction with the very sad news that Barry Cooper, the
author of the last article of this volume, after a brief illness passed away on October
26, 2015. Barry has been the driving force behind the Turing Centenary celebrations
in 2012 and of the Computability in Europe movement since 2005. His impact and
work as a supporter of Alan Turing are ubiquitous. We dedicate our volume to Barry.
His gentle and enthusiastic personality will be greatly missed.
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Conceptual Confluence in 1936: Post and Turing
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Abstract In 1936, Post and Turing independently proposed two models of com-
putation that are virtually identical. Turing refers back to these models in his (The
word problem in semi-groups with cancellation. Ann. Math. 52, 491–505) and calls
them “the logical computing machines introduced by Post and the author”. The
virtual identity is not to be viewed as a surprising coincidence, but rather as a
natural consequence of the way in which Post and Turing conceived of the steps
in mechanical procedures on finite strings. To support our view of the underlying
conceptual confluence, we discuss the two 1936 papers, but explore also Post’s work
in the 1920s and Turing’s paper (Solvable and unsolvable problems. Sci. News 31,
7–23). In addition, we consider their overlapping mathematical work on the word-
problem for semigroups (with cancellation) in Post’s (Recursive unsolvability of a
problem of Thue. J. Symb. Log. 12, 1–11) and Turing’s (The word problem in semi-
groups with cancellation. Ann. Math. 52, 491–505). We argue that the unity of their
approach is of deep significance for the theory of computability.
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1 Introduction

Princeton was an exciting place for logicians in the mid-1930s. Church had been
appointed as assistant professor of mathematics in 1929 and, together with his
students Stephen C. Kleene and J. Barkley Rosser, started to create a new subject
soon to be called “recursive function theory”.1 Their work was propelled by von
Neumann’s presentation of Gödel’s incompleteness theorems [27] in the fall of
1931 and Gödel’s lectures “On undecidable propositions of formal mathematical
systems” in the spring of 1934 [28]. Paul Bernays, the collaborator of David Hilbert
on proof theory and the related foundational program, visited for the academic year
1935/1936 and gave the lectures [2]. Even before that visit, Bernays and Church
had extensive correspondence concerning the ongoing work in recursion theory; see
[59]. From September 1936 to July 1938, Alan Turing was studying in Princeton as
Church’s Ph.D. student; his dissertation “Systems of logic based on ordinals” was
published in [73].

In 1936, Church founded a new quarterly devoted to contemporary research in
logic: The Journal of Symbolic Logic. Its first volume contained a three-page paper
by Emil L. Post, “Finite combinatory processes: Formulation I”. The editors added
a footnote to the paper that read:

Received October 7, 1936. The reader should compare an article by A.M. Turing, On
computable numbers, shortly forthcoming in Proceedings of the London Mathematical
Society. The present article, however, although bearing a later date, was written entirely
independently of Turing’s.

Post was at the time teaching at City College in New York City and had also contact
with Church, both personal and through correspondence.

As to the remark concerning Post’s paper, it would indeed be readily apparent
to any reader of Turing’s and Post’s articles that their basic idea of “computation”
was the same. Turing presented a machine model; his machines were “supplied
with a ‘tape’ ... divided into sections, called ‘squares’, each capable of bearing a
‘symbol’ ” from a finite list, possibly just two different ones. In the latter case,
we refer to the machine as a two-letter-machine.2 Instead of a tape divided into
squares, Post wrote of a “symbol space ... to consist of a two way infinite sequence
of spaces or boxes”; each box could be either “marked” or “unmarked”. In both
conceptions, at a given instant, one particular square/box was in play, and the
permitted basic operations were to change the symbol in the square/box and/or
to move to an adjacent square/box. Turing imagined these steps carried out by a

1The broader history of computability has been described in a number of publications, partly by
the participants in the early development in Princeton, for example, [43, 57]. Good discussions are
found in, among others [9, 14, 26, 58, 62, 68].

There are many excellent books on recursion/computability theory, but not many that take
Post’s approach as fundamental. We just mention [13, 47, 56, 67].
2Machines that are deterministic are Turing’s a-machines; if a-machines operate only on 0s and 1s
they are called computing machines; see [71], p. 232.
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simple mechanism with a finite number of states where each step included a possible
change of state. In Post’s formulation, the computation is carried out by a human
“worker” who is following a fixed sequence of instructions including what we would
call a conditional jump instruction. The jump instruction is also part of a program for
Turing’s machine: depending on the symbol in the square and its state, the machine
may follow a different next instruction.

It seems astonishing that, on opposite sides of the Atlantic, two models of
computation were proposed that are virtually identical. We suggest that this virtual
identity is not to be viewed as a surprising coincidence, but rather as a natural
consequence of the way in which Post and Turing conceived of steps in mechanical
procedures on finite strings. To support our view of the underlying conceptual
confluence, we discuss the two 1936 papers, but explore also Post’s work in
the 1920s and Turing’s paper [75]. We consider in addition their overlapping
mathematical work on the word problem for semigroups [54] and for semigroups
with cancellation [74]. We argue that the unity of their approaches is of deep
significance for the theory of computability.3

2 Substitution Puzzles: The Link

“Solvable and Unsolvable Problems”, [75], is presumably Turing’s last published
paper. It appeared in the British journal Science News. The paper focuses on the
methodological problems surrounding effective calculability, now usually discussed
under the heading of Church’s or Turing’s Thesis. Turing argues in it for the
adequacy of a rigorous notion of computability, but without ever mentioning his
computing machines. That may be surprising: after all, for Church, Gödel, and
many contemporary computer scientists, it is the analysis of effective, mechanical
procedures in terms of “finite machines” that makes Turing’s work so convincing.
Instead, Turing uses here as the basic concept that of “unambiguous substitution
puzzles”—a form of Post production systems. Post had used these special puzzles
in [54] to describe Turing machines elegantly and to establish the unsolvability of
the word problem for semigroups. Post’s techniques were refined in [74] to extend
the unsolvability result to semigroups with cancellation.

Underlying our presentation, as well as Turing’s exposition in [75], is the
recognition of the essential unity of Turing’s philosophical analysis of mechanical
procedures in [71] and Post’s mathematical work on normal forms of production
systems. Post’s work was done during the 1920s, but published only in [51]. This
unity goes far deeper than the confluence via extensional equivalences between
different notions of computability for number theoretic functions as expounded
so beautifully in [26]. It also goes deeper than just observing that the models of

3There are other commonalities in their approaches, e.g., in connection with relative computability,
which first appeared in Turing’s dissertation and which played such a key role in Post’s later work.
However, here we are focusing on their fundamental conceptual analysis.
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computation Post and Turing introduced in 1936 are essentially the same. Here is
Turing’s retrospective assertion from the beginning of his [74], p. 491:

The method [of proof] depends on reducing the unsolvability of the problem in question to
a known unsolvable problem connected with the logical computing machines introduced by
Post [49] and the author [71].

Turing points, in a dramatic way, to the structural identity of the computations of his
two-letter machine and those of the worker in [49].

Post formulated no intrinsic reason for the model he presented in this paper, but
he conjectured it to be equivalent to the “Gödel-Church development”. If one con-
siders also his work on canonical systems from the 1920s (discussed below), then
there is an indication of a reason: the model may be viewed as a playful description
of a simple production system to which canonical systems can be reduced. Turing’s
unambiguous substitution puzzles include these simple production systems. In order
to specify such puzzles one is given an unlimited supply of “counters”, possibly of
only two distinct kinds. A finite sequence of counters is an initial configuration,
and the puzzle task is to transform the given configuration into another one using
substitutions from a fixed finite list of rules. Such a puzzle, though not by this
name, is obtained in Sect. 9,I of Turing’s [71] at the very end of his analysis of
mechanical procedures; it can be carried out by a suitably generalized machine that
operates on strings, a string machine, as presented in Sect. 5. A good example of a
substitution puzzle, Turing asserts in [75], is “the task of proving a mathematical
theorem within an axiomatic system”. The abstract investigation of just this task for
parts of Whitehead and Russell’s Principia Mathematica was the starting point of
Post’s work in the 1920s, as we discuss in Sect. 4.

The “theorem-proving-puzzle” for first-order logic was not only Post’s problem,
but was also one of the central issues in mathematical logic during the 1920s: is
it decidable by a mechanical procedure whether a particular given statement can
be proved from some assumptions? Commenting on this problem, best known as
Hilbert’s Entscheidungsproblem, von Neumann conjectured in 1926 that it must
have a negative solution and added, “we have no idea how to prove this”. Ten years
later Turing showed that the problem has indeed a negative solution, after having
addressed first the key conceptual issue, namely, to give a precise explication of
“mechanical procedure”.4 The explication by his machine model of computation is
grounded in the analysis that leads, as mentioned, to a substitution puzzle. In parallel
to what we said above about Post’s 1936 model, Turing’s two-letter machine may be
viewed as a playful formulation of a machine to which string machines can provably
be reduced and to which, in turn, the mechanical processes of a human computing
agent can be reduced, if these processes (on strings or other concrete symbolic
configurations) are constrained by finiteness and locality conditions; see Sect. 5.

4In the same year, Church established the unsolvability of the Entscheidungsproblem—having
identified �-definability and general recursiveness with effective calculability; [6, 7].
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The conceptual confluence of Turing’s work with Post’s is rather stunning: Post’s
worker model and Turing’s two-letter machine characterize exactly the same class
of computations. The crucial link are the simple substitution puzzles (with just
two counters) that are uniquely connected to each instance of both models. The
wider confluence indicated above is discussed in detail in Sects. 4 and 5; its very
special character is seen perhaps even more vividly when comparing it with the
contemporaneous attempts to analyze directly the effective calculability of number
theoretic functions.

3 Effectively Calculable Functions

The thoughts of mathematical logicians like Hilbert, Bernays, Herbrand,
Gödel,. . . about mechanical procedures on syntactic configurations were not
proceeding at all along the lines of Post or Turing, but were naturally informed
by paradigmatic recursive procedures for calculating the values of number theoretic
functions. Dedekind introduced primitive recursive functions in [19], Skolem used
them systematically in [66] to develop an elementary part of number theory, and
Hilbert and Bernays exploited during the 1920s the calculability of their values in
proof theoretic investigations. In his [37], Herbrand expanded the class to “finitist”
functions and included, in particular, the effectively calculable, but non-primitive
recursive Ackermann function.

Gödel built on that work when introducing general recursive functions via his
equation calculus in [28], the write-up of lectures given at the Institute for Advanced
Study.5 In the famous footnote 3 to this article, Gödel had suggested that a suitable
generalization of the primitive recursive functions permitting all possible recursions
would encompass the class of all effectively calculable number theoretic functions.
His formulation via the equation calculus then came in the last section of the notes.
However, despite appearances to the contrary, Gödel insisted in a letter to one of
the authors (see [14]) that he was not prepared at that time to conclude that his
formulation accomplished that goal, because until Kleene’s elucidations [40], it was
not clear that the notion was sufficiently robust.

Gödel’s mathematically well-defined class of general recursive functions was
identified in [5] with the informal class of effectively calculable number theoretic
functions. Kleene labeled this identification as Church’s Thesis in [41, 42]; the

5In the early evolution of recursion theory, Gödel’s definition was viewed as being a modification
of a proposal of Herbrand’s—because Gödel presented it that way in his Princeton Lectures. In a
letter to Jean van Heijenoort in 1964, Gödel reasserted that Herbrand had suggested, in a letter, a
definition very close to the one actually presented in [28]. However, the connection of Gödel’s
definition to Herbrand’s work is much less direct; that is clear from the two letters that were
exchanged between Gödel and Herbrand in 1931. John Dawson found the letters in the Gödel
Nachlass in 1986; see [17]. The letters are published in [36]; their intellectual context is discussed
in [61].


