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Preface

This book is based on the Association for the Advancement of Artificial Intelligence
(AAAI) Symposium on “The Intersection of Robust Intelligence (RI) and Trust in
Autonomous Systems”; the symposium was held at Stanford March 24–26, 2014.
The title of this book reflects the theme of the symposium. Our goal for this book
is to further address the current state of the art in autonomy at the intersection of RI
and trust and to more fully examine the existing research gaps that must be closed
to enable the effective integration of autonomous and human systems. This research
is particularly necessary for the next generation of systems, which must scale to
teams of autonomous platforms to better support their human operators and decision
makers.

The book explores the intersection of RI and trust across multiple contexts and
among arbitrary combinations of humans, machines, and robots. To help readers
better understand the relationships between artificial intelligence (AI) and RI in a
way that promotes trust among autonomous systems and human users, this edited
volume presents a selection of the underlying theories, computational models,
experimental methods, and possible field applications. While other books deal with
these topics individually, this book is unique in that it unifies the fields of RI and
trust and frames them in the broader context of effective integration for human-
autonomous systems.

The volume begins by describing the current state of the art for research in RI and
trust presented at Stanford University in the Spring of 2014 (copies of the technical
articles are available from AAAI at http://www.aaai.org/Library/Symposia/Spring/
ss14-04.php; a link to the presentation materials and photographs of participants is
at https://sites.google.com/site/aaairobustintelligence/).

After the introduction, chapter contributors elaborate on key research topics at
the heart of effective human-systems integration. These include machine learning,
Big Data, workload management, human-computer interfaces, team integration
and performance, advanced analytics, behavior modeling, training, and test and
evaluation, the latter known as V&V (i.e., verification and validation).

The contributions to this volume are written by world-class leaders from across
the field of autonomous systems research, ranging from industry to academia and to

v
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government. Given the diversity of the research in this book, we strove to thoroughly
examine the challenges and trends of systems that exhibit RI; the fundamental
implications of RI in developing trusted relationships among humans, machines,
and robots with present and future autonomous systems; and the effective human
systems integration that must result for trust to be sustained.

A brief summary is presented below of the AAAI Symposium in the Spring of
2014.

AAAI-2014 Spring Symposium Organizers

Jennifer Burke, Boeing: jennifer.l.burke2@boeing.com
Alan Wagner, Georgia Tech Research Institute: Alan.Wagner@gtri.gatech.edu
Donald Sofge, Naval Research Laboratory: don.sofge@nrl.navy.mil
William F. Lawless, Paine College: wlawless@paine.edu

AAAI-2014 Spring Symposium: Keynote Speakers

• Suzanne Barber, barber@mail.utexas.edu, AT&T Foundation Endowed Pro-
fessor in Engineering, Department of Electrical and Computer Engineering,
Cockrell School of Engineering, U Texas

• Julie L. Marble, julie.marble@navy.mil, Program Officer: Hybrid human com-
puter systems at Office of Naval Research, Washington, DC

• Ranjeev Mittu, ranjeev.mittu@nrl.navy.mil, Branch Head, Information Manage-
ment & Decision Architectures Branch, Information Technology Division, US
Naval Research Laboratory, Washington, DC

• Hadas Kress-Gazit, hadaskg@cornell.edu, Cornell University; High-Level Veri-
fiable Robotics

• Satyandra K. Gupta, skgupta@umd.edu, Director, Maryland Robotics Center,
University of Maryland

• Dave Ferguson, daveferguson@google.com, Google’s Self-Driving Car project,
San Francisco

• Mo Jamshidi, mo.jamshidi@usta.edu, University of Texas at San Antonio,
Lutcher Brown Endowed Chair and Professor, Computer and Electrical Engi-
neering

• Dirk Helbing, dirk.helbing@gess.ethz.ch, http://www.futurict.eu; ETH Zurich

http://www.futurict.eu
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Symposium Program Committee

• Julie L. Marble, julie.Marble@jhuapl.edu, cybersecurity, Johns Hopkins
Advanced Physics Lab, MD

• Ranjeev Mittu, ranjeev.mittu@nrl.navy.mil, Branch Head, Information Manage-
ment & Decision Architectures Branch, Information Technology Division, U.S.
Naval Research Laboratory, Washington, DC

• David Atkinson, datkinson@ihmc.us, Senior Research Scientist, Institute of
Human-Machine Cognition (IHMC)

• Jeffrey Bradshaw, jbradshaw@ihmc.us; Senior Research Scientist, Institute of
Human-Machine Cognition (IHMC)

• Lashon B. Booker, booker@mitre.org, The MITRE Corporation
• Paul Hyden, paul.hyden@nrl.navy.mil, Naval Research Laboratory
• Holly Yanco, holly@cs.uml.edu, University of Massachusetts Lowell
• Fei Gao, feigao@MIT.EDU.MIT
• Robert Hoffman, rhoffman@ihmc.us, Senior Research Scientist, Institute of

Human-Machine Cognition (IHMC)
• Florian Jentsch, florian.Jentsch@ucf.edu, Department of Psychology and Insti-

tute for Simulation & Training, Director, Team Performance Laboratory, Uni-
versity of Central Florida

• Howell, Chuck, howell@mitre.org, Chief Engineer, Intelligence Portfolio,
National Security Center, The MITRE Corporation

• Paul Robinette, probinette3@gatech.edu, Graduate Research Assistant, Georgia
Institute of Technology

• Munjal Desai, munjaldesai@google.com
• Geert-Jan Kruijff, gj@dfki.de, Senior Researcher/Project Leader, Language

Technology Lab, DFKI GmbH, Saarbruecken, Germany

This AAAI symposium sought to address these topics and questions:

• How can robust intelligence be instantiated?
• What is RI for an individual agent? A team? Firm? System?
• What is a robust team?
• What is the association between RI and autonomy?
• What metrics exist for robust intelligence, trust, or autonomy between individuals

or groups, and how well do these translate to interactions between humans and
autonomous machines?

• What are the connotations of “trust” in various settings and contexts?
• How do concepts of trust between humans collaborating on a task differ from

human-human, human-machine, machine-human, and machine-machine trust
relationships?

• What metrics for trust currently exist for evaluating machines (possibly including
such factors as reliability, repeatability, intent, and susceptibility to catastrophic
failure), and how may these metrics be used to moderate behavior in collaborative
teams including both humans and autonomous machines?
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• How do trust relationships affect the social dynamics of human teams, and are
these effects quantifiable?

• What validation procedures could be used to engender trust between a human
and an autonomous machine?

• What algorithms or techniques are available to allow machines to develop trust
in a human operator or another autonomous machine?

• How valid are the present conceptual models of human networks? Mathematical
models? Computational models?

• How valid are the present conceptual models of autonomy in networks? Mathe-
matical models? Computational models?

Papers at the symposium specified the relevance of their topic to AI or proposed a
method involving AI to help address their particular issue. Potential topics included
(but were not limited to) the following:

Robust Intelligence (RI) topics:

• Computational, mathematical, conceptual models of robust intelligence
• Metrics of robust intelligence
• Is a model of thermodynamics possible for RI (i.e., using physical thermody-

namic principles, can intelligent behavior be addressed in reaction to thermody-
namic pressure from the environment?)?

Trust topics:

• Computational, mathematical, conceptual models of trust in autonomous systems
• Human requirements for trust and trust in machines
• Machine requirements for trust and trust in humans
• Methods for engendering and measuring trust among humans and machines
• Metrics for deception among humans and machines
• Other computational and heuristic models of trust relationships, and related

behaviors, in teams of humans and machines

Autonomy topics:

• Models of individual, group, and firm autonomous system behaviors
• Mathematical models of multitasking in a team (e.g., entropy levels overall and

by individual agents, energy levels overall and by individual agents)

Network topics:

• Constructing, measuring, and assessing networks (e.g., the density of chat
networks among human operators controlling multi-unmanned aerial vehicles)

• For networks, specify whether the application is for humans, machines, robots,
or a combination, e.g., the density of inter-robot communications
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After the symposium was completed, the book and the symposium took on sepa-
rate lives. The following individuals were responsible for the proposal submitted to
Springer after the symposium, for the divergence between the topics of the two, and
for editing the book that has resulted.

Washington, DC, USA Ranjeev Mittu
Washington, DC, USA Donald Sofge
Atlanta, GA, USA Alan Wagner
Augusta, GA, USA W.F. Lawless
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Chapter 1
Introduction

RanjeevMittu, Donald Sofge, AlanWagner, and W. F. Lawless

1.1 The Intersection of Robust Intelligence (RI) and Trust
in Autonomous Systems

The Intersection of Robust Intelligence (RI) and Trust in Autonomous Systems
addresses the current state-of-the-art in autonomy at the intersection of Robust
Intelligence (RI) and trust, and the research gaps that must be overcome to enable
the effective integration of autonomous and human systems. This is particularly
true for the next generation of systems, which must scale to teams of autonomous
platforms to better support their human operators and decision makers. This edited
volume explores the intersection of RI and trust across multiple contexts among
autonomous hybrid systems (where hybrids are arbitrary combinations of humans,
machines and robots). To better understand the relationships between Artificial
Intelligence (AI) and RI in a way that promotes trust between autonomous systems
and human users, this edited volume explores the underlying theory, mathematics,
computational models, and field applications.

To better understand and manage RI with AI in a manner that promotes trust
in autonomous agents and teams, our interest is in the further development of
theory, network models, mathematics, computational models, associations, and field

R. Mittu • D. Sofge
Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375, USA
e-mail: ranjeev.mittu@nrl.navy.mil; donald.sofge@nrl.navy.mil

A. Wagner
Georgia Tech Research Institute, 250 14th Street NW, Atlanta, GA 30318, USA
e-mail: Alan.Wagner@gtri.gatech.edu

W.F. Lawless (�)
Paine College, 1235 15th Street, Augusta, GA 30901, USA
e-mail: WLawless@paine.edu

© Springer Science+Business Media (outside the USA) 2016
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2 R. Mittu et al.

applications at the intersection of RI and trust. We are interested not only in
effectiveness with a team’s multitasking or in constructing RI networks and models,
but in the efficiency and trust engendered among interacting participants.

Part of our symposium in 2014 sought a better understanding of the intersection
of RI and trust for humans interacting with other humans and human groups (e.g.,
teams, firms, systems; also, the networks among these social objects). Our goal is
to use this information with AI to not only model RI and trust, but also to predict
outcomes from interactions between autonomous hybrid groups (e.g., hybrid teams
in multitasking operations).

Systems that learn, adapt, and apply their experience to the problems faced in
an environment may be better suited to respond to new and unexpected challenges.
One could argue that such systems are “robust” to the prospect of a dynamic and
occasionally unpredictable world. We expect the systems that exhibit this type of
robustness to afford to those who interact with the system a greater degree of
trust. For instance, an autonomous vehicle which, in addition to driving to different
locations by itself, can also warn a passenger of locations where it should not drive,
might likely be viewed as more robust than a similar system without such a warning
capability. But would it be viewed as more trustworthy? This workshop endeavored
to examine such questions that lay at the intersection of robust intelligence and
trust. Problems such as these are particularly difficult because they imply situational
variations that may be hard to define.

The focus of our workshop centered on how robust intelligence impacts trust in
the system and how trust in the system makes it more or less robust. We explored
approaches to RI and trust that included, among others, intelligent networks,
intelligent agents, and multitasking by hybrid groups (i.e., arbitrary combinations
of humans, machines and robots).

1.2 Background of the 2014 Symposium

Robust intelligence (RI) has not been easy to define. We proposed an approach to
RI with artificial intelligence (AI) that may include, among other approaches, the
science of intelligent networks, the generation of trust among intelligent agents, and
multitasking among hybrid groups (humans, machines and robots). RI is the goal
of several government projects to explore the intelligence as seen at the level of
humans, including those directed by NSF (2013); the US Army (Army 2014) and
the USAF (Gluck 2013). DARPA (2014) has a program on physical intelligence
that is attempting to produce the first example of ““intelligent” behavior under
thermodynamic pressure from their environment.” Carnegie Mellon University
(CMU 2014) has a program to build a robot that can execute “complex tasks in
dangerous : : : environments.” IEEE (2014) has the journal Intelligent Systems
to address various topics on intelligence in automation including trust; social
computing; health; and, among others, coalitions that make the “effective use
of limited resources to achieve complex and multiple objectives.” From another
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perspective, IBM has built a program that beat the reigning world champion
at chess in 1997; another program that won at the game of Jeopardy in 2011
(du Sautoy 2014); and an intelligent operations center for the management of cities,
transportation, and water (IBM 2014). Multiple other ways may exist to define or
approach RI, and to measure it.

In an attempt to advance AI with a better understanding and management of RI,
our interest is in the theory, network models, mathematics, computational models,
associations, and field applications of RI. This means that we are interested in not
only effectiveness with multitasking or in constructing RI networks and models, but
in the efficiency and trust engendered among the participants during interactions.

Part of the goal in this symposium was to find a better understanding of RI and
the autonomy it produces with humans interacting with other humans and human
groups (e.g., teams, firms, systems; also, networks among these social objects). Our
ultimate goal is to use this information with AI to not only model RI and autonomy,
but also in the predictions of the outcomes from interactions between hybrid groups
that interdependently generate networks and trust.

For multitasking with human teams and firms, interdependence is an important
element in their RI: e.g., the Army is attempting to develop a robot that can
produce “a set of intelligence-based capabilities sufficient to enable the teaming
of autonomous systems with Soldiers” (Army 2014); and ONR is studying robust
teamwork (ONR 2013). But a team’s interdependence also introduces uncertainty,
fundamentally impacting measurement (Lawless et al. 2013).

Unlike conventional computational models where agents act independently of
neighbors, where, for example, a predator mathematically consumes its prey or
not as a function of a random interaction process, interdependence means that
agents dynamically respond to the bi-directional signals of actual or potential
presence of other agents (e.g., in states poised to fight or flight), a significant
increase over conventional modeling complexity; as an example of interdependence
in Yellowstone’s National Park (Hannibal 2012):

aspen and other native vegetation, once decimated by overgrazing, are now growing up
along the banks : : : [in part] because elk and other browsing animals behave differently
when wolves are around. Instead of eating down to the soil, they take a bite or two, look up
to check for threats, and keep moving. [This means that the] greenery can grow tall enough
to reproduce.

That the problem of interdependence remains unsolved, mathematically and
conceptually, precludes hybrid teams based on artificial intelligence from processing
information like human teams operating under interdependent challenges and
perceived threats.

At this AAAI Symposium, we explored the various aspects and meanings of
robust intelligence, networks and trust between humans, machines and robots in
different contexts, and the social dynamics of networks and trust in teams or
organizations composed of autonomous machines and robots working together with
humans. We sought to identify and/or develop methods for structuring networks
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and engendering trust between agents, to consider the static and dynamic aspects
of behavior and relationships, and to propose metrics for measuring outcomes of
interactions.

1.3 Contributed Chapters

Chapter 2 is titled “Towards modeling the behavior of autonomous systems and
humans for trusted operations.” Its authors are Gavin Taylor, Ranjeev Mittu, Ciara
Sibley and Joseph Coyne. The first author is with the U.S. Naval Academy; and
authors Mittu, Sibley and Coyne are with the Naval Research Laboratory. In this
chapter, the authors have studied the promise offered to the Department of Defense
by autonomous robot and machine systems to improve its mission successes and
to protect its valuable human users; but this promise has been countered by the
increased complexity and workloads that have been placed on human supervisors
by these systems. In this new era, as autonomy increases, the trust humans place
in these systems becomes an important factor. Trust may depend on knowing
whether anomalies exist in these systems; whether the anomalies that do exist
can be managed; and whether these anomalies further affect the limitations of
the human supervisors (acknowledged but not studied in this chapter). Using a
mathematical manifold that captures a platform’s trajectories to represent the tasks
to be performed by an unassisted and unmanned autonomous system, the authors
propose an example that exploits the errors generated for alarms and system
analyses. The authors point out the existing research questions (e.g., user interaction
patterns) and challenges that must also be addressed, including the best way for
users to interact with autonomy; the optimized formal models of human decision-
making; the modeling of active decision contexts; and the adaptation of concept drift
techniques from the machine learning community.

Chapter 3 is titled “Learning trustworthy behaviors using an inverse trust
metric”; its authors are Michael W. Floyd and Michael Drinkwater with Knexus
Research Corporation, Springfield, Virginia; and David W. Aha, with the Navy
Center for Applied Research in Artificial Intelligence, Naval Research Laboratory,
Washington, DC. The authors present an algorithm by which a robot measures its
own trustworthiness—an inverse trust metric—and uses this information to adapt
its behavior, ideally becoming more trustworthy. They use case-based reasoning to
gauge whether or not some previously used behavior or set of behaviors is likely
to be trustworthy in the current environment. They present simulation experiments
demonstrating the use of this “inverse trust metric” in a patrol scenario. The authors
begin their chapter by assuming that those robots that can be trusted to perform
important tasks may become helpful to human teams, but only if the humans can
trust the robot as a member of a team to perform its assigned tasks as expected. But
how to determine trust on the fly is a difficult problem. Instead of asking users how
much they trust an autonomous agent, the authors use “inverse trust”. They estimate
the “inverse trust” for their concept as judged by the robot when determining its own

http://dx.doi.org/10.1007/978-1-4899-7668-0_2
http://dx.doi.org/10.1007/978-1-4899-7668-0_3
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performance while working for multiple human operators, or in front of multiple
human operators. Using simulation, the authors demonstrate the superiority of their
case-based reasoning approach to random learning for robot team members assisting
a human team. The authors conclude that more robotic uncertainty in performance
impedes trust.

Chapter 4 is titled “ ‘Trust V’—Building and measuring trust in autonomous
systems”; its authors are Gari Palmer, Anne Selwyn and Dan Zwillinger with the
Raytheon Corporation. The authors develop a framework based on the system
V framework to codify how trust is built into a new system and how a system should
respond in order to maintain trust. Their framework is a life-cycle model which
adds trust components. Testing and evaluation ensure that the trust components
are functional. During operational use these trust components allow the user to
query the system to better understand (and trust) its operation. This framework is
becoming more important as autonomous systems become more prominent; e.g.,
the Department of Defense has made autonomy one of its research priorities.
Autonomous systems, those in use today and anticipated in the future, will need
both system trust (i.e., when their specifications have been met) and operational trust
(when the user’s expectations have been met). Automated systems are more easily
trusted than autonomous systems. But trusting complex automated systems requires
rigorous Test & Evaluation (T&E) and Verification & Validation (V&V) processes.
While similar processes are likely to be used to establish trust for autonomous
systems, new methods set within these processes must address the unique attributes
of autonomy, like adaptation to situations, or self-organization within situations.
Using their framework, the authors identify specific methods for engendering trust
in automated and autonomous systems, where systems range from automated to
autonomous systems as endpoints. The authors give the example of a prototyped
method that has been shown to enable trust. This framework supports the insertion
of new methods to generate and measure operational trust in existing and future
autonomous systems.

Chapter 5 is titled “Big Data analytic paradigms—From principle component
analysis to deep learning”; its authors are Mo Jamshidi, Barney Tannahill and
Arezou Moussavi with the Autonomous Control Engineering (ACE) Laboratory
at The University of Texas, San Antonio (Tannahil is also from the Southwest
Research Institute, or SwRI). This chapter presents an overview of Artificial Neural
Networks (ANNs) ranging from multi-layer networks to recent advances related
to deep architectures including auto-encoders and restricted Boltzmann machines
(RBMs). Large sets of data (numerical, textural and image) have been accumulating
at a rapid pace from multiple sources in all aspects of society. Advances in sensor
technology, the Internet, social networks, wireless communication, and inexpensive
memory have all contributed to the explosion of “Big Data” as this phenomenon has
come to be known. Big Data is produced in many ways in today’s interdependent
global economy. Social networks, system of systems (SoS), and wireless systems are
only some of the contributors to Big Data. Instead of a hindrance, many researchers
have come to consider Big Data as a rich resource for future innovations in science,
engineering, business and other potential applications. But the flood of data has

http://dx.doi.org/10.1007/978-1-4899-7668-0_4
http://dx.doi.org/10.1007/978-1-4899-7668-0_5
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to be managed and controlled before useful information can be extracted. For the
extraction of information to be useful, recent efforts have developed a promising
approach known as “Data Analytics”. This approach uses statistical and computa-
tional intelligence tools like principal component analysis (PCA), clustering, fuzzy
logic, neuro-computing, evolutionary computation, Bayesian networks and other
tools to reduce the size of Big Data. One of these tools, Deep Learning, is described
by the development and use of neural networks in the machine learning community
that has allowed for the extraordinary results recently obtained for digital speech,
imagery, and natural language processing tasks. The authors present an example of
Neural Networks using the data collected from a wind farm to demonstrate Data
Analytics.

Chapter 6 is titled “Artificial brain systems based on neural network discrete
chaotic dynamics. Toward the development of conscious and creative robots”; its
author, Vladimir Gontar, prepared his chapter at the Biocircuits Institute, University
of California in San Diego, while on a sabbatical; he has since returned to his
affiliation at the Ben-Gurion University of the Negev in Israel. He is working on
new theory and mathematical models of the human brain based on first principles
for neural networks that model biochemical reactions to simulate consciousness.
Consciousness is a hard problem. From Marcus and his colleagues (2014), although
“no consensus” exists, current research tends to address how “systems might bridge
from neuronal networks to symbolic cognition”. Gontar’s approach is similar. In
contrast to regular information processes approximated linearly as a function of
the energy available, he models information exchanges between neurons and neural
networks based on the infinitesimally small energies needed to change chaotic
systems. He compares the example of a mandala drawn by an artist matched
step-by-step with one drawn by his chaos equations, concluding that this is how
consciousness may be addressed computationally.

Chapter 7, on the “Modeling and control of trust in human-robot collaborative
manufacturing”, is authored by Behzad Sadrfaridpour, Hamed Saeidi, Jenny Burke,
Kapil Madathil and Yue Wang with Clemson University and the Boeing Company.
The authors explore trust in the context of Human-Robot Collaboration (HRC) on
the factory floor. To measure and gauge the improvement in a system on the factory
floor, they use a time-series model of trust, a model of a robot’s performance to
tie its speed to flexibility, and a model of a person that includes fatigue. They
present a series of experiments which investigate how the robot and the human
adapt to each other’s changing performance and how these changes impact trust.
HRC already exists on factory floors today, opening a new realm of manufacturing
with robots in real-world settings. There, humans and robots work together by
collaborating as coworkers. HRC plays a critical role in safety, productivity, and
flexibility. Human-to-robot trust determines the human’s acceptance and allocation
of autonomy to a robot that in turn decides the efficiency of the task performed and
the human’s workload. Using Likert scales and time-series models of performance
to measure trust, the authors studied trust in a robot in the laboratory subjectively
and objectively under three control modes of the robot; viz., the robot placed under
manual, autonomous and collaborative control conditions. Human operator control

http://dx.doi.org/10.1007/978-1-4899-7668-0_6
http://dx.doi.org/10.1007/978-1-4899-7668-0_7
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was used in the manual condition; a neural network was used for intelligent control
in the autonomous condition; and a mixed control was used in the collaborative
condition. For this study, the authors did not find strong support for the autonomous
mode. They also showed that under the collaborative mode, human-to-robot trust
will be improved since the human has more control over the robot speed while the
robot is adapting to the human speed as well.

Chapter 8 is titled “Investigating human-robot trust in emergency scenarios:
Methodological lessons learned”; its authors Paul Robinette, Alan Wagner and
Ayanna Howard are with the Georgia Institute of Technology; they conclude that
trust has an elusive, subjective meaning depending on the context and the culture
of the perceiver and the bias introduced by a questioner, especially in emergency
scenarios. Being that few research protocols exist to study human-robot trust (HRT),
the authors devised their own protocol to include risk on the part of both the
human and the robot. Overall, they conclude that studies of HRT are inherently
problematic, even though HRT has been studied as computational cognition;
neurological change; and, among other studies, in the probability distributions of
an agent’s actions. They like Lee and See’s claim that trust is an attitude associated
with the goals sought under uncertainty and vulnerability. The authors performed
experiments using crowdsourcing techniques. They found that the word phrasing of
a narrative significantly affected decisions; that anchoring biases also had significant
effects; and that unsuccessful robot leaders did not always dissuade their human
followers. The latter finding presents a significant challenge to researchers to design
robots in a way so that the robots communicate clearly with humans, so that humans
do not overly-trust robots when they should not, and so that crowdsourcing for
testing hypotheses provide generality and empirical evaluations if coupled with
complementary methods (viz., narratives and simulated scenarios).

In Chap. 9, titled “Designing for robust and effective teamwork in human-
agent teams”, the authors Fei Gao, M.L. Cummings and Erin Solovey are with
the Massachusetts Institute of Technology. The authors examine the impact of
team structure, task uncertainty, and information-sharing tools on team coordination
and performance. They present several information sharing tools which allow
users to update others with regard to their status thus reducing work duplication
and infrequent communication. The authors investigated the impact on human-
agent teams of team structure, task uncertainty, and information-sharing, including
coordination and performance. From their perspective, in the future, search and
rescue, command and control, and air traffic control operators will be working
in teams with robot teammates. But teams involve tasks that individual humans
cannot do at all or are inefficient at doing. The authors contrasted organizational
structures based on divisional teams, where self-contained redundancy governs
under high uncertainty to make them more robust; and functional teams, where
uncertainty is low and predictability is high. They discussed team situational
awareness, where each member’s contributions to and impacts on team tasks must
be predictable and appreciated. The authors also discussed the costs of coordination
and communication; and that these costs and duplication could be reduced with

http://dx.doi.org/10.1007/978-1-4899-7668-0_8
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information-sharing tools, while increasing robustness for divisional teams. The
authors found that information sharing tools allowed users to communicate more
effectively.

The author of Chap. 10, Kristin Schaefer, is with the U.S. Army Research
Laboratory. In her article on “Measuring Trust in Human Robot Interactions:
Development of the ‘Trust Perception Scale-HRI’ ”, she studied the importance of
trust in human-robot interaction and teaming as robotic technologies continue to
improve their functional capability, robust intelligence, and autonomy. The author
explores the development of a unifying survey scale to measure a human user’s trust
in a robotic system and in Human Robot Interaction (HRI) settings. She presents
a series of related experiments leading to the creation of a 40 item survey which
she argues measures trust across multiple conditions and robot domains. In this
chapter, the author has summarized her PhD research to produce a reliable and
valid subjective measure of the trust humans have of robots, the Trust Perception
Scale-HRI. She performed an extensive literature review of trust in the interpersonal,
automation and robot domains to determine if specific attributes accounted for
human-robot trust. Schaefer developed an initial pool of items, tested it with human
subjects, analyzed the results with a mental model of a robot, and reduced the
number of items based on statistical and Subject Matter Expert (SME) content-
validation procedures. This resulted in her 42 item scale plus a 14 item shorter scale
derived from the feedback by her SMEs. She then used computer simulated human-
robot interaction experimentation for a two-part task-based validation process to
determine if the scale could measure a change in survey scores and measure the
construct of trust. She first demonstrated that the scale measured a change pre-post
interaction and across two reliability conditions (100% reliable feedback versus
25% reliable feedback) during a supervisory human-robot target detection task.
This was followed by a second validation experiment using a Same-Trait approach
during a team Soldier-robot navigation task. Her finalized 40-item scale performed
well in both cases, and provided support for additional benefits when used in the
HRI domain, above and beyond results achieved when using a previously developed
automation-specific trust scale.

Chapter 11 is titled “Methods for developing trust models for intelligent systems”;
its authors are Holly A. Yanco, Munjal Desai, Jill L. Drury and Aaron Steinfeld with
the University of Massachusetts Lowell (Yanco and formerly Desai), The MITRE
Corporation (Drury and Yanco), and Carnegie Mellon University (Steinfeld). The
number of robots in use across the width of society, including in industry, with
the military, and on the highways, is increasing rapidly, along with an expansion
of their abilities to operate autonomously. Benefits from autonomy are increasing
rapidly along with concerns about how well these systems can be, should be, and
are being trusted. Human automation interaction (HAI) research is crucial to the
further expansion of intelligence, but also its disuses and abuses. The research by
the authors is designed to understand and model the factors that affect intelligent
systems. The chapter begins with a review of prior research in the development
of trust models, including surveys and experiments. Then the authors discuss two
methods for investigating trust and creating trust models: surveys and robot studies.

http://dx.doi.org/10.1007/978-1-4899-7668-0_10
http://dx.doi.org/10.1007/978-1-4899-7668-0_11
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They also produce 14 guidelines as well as an overall model of trust and the factors
that increase and decrease trust. Finally, the authors review their conclusions and
discuss the path forward.

In Chap. 12, titled, “The intersection of robust intelligence and trust: Hybrid
teams, firms & systems”, the authors are W.F. Lawless with Paine College and
Donald Sofge with the Naval Research Laboratory; they are developing the physics
of interdependent relations among social agents to reflect uncertainty arising from
these relationships but also the power of social groups to solve difficult problems.
Interdependence depends on the existence of alternative (bistable) interpretations of
social reality. Interdependence makes social situations non-linear and non-intuitive,
making interdependence a difficult problem to address. But if this problem can be
solved, unlike today when robots work as individual agents, it will allow humans,
machines and robots to work together in teams by multitasking to solve problems
that only human teams can now solve. On the other hand, as interdependence
increases across a group, its chances increase that it can make a mistake. Traditional
models of interdependence consist primarily of traditional game theory. But game
theory’s solution of this problem relies heavily on increasing cooperation, thereby
increasing static interdependence, further increasing the likelihood of a mistake.
To avoid mistakes, the authors argue for a competitive situation similar to a Nash
equilibrium, where the two sides engage in a nonlinear competition for neutrals
(independent agents) to determine the winning argument at one point in time;
mathematically, the result is a limit cycle as one side wins, but then that side falls
behind in the next argument when the limits to its “solution” become apparent. The
result is a method that increases social welfare. The authors describe how this may
work in human-machine-robot environments.
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Chapter 2
Towards Modeling the Behavior of Autonomous
Systems and Humans for Trusted Operations

Gavin Taylor, Ranjeev Mittu, Ciara Sibley, and Joseph Coyne

2.1 Introduction

Unmanned systems will perform an increasing number of missions in the future,
reducing the risk to humans, while increasing their capabilities. The direction for
these systems is clear, as a number of Department of Defense roadmaps call for
increasing levels of autonomy to invert the current ratio of multiple operators to a
single system (Winnefeld and Kendall 2011). This shift will require a substantial
increase in unmanned system autonomy and will transform the operator’s role from
actively controlling elements of a single platform to supervising multiple complex
autonomous systems. This future vision will also require the autonomous system
to monitor the human operator’s performance and intentions under different tasking
and operational contexts, in order to understand how she is influencing the overall
mission performance.

Successful collaboration with autonomy will necessitate that humans properly
calibrate their trust and reliance on systems. Correctly determining reliability of a
system will be critical in this future vision since automation bias, or overreliance on
a system, can lead to complacency which in turn can cause errors of omission and
commission (Cummings 2004). On the other hand, miscalibrated alert thresholds
and criterion response settings can cause frequent alerts and interruptions (high
false alarm rates), which can cause humans to lose trust and underutilize a system
(i.e., ignore system alerts) (Parasuraman and Riley 1997). Hence, it is imperative
that not only does the human have a model of normal system behavior in different
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contexts, but that the system has a model of the capabilities and limitations of the
human. The autonomy should not only fail transparently so that the human knows
when to assist, but autonomy should also predict when the human is likely to fail
and be able to provide assistance. The addition of more unmanned assets with
multi-mission capabilities will increase operator demands and may challenge the
operator’s workload just to maintain situation awareness. Autonomy that monitors
system (including human) behavior and alerts users to anomalies, however, should
decrease the task load on the human and support them in the role of supervisor.

Noninvasive techniques to monitor a supervisor’s state and workload (Fong et al.
2011; Sibley et al. 2011) would provide the autonomous systems with information
about the user’s capabilities and limitations in a given context, which could provide
better prescriptions for how to interact with the user. However, many approaches to
workload issues have been based on engineering new forms of autonomy assuming
that the role of the human will be minimized. For the foreseeable future, however,
the human will have at least a supervisory role within the system; rather than
minimizing the actions of the human and automating those actions the human
can already do well, it would be more efficient to develop a supervisory control
paradigm that embraces the human as an agent within the system and leverages on
her capabilities and minimizes the impact of her limitations.

In order to best develop techniques for identifying anomalous behaviors asso-
ciated with the complex human-autonomous system, models of normal behaviors
must be developed. For the purpose of this paper, an anomaly is not just a statistical
outlier, but rather a deviation that prevents mission goals from being met, dependent
on the context. Such system models may be based on, for example, mission outcome
measures such as objective measures of successful mission outcomes with the
corresponding behaviors of the system. Normalcy models can be used to detect
whether events or state variables are anomalous, i.e., probability of a mission
outcome measure that does not meet a key performance parameter or other metric.

The anomalous behavior of complex autonomous systems may be composed of
internal states and relationships that are defined by platform kinematics, health
and status, cyber phenomena and the effects caused by human interaction and
control. Once the occurrence and relationships between abnormal behaviors in a
given context can be established and predicted, our hypothesis is that the operational
bounds of the system can be better understood. This enhanced understanding will
provide transparency about the system performance to the user to enable trust to be
properly calibrated with the system, making the prescriptions for human interaction
that follow to become more relevant and effective during emergency procedures.

A key aspect of using normalcy models for detecting abnormal behaviors is the
notion of context; and behaviors should be understood in the context in which
they occur. In order to limit the false alarms, effectively integrating context is a
critical first step. Normalcy models must be developed for each context of a mission,
and used to identify potential deviations to determine whether such deviations are
anomalous (i.e., impact mission success). Proper trust calibration would be assisted
through the development of technology that provides the user with transparency
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about system behavior. This technology will provide the user with information about
how the system is likely to behave in different contexts and how the user should best
respond.

We present an approach for modeling anomalies in complex system behavior;
we do not address modeling human limitations and capabilities in this paper, but
recognize that this is equally important in the development of trust in collaborative
human-automation systems.

2.2 Understanding the Value of Context

The role of context is not only important when dealing with the behavior of
autonomous systems, but also quite important in other areas of command and
control. Today’s warfighters operate in a highly dynamic world with a high degree
of uncertainty, compounded by competing demands. Timely and effective decision
making in this environment is challenging. The phrase “too much data—not
enough information” is a common complaint in most Naval operational domains.
Finding and integrating decision-relevant information (vice simply data) is difficult.
Mission and task context is often absent (at least in computable and accessible
forms), or sparsely/poorly represented in most information systems. This limitation
requires decision makers to mentally reconstruct or infer contextually relevant
information through laborious and error-prone internal processes as they attempt to
comprehend and act on data. Furthermore, decision makers may need to multi-task
among competing and often conflicting mission objectives, further complicating the
management of information and decision making.

Clearly, there is a need for advanced mechanisms for the timely extraction and
presentation of data that has value and relevance to decisions for a given context.
To put the issue of context in perspective, consider that nearly all national defense
missions involve Decision Support Systems (DSS)—systems that aim to decrease
the cycle time from the gathering of data to operational decisions. However, the
proliferation of sensors and large data sets are overwhelming DSSs, as they lack
the tools to efficiently process, store, analyze, and retrieve vast amounts of data.
Additionally, these systems are relatively immature in helping users recognize and
understand important contextual data or cues.

2.3 Context and the Complexity of Anomaly Detection

Understanding anomalous behaviors within the complex human-autonomous sys-
tem requires an understanding of the context in which the behavior is occurring.
Ultimately, when considering complex, autonomous systems comprised of multiple
entities, the question is not what is wrong with a single element, but whether that
anomaly affects performance of the team and whether it is possible to achieve the
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mission goals in spite of that problem. For example, platform instability during high
winds may be normal, whereas the same degree of instability during calm winds
may be abnormal. Furthermore, what may appear as an explainable deviation may
actually be a critical problem if that event causes the system to enter future states
that prevent the satisfaction of a given objective function. The key distinction is that
in certain settings, it may be appropriate to consider anomalies as those situations
that effect outcomes, rather than just statistical outliers. In terms of the team, the
question becomes which element should have to address the problem (the human or
the autonomy).

The ability to identify and monitor anomalies in the complex human-autonomous
system is a challenge, particularly as increasing levels of autonomy increase system
complexity and, fundamentally, human interactions inject significant complexity
via unpredictability into the overall system. Furthermore, anomaly detection within
complex autonomous systems cannot ignore the dependencies between communi-
cation networks, kinematic behavior, and platform health and status.

Threats from adversaries, the environment, and even benign intent will need
to be detected within the communications infrastructure, in order to understand
its impact to the broader platform kinematics, health and status. Possible future
scenarios might include cyber threats that take control of a platform in order
to conduct malicious activity, which may cause unusual behavior in the other
dimensions and corresponding states. The dependency on cyber networks means
that a network provides unique and complete insight into mission operations.
The existence of passive, active, and adversarial activities creates an ecosystem
where “normal” or “abnormal” is dynamic, flexible, and evolving. The intrinsic
nature of these activities results in challenges to anomaly detection methods that
apply signatures or rules that have a high number of false positives. Furthermore,
anomaly detection is difficult in large, multi-dimensional datasets and is affected
by the “curse of dimensionality.” Compounding this problem is the fact that
human operators have limited time to deal with complex (cause and effect)
and/or subtle (“slow and low”) anomalies, while monitoring the information from
sensors, and concurrently conducting mission planning tasks. The reality is that in
future military environments, fewer operators due to reduced manning may make
matters worse, particularly if the system is reliant on the human to resolve all
anomalies!

Below we describe research efforts underway in the area of anomaly detection
via manifolds and reinforcement learning.

2.3.1 Manifolds for Anomaly Detection

A fundamental challenge in anomaly detection is the need for appropriate metrics
to distinguish between normal and abnormal behaviors. This is especially true
when one deals with nonlinear dynamic systems where the data generated contains
highly nonlinear relationships for which Euclidean metrics aren’t appropriate.
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One approach is to employ a nonlinear “space” called a manifold to capture the
data, and then use the natural nonlinear metric on the manifold, in particular the
Riemannian metric, to define distances among different behaviors.

We view the path of an unmanned system as a continuous trajectory on the
manifold and recognize any deviations due to human inputs, environmental impacts,
etc. Mathematically, we transform the different data types into a common manifold-
valued data so that comparisons can be made with regard to behaviors.

For example, a manifold for an unmanned system could be 12 dimensional,
composed of position, pitch, roll, yaw, velocities of the position coordinates, and
angular velocities of the pitch, roll and yaw. This 12-dimensional model captures
any platform (in fact any moving rigid object’s) trajectories under all possible
environment conditions or behaviors. This manifold is the tangent bundle, TM of
SO.3/ � <3. Here SO.3/ denotes the set of all possible rotations of the unmanned
system which is a Lie group, and <3 the set of all translations of the platform. Since
rotations and translations do not commute, this is not a direct product of SO.3/
with <3. The product between SO.3/ and <3 is a “Semi-Product” Ë. Non-linear
key geometric, dynamical and kinematic characteristics are represented using TM.
This manifold model is able to encapsulate the unique structure of the environment,
effects of human behaviors, etc. through continuous parameterizations and coherent
relationships.

Once we have this manifold model and its Riemannian metric, it is possible to
define concepts of geodesic neighborhood and other appropriate measurements and
map those to mission cost. Such a mapping is done by designing a weighted cost
function with dynamical neighborhoods around a trajectory of the platform. For
example, if the weather is good in the morning, the neighborhood is smaller than
it would be with bad weather. This innovative manifold method could be used to
dynamically identify normal or abnormal behaviors occurring during a mission,
taking into consideration whether a mission could be successfully achieved under
a given cost constraint. We also have the freedom to adjust normal neighborhoods
if a mission suddenly changes while en-route. Our model is robust and captures
complicated dynamics of unmanned systems and is able to encapsulate very high
dimensional data using only a 12 dimensional configuration space.

The algorithms use continuous parameterizations and coherent relationships and
are scalable. Our manifold-based methods provide new techniques to combine
qualitative (platform mechanics) and quantitative (measured data) methods and are
able to handle large, nonlinear dynamic data sets.

2.4 Reinforcement Learning for Anomaly Detection

The military and commercial communities increasingly rely on autonomous sys-
tems to augment their capabilities. For example, power plants feature automatic
monitoring and safety features, and the military increasingly employs unmanned
systems in denied or politically sensitive theaters. However, it is rare for these


