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Preface to the Second Edition

In this second and enhanced edition of the book, we provide the readers with a detailed step-by-
step application of the finite element method to heat and mass transfer problems. In addition to
the fundamentals of the finite element method and heat and mass transfer, we have attempted
to take the readers through some advanced topics of heat and mass transfer. The first edition
of the book covered only the application of the finite element method to heat conduction and
flow aided laminar heat convection. The second edition of the book has been enhanced further
with turbulent flow and heat transfer, and mass transfer, in addition to advanced topics such
as fuel cells.We believe that the second edition provides a comprehensive text for students,
engineers and scientists who would like to pursue a finite element based heat transfer analysis.
This textbook is suitable for beginners, senior undergraduate students, postgraduate students,
engineers and early career researchers.

The first three chapters of the book deal with the essential fundamentals of both the heat
conduction and the finite element method. In the first chapter, the fundamentals of energy
balance and the standard derivations of relevant equations for the heat conduction analysis
are discussed. Chapter 2 deals with the basic discrete systems which provide a basis for the
finite element method formulations in the following chapters. The discrete system analysis
is demonstrated through a variety of simple heat transfer and fluid flow problems. The third
chapter gives a comprehensive account of the finite element method formulations and relevant
history. Several examples and exercises included in Chapter 3 give the readers a complete
overview of the theory and practice associated with the finite element method.

The application of the finite element method to heat conduction problems are discussed in
detail in Chapters 4, 5 and 6. The conduction analysis starts with a simple one-dimensional
steady-state heat conduction in Chapter 4 and is extended to multi-dimensions in Chapter 5.
Chapter 6 gives the transient solution procedures for heat conduction problems.

Chapters 7, 8 and 9 deal with heat transfer by convection. In Chapter 7, heat transfer aided
by the laminar motion of a single phase flow is discussed in detail. All the relevant differential
equations are derived from first principles. All the three types of convection modes; forced,
mixed and natural convection, are discussed in detail. Several examples and comparisons are
provided to support the accuracy and flexibility of the finite element procedures discussed. In
Chapter 8 the turbulent flow and heat transfer are discussed in some detail. Some examples
and comparisons provide the readers a chance to assess the accuracy of the methods employed.
Chapter 9 utilizes the finite element method developed in Chapters 1, 7 and 8 to provide a
solution approach to flow and heat transfer in compact heat exchangers. Chapter 10 provides
an introduction to the application of the finite element to problems of mass transfer. A detailed
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description of heat and mass transfer in porous media is then provide in Chapter 11. Two
important applications of the finite element method for heat and mass transfer are explained
in Chapters 12 and 13. Chapter 12 briefly introduces solidification problems using both heat
conduction and convection approaches. Simple examples of solidification in this chapter may
serve as a reference for students and researchers working in the area of solidification. In
Chapter 13, we introduced a finite element solution approach to studying heat and mass
transfer in fuel cells. Although the approach is only explained for solid oxide fuel cells, the
method can be easily generalized to other types of fuel cells. Chapter 14 gives the reader
sufficient information to understand the process of mesh generation. The main focus of this
chapter is automatic and unstructured mesh generation. Some aspects of the adaptive mesh
generation are also covered in this chapter. Finally, Chapter 15 briefly introduces the topic of
computer implementation. The readers will be able to download the two-dimensional source
codes and documentations from the website: www.zetacomp.com

Many people have assisted the authors either directly or indirectly during the preparation
of this textbook. In particular, the authors wish to thank Dr Alessandro Mauro, Universita
degli Studi di Napoli Parthenope, for proofreading Chapter 13 and Dr Igor Sazonov, Swansea
University, for helping the authors to put together part of Chapter 14. We would also like thank
all our students, postdoctoral researchers and colleagues for providing help and support.

P. Nithiarasu, Swansea
R. W. Lewis, Swansea
K. N. Seetharamu, Bangalore
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Series Editor’s Preface

It is known that heat transfer provides a good context for teaching finite element methods
and other computational mechanics topics. Fundamental concepts can be explained with such
simple examples as heat conduction in 1D, then in 2D and 3D, and convective terms can be
added to describe the special methods needed to deal with that class of partial differential
equations. This book in our series does that, and with its distinguished, experienced authors,
does it well. It not only teaches how to solve heat and mass transfer problems with finite
element methods, but it also serves the purpose of teaching many different concepts in finite
element methods. Readers from very diverse backgrounds will be able to benefit from this
book. The book can be used by engineering undergraduate students to learn the fundamentals
of heat and mass transfer and numerical methods, by graduate students in engineering and
sciences to learn the advanced topics they need to know, and by practicing engineers and
scientists as a good source and guide for research and development work in heat and mass
transfer.



Introduction

1.1 Importance of Heat and Mass Transfer

The subject of heat and mass transfer is of fundamental importance in many branches of
engineering. A mechanical engineer may be interested to know the mechanisms of heat
transfer involved in the operation of equipment, for example, boilers, condensers, air pre-
heaters, economizers etc., in a thermal power plant in order to improve their performance.
Nuclear power plants require precise information on heat transfer as safe operation is an
important factor in their design. Refrigeration and air-conditioning systems also involve heat-
exchanging devices, which need careful design. Electrical engineers are keen to avoid material
damage in electric motors, generators and transformers due to hot spots, developed by improper
heat transfer design. An electronic engineer is interested in knowing efficient methods of heat
dissipation from chips and semi-conductor devices so that they function within safe operating
temperatures. A computer hardware engineer is interested to know the cooling requirements
of circuit-boards, as the miniaturization of computing devices is advancing at a rapid rate.
Chemical engineers are interested in heat and mass transfer processes in various chemical
reactions. A metallurgical engineer would be interested in knowing the rate of heat transfer
required for a particular heat treatment process, e.g. the rate of cooling in a casting process has
a profound influence on the quality of the final product. Aeronautical engineers are interested
in knowing the heat transfer rate in rocket nozzles and in heat shields used in re-entry vehicles.
An agricultural engineer would be interested in the drying of food grains, food processing and
preservation. A civil engineer would need to be aware of the thermal stresses developed in quick
setting concrete, the influence of heat and mass transfer on building and building materials as
well as the effect of heat on nuclear containment and buildings etc. An environmental engineer
is concerned with the effect of heat on dispersion of pollutants in air, transport of pollutants in
soils, lakes and seas and their impact on life. A bioengineer is often interested in the heat and

Fundamentals of the Finite Element Method for Heat and Mass Transfer, Second Edition.
P. Nithiarasu, R. W. Lewis, and K. N. Seetharamu.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.



2 INTRODUCTION

mass transfer processes, such as hypothermia and hyperthermia associated with the human
body.

The above-mentioned applications are only a sample of heat and mass transfer applications.
The solar system and the associated energy transfer from the sun are the principal factors for
existence of life on Earth. It is not untrue to say that it is extremely difficult, often impossible,
to avoid some form of heat transfer in any process on Earth.

The study of heat and mass transfer provides economical and efficient solutions for many
critical problems encountered in diverse engineering items of equipment. For example, we can
consider the development of heat pipes which can transport heat at a much greater rate than
that of copper or silver rods of the same dimensions and even at almost isothermal conditions.
The development of present-day gas turbine blades, where the gas temperature exceeds the
melting point of the blade material, is possible by providing efficient cooling systems. This
is another example of the success of heat transfer design methods. The design of computer
chips, which encounter heat flux of the order occurring in re-entry vehicles, especially when
the surface temperature of the chips is limited to less than 100 °C, is again a success story of
heat transfer design.

Although there are many successful heat transfer designs, further developments on heat
and mass transfer studies are necessary in order to increase the life span and efficiency of the
many devices discussed previously, which can lead to many more new inventions. Also, if we
are to protect our environment, it is essential to understand the many heat and mass transfer
processes involved and if necessary to take appropriate action.

1.2 Heat Transfer Modes

Heat transfer is that section of engineering science that studies the energy transport between
material bodies due to temperature difference (Bejan 1993; Holman 1989; Incropera and
Dewitt 1990; Sukhatme 1992). The three modes of heat transfer are:

(a) conduction
(b) convection and
(c) radiation.

The conduction mode of heat transport occurs either because of an exchange of energy
from one molecule to another without actual motion of the molecules, or is due to the motion
of free electrons if they are present. Therefore, this form of heat transport depends heavily
on the properties of the medium and takes place in solids, liquids and gases if a difference in
temperature exists.

Molecules present in liquids and gases have freedom of motion and by moving from a hot
to a cold region, they carry energy with them. The transfer of heat from one region to another
due to such macroscopic motion in a liquid or gas, added to the energy transfer by conduction
within the fluid, is called heat transfer by convection. Convection may be either free, forced or
mixed. When fluid motion occurs due to a density variation caused by temperature differences,
the situation is said to be a free or natural convection. When the fluid motion is caused by an
external force, such as pumping or blowing, the state is defined as being forced convection.
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A mixed convection state is one in which both natural and forced convection are present.
Convection heat transfer also occurs in boiling and condensation processes.

All bodies emit thermal radiation at all temperatures. This is the only mode which does not
require a material medium for heat transfer to occur. The nature of thermal radiation is such
that a propagation of energy, carried by electromagnetic waves, is emitted from the surface of
the body. When these electromagnetic waves strike other body surfaces, a part is reflected, a
part transmitted and the remaining part is absorbed.

All modes of heat transfer are generally present in varying degrees in a real physical
problem. The important aspects in solving heat transfer problems are to identify the significant
modes and to decide whether the heat transferred by other modes can be neglected.

1.3 The Laws of Heat Transfer

It is important to quantify the amount of energy being transferred per unit time and for that we
require the use of rate equations. For heat conduction, the rate equation is known as Fourier’s
law (Fourier 1955) which is expressed for one dimension, as

dT

q, = —ka, (1.1)

where ¢, is the heat flux in the x direction (W/m?); k is the thermal conductivity (W/mK, a
property of the material, see Table 1.1) and dT /dx the temperature gradient (K/m).

Table 1.1 Typical values of thermal conductivity of some materials in

W/mK at 20 °C.
Material Thermal conductivity, k
Metals:
Pure silver 410
Pure copper 385
Pure aluminium 200
Pure iron 73
Alloys:
Stainless steel (18% Cr, 8% Ni) 16
Aluminium alloy (4.5% Cr) 168
Non metals:
Plastics 0.6
Wood 0.2
Liquid:
Water 0.6
Gasses:

Dry air 0.025 (at atmospheric pressure)
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Table 1.2 Typical values of heat transfer coefficient in W/m?K

Gases (stagnant) 15

Gases (flowing) 15-250
Liquids (stagnant) 100

Liquids (flowing) 100-2000
Boiling liquids 2000-35 000
Condensing vapors 2000-25 000

For convective heat transfer, the rate equation is given by Newton’s law of cooling (Whewell
1866) as

q=nT, -T,), (1.2)

where ¢ is the convective heat flux; (W/m?); (T,, — T,) the temperature difference between the
wall and the fluid and % is the convection heat transfer coefficient (W/m2K) (or film coefficient,
see Table 1.2).

The convection heat transfer coefficient frequently appears as a boundary condition in the
solution of heat conduction through solids, where 4 is often known (Table 1.2).

The maximum flux that can be emitted by radiation from a black surface is given by the
Stefan-Boltzmann Law (Boltzmann 1884; Stefan 1879), that is,

qg=oT,* (1.3)

where ¢ is the radiative heat flux (W/m?); & is the Stefan-Boltzmann constant (5.669 x 1078),
in W/m2K# and T,, is the surface temperature (K).
The heat flux emitted by a real surface is less than that of a black surface and is given by

q=eoT,*, (1.4)

where € is the radiative property of the surface and is referred to as the emissivity. The net
radiant energy exchange between any two surfaces 1 and 2 is given by

Q = F FgoA (T} = T, (1.5)

where F, is a factor which takes into account the nature of the two radiating surfaces; F; a
factor which takes into account the geometric orientation of the two radiating surfaces and A,
is the area of surface 1.

When a heat transfer surface, at temperature 7', is completely enclosed by a much larger
surface at temperature 7,, the net radiant exchange can be calculated by

0 =qA, =€ AT} - T)). (1.6)

With respect to the laws of thermodynamics, only the first law (Clausius 1850) is of
interest in heat transfer problems. The increase of energy in a system is equal to the difference
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between the energy transfer by heat to the system and the energy transfer by work done on the
surroundings by the system, that is,

dE = dQ — dW, (1.7)

where Q is the total heat entering the system and W is the work done by the system on the
surroundings. Since we are interested in the rate of energy transfer in heat transfer processes,
we can restate the first law of thermodynamics as:

“The rate of increase of the energy of the system is equal to the difference between the
rate at which energy enters the system and the rate at which the system does work on the
surroundings,” that is,

dE dQ dw
e =x=_L 1.8
dt dt dt’ (1.8)

where t is the time.

1.4 Mathematical Formulation of Some Heat Transfer
Problems

In analyzing a thermal system, the engineer should be able to identify the relevant heat transfer
processes and only then can the system behavior be quantified properly. In this section, some
typical heat transfer problems are formulated by identifying the appropriate heat transfer
mechanisms.

1.4.1 Heat Transfer from a Plate Exposed to Solar Heat Flux

Consider a plate of size L x B x d exposed to the solar flux of intensity g, as shown in Figure
1.1. In many solar applications, such as a solar water heater, solar cooker etc., the temperature
of the plate is a function of time. The plate loses heat by convection and radiation to the
ambient air, which is at temperature 7,,. Some heat flows through the plate and is convected

qs
|

ST
2w

L

Figure 1.1 Heat transfer from a plate subjected to solar heat flux.
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to the atmosphere from the bottom side. We shall apply the law of conservation of energy to
derive an appropriate equation, the solution of which gives the temperature of the plate with
respect to time.

Heat entering the top surface of the plate:

qAr. (1.9)

Heat loss from the plate to the surroundings:
Top surface:

hAp(T = T,) + ecAp(T* — T, (1.10)
Side surface:

hAY(T — T,) + ecAg(T* — T, (1.11)
Bottom surface:

hAR(T — T,) + ecAg(T* — T, (1.12)

where the subscripts 7, S and B refer respectively to the top, side and bottom surface areas.
The topic of radiation exchange between a gas and a solid surface is not simple. Readers
are referred to appropriate texts for details (Holman 1989; Siegel and Howell 1992). Under
steady-state conditions, the heat received by the plate is lost to the surroundings, thus

qAr =hAr (T —T,) + ecAp (T* = T}) + hAg (T - T,)
+eoAg (T* = TY) + hAg (T - T,) + ecAy (T* = T?). (1.13)
This is a nonlinear algebraic equation because of the presence of the 7# term. The solution
of this equation results in the steady-state temperature of the plate. If we want to calculate
the temperature of the plate as a function of time, #, then we have to consider the rate of rise

in the internal energy of the plate. Substituting E' = volume X p X ¢, X T into the LHS of the
Equation (1.8) gives

(volume) X pcp% = (LBd)pcpZ—f, (1.14)

where p is the density and c,, is the specific heat of the plate. Thus, at any instant of time, the
difference between the heat received and lost (work done on the surroundings) by the plate
will be equal to the rate of change in internal energy heat stored (Equation (1.8)). Thus,

(LBd)pcp% = qAr — [RAp(T = T,)) + ecAy (T* = T}) +
€oAg (T* —T}) + hAg(T — T,) + ecAy (T* - T})] . (1.15)

This is a first-order nonlinear differential equation, which requires an initial condition,
Viz.,

at 1=0,T=T,. (1.16)
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Glass bulb

Filament

Gas

Figure 1.2 Energy balance in an incandescent light source.

The solution is determined iteratively because of the nonlinearity of the problem. Equation
(1.15) can be simplified by substituting relations for the surface areas. It should be noted,
however, that this is a general equation, which can be used for similar systems.

It is important to note that the spatial variation of temperature within the plate is neglected
here. However, this variation can be included via Fourier’s law of heat conduction, Equation
(1.1). Such a variation is necessary if the plate is not thin enough to reach equilibrium instantly
(Section 1.5).

1.4.2 Incandescent Lamp

Figure 1.2 shows an idealized incandescent lamp. The filament is heated to a temperature 7
by an electric current. Heat is convected to the surrounding gas and is radiated to the wall,
which also receives heat from the gas by convection. The wall in turn convects and radiates
heat to the ambient at 7,. A formulation of equations, based on energy balance, is necessary
in order to determine the temperature of the gas and the wall with respect to time.

14.2.1 Gas

Rise in internal energy of the gas:

dT,
ngng. (117)
Convection from the filament to the gas:
heAp(Ty = Tp). (1.18)
Convection from the gas to the wall:
hoAg(Ty —T,,). (1.19)

Radiation from the filament to the gas:

4 i
epso (T =T3). (1.20)



8 INTRODUCTION

Now, the energy balance for the gas gives

pgcpgd—? = hA(T; = T,) = hyA (T, — T,) + ;As0 (T;‘ - T;}) . (1.21)
1.4.2.2 Wall
Rise in internal energy of the wall:
dT,,
PuCpw g (1.22)
Radiation from the filament to the wall:
erorr (TH=T3). (1.23)
Convection from the wall to ambient:
h,A, (T, —T,). (1.24)
Radiation from the wall to ambient:
e,0A, (T} - T). (1.25)

Energy balance for the wall gives

oo v AT =T )+ e,0h <T4—T4>—hA (T, = T,) - e,0A, (T* = T%)
wEpw™ 1 gg\ g w fPOr\F w wiiwitw a wO 8w \ Ty al>
(1.26)

where p, is the density of the gas in the bulb; ¢,, the specific heat of the gas; p,, the density
of the wall of the bulb; Cpw the specific heat of the wall; hf the heat transfer coefficient
between filament and gas; hg the heat transfer coefficient between gas and wall; /,, the heat
transfer coefficient between wall and ambient and e the emissivity. The subscripts f, w, g and
a respectively indicate the filament, wall, gas and ambient.

Equations (1.21) and (1.26) are first-order nonlinear differential equations. The initial
conditions required are

Atr=0,

I,=7T, and T,=T, (1.27)

The simultaneous solution of Equations (1.21) and (1.26), along with the above initial
condition, results in the temperatures of the gas and the wall as functions of time.

1.4.3 Systems with a Relative Motion and Internal Heat Generation

The extrusion of plastics, drawing of wires and artificial fiber (optical fiber), suspended
electrical conductors of various shapes, continuous casting etc. can be treated alike.

In order to derive an energy balance for such a system, we consider a small differential
control volume of length, Ax, as shown in Figure 1.3. In this problem, the heat lost to the
environment by radiation is assumed to be negligibly small. The energy is conducted, convected
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I

~——— hPAx(T-T,)
X+ dx

mey . qx

Figure 1.3 Conservation of energy in a moving body.

and transported with the material in motion. With reference to Figure 1.3, we can write the
following equations of conservation of energy, that is,

0, +me, + GAAx = Q4. + me,, 4 + hPAX(T = T,), (1.28)

where O = Agq is the total heat; m is the mass flow pAu and is assumed to be constant; e, is
the specific energy; p the density of the material; A the cross-sectional area; P the perimeter
of the control volume; G is the heat generated per unit volume and u is the velocity at which
the material is moving. Using the Taylor series of expansion we obtain

de dT
m(e, — e q) = —md—;Ax = —mcpan. (1.29)

Note that de, = c,dT at constant pressure. Similarly, using Fourier’s law (Equation (1.1)),

0, - Qx+dx = _@ d [kA%] .

== 1.30
dx dx ( )

On substituting Equations (1.29) and (1.30) into Equation (1.28), we obtain the following
conservation equation,
|
— |kA
dx

ar

T
5] ~hP(T = T,) = pe,Au- + GA = 0. (1.31)

In the above equation, the first term is derived from the heat diffusion (conduction) within
the material, the second term is due to convection from the material surface to ambient, the
third term represents the heat transport due to the motion of the material, and finally the last
term is added to account for heat generation within the body.
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1.5 Heat Conduction Equation

The determination of temperature distribution in a medium (solid, liquid, gas or combination
of phases) is the main objective of a conduction analysis, that is, to know the temperature in
the medium as a function of space at steady state and as a function of time during the transient
state. Once this temperature distribution is known, the heat flux at any point within the medium,
or on its surface, may be computed from Fourier’s law, Equation (1.1). A knowledge of the
temperature distribution within a solid can be used to determine the structural integrity via
a determination of the thermal stresses and distortion. The optimization of the thickness of
an insulating material and the compatibility of any special coatings or adhesives used on the
material can be studied by knowing the temperature distribution.

We shall now derive the conduction equation in Cartesian coordinates by applying the
energy conservation law to a differential control volume as shown in Figure 1.4. The solution of
the resulting differential equation, with prescribed boundary conditions, gives the temperature
distribution in the medium.

The Taylor series expansion gives:

20
Qx+dx = Qx + a_xxAx

90,
Qy-{-dy = Qy + _Ay

dy
70
Q. =0, + a—ZAz. (1.32)

Z

Q\'+Ay Q.4az

3 // A_)’

0, S y
- - // L Qx+Ax

Az

———

Qy

Figure 1.4 A differential control volume for heat conduction analysis.
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Note that second and higher order terms are neglected in the above equation.The heat
generated in the control volume is GAxAyAz and the rate of change in energy storage is given
as

oT
pcp(AxAyAz)E. (1.33)

Now, with reference to Figure 1.4, we can write the energy balance as

"energy inlet + energy generated = energy stored + energy exit”

that is:
oT
(Q,+ Qy + 0,) + G(AxAyAz) = p(AxAyAz)E +Oiax + Qy+dy + 0 g, (1.34)

Substituting Equation (1.32) into the previous equation and rearranging results in;

0 20, 0
_ 9% Ax— —2Ay— &Az + G(AxAyAzZ) = pc (AxAyAz)g. (1.35)
ox oy 0z b ot

The total heat transfer Q in each direction can be expressed as (area perpendicular to heat
flux direction X heat flux):

oT
Qx = (AyAZ)qx = _kx(AyAZ)E

0, = (AxAz)q, = —ky(AxAz)%
oT
0, = (AxAy)q, = —kz(AxAy)a—Z. (1.36)

Substituting Equation (1.36) into Equation (1.35) and dividing by the volume, AxAyAz,
we get

o, 9T . o[, o] o[, or or
262+ 2 kS| + 2 k2| +G = pe, 2 1.37
5 [ +6y[}0y]+dz[zdz]+ v ot (137

Equation (1.37) is the transient heat conduction equation for a stationary system expressed
in Cartesian coordinates. The thermal conductivity, k, in the above equation is a vector. In its
most general form, the thermal conductivity can be expressed as a tensor, that is,

kxx kxy kxz
k=|ky ky k. (1.38)
kzx 7y bed

The preceding Equations (1.37) and (1.38) are valid for solving heat conduction problems
in anisotropic materials with directional variation in thermal conductivities. In many situations,
however, thermal conductivity can be taken as a nondirectional property, that is, the material



12 INTRODUCTION

is isotropic in nature. In such materials, the heat conduction equation is written as (constant

thermal conductivity):
’T  0°T  *T ., G 10T
— t—t—+—=——, 1.39
ox2  o0y? 02 k aot (1-39)

where a = k/ pcy, is the thermal diffusivity, which is an important parameter in transient heat
conduction analyses. If the analysis is restricted only to steady-state heat conduction without
heat generation, the equation is reduced to

2 2 2
or_ oT oT_, (1.40)
ox2  0y? 072

For a one-dimensional case, the steady-state heat conduction equation is further reduced
to

% (ki—f) —0. (1.41)

The heat conduction equation for a cylindrical coordinate system is given by

1o, or1, 19 [, or], o[, or oT
——k—]+——k—+—k—+G= or. 1.42
rdr[’rar r26¢[¢0¢] 0Z[Zaz] P o0 (142)

In cylindrical coordinates, the heat fluxes can be expressed as

oT
qr = — rE
_ _keor
=" %
oT

q. = _kza_z’ (1.43)

where r, ¢ and z are the cylindrical coordinate directions. The heat conduction equation for a
spherical coordinate system is given by

li kr2£]+<;>i k E +
R2orl” or r2s5in20/ o | ¢ g

1y 9 oT
— V2 |k '0—]+G= o 1.44
(rzs,-mq) 20 [ Y, P ot (1.44)

The heat fluxes in a spherical coordinate system can be expressed as

oT
= —k —
q}" rar
__ ke or
99 rsind d¢
kg oT
gy = ——~ (1.45)

a0’
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where r,¢ and 6 are the spherical coordinate directions. It should be noted that for both
cylindrical and spherical coordinate systems (Equations (1.42) and (1.44)) can be derived in a
similar fashion as for Cartesian coordinates by considering the appropriate differential control
volumes.

1.6 Mass Transfer

When a concentration gradient exists in a fluid mixture, mass transfer takes place from a higher
concentration to a lower concentration location. Such mass transport often takes place at the
molecular level in the form of mass diffusion. The mass transport at the macroscopic level is
referred to as mass convection. Thus, the modes of mass transfer are very similar to the first
two modes of heat transfer, that is, conduction (diffusion) and convection. Mass diffusion is
often described using Fick’s law of mass transport (Fick 1855). This states that the mass flux
of a constituent per unit area is proportional to the concentration gradient, that is,
Tty dC,

Jy=—=- —_—, 1.46
AT AB™ 0 ( )
where 714 is the mass flux per unit time, D,p is the diffusion coefficient and C, is the mass
concentration of the component A. As seen, this expression is very similar to Fourier’s law of
heat conduction (Equation (1.1)). The convective mass flux per unit area may be defined as
N
7 = 1a(Ca = Caoo): (1.47)
where h, is the mass transfer coefficient and C, — C,, is the concentration difference through
which mass transfer occurs. Equation (1.47) is analogous to the Newton’s law of cooling for
heat transfer (Equation (1.2)). Further details on mass transfer are given in Chapter 10.

1.7 Boundary and Initial Conditions

The heat conduction equations discussed in Section 1.5 will be complete for any problem
only if the appropriate boundary and initial conditions are stated. With the necessary boundary
and initial conditions, a solution to the heat conduction equation is possible. The boundary
conditions for the conduction equation can be of two types or a combination of these: the
Dirichlet condition, in which the temperature on the boundaries is known and/or the Neumann
condition, in which the heat flux is imposed, that is (see Figure 1.5):

Dirichlet condition:

T=T, on Iy (1.48)
Neumann condition:
g=-kL =3 o T, (149)
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Tge

Figure 1.5 Boundary conditions.

In the above equations (Equations (1.48) and (1.49)), T, is the prescribed temperature; I"
the boundary surface; n is the outward direction normal to the surface and g is the constant
flux given. The insulated, or adiabatic, condition can be obtained by substituting g = 0. The
convective heat transfer boundary condition also falls into the Neumann category and can be
expressed as

o (1.50)

oT
- ka = h(TW - Ta) on r
It should be observed that the heat conduction equation has second-order terms and hence
faces two types of boundary conditions. Since the time appears as a first-order term, at least
one initial value (i.e., at some instant of time all temperatures must be known) is to be specified
for the entire body, that is,

T=T, alloverthedomain Q at =1, (1.51)

where 1, is a reference time.

The constant or variable temperature conditions are generally easy to implement as tem-
perature is a scalar. However, the implementation of surface fluxes is not as straightforward.
Equation (1.49) can be rewritten with direction cosines of the outward normals as

oT oaT . oT . _
- <kxgl+kya—ym+kZa—Zn> =q on qu (152)

Similarly, Equation (1.50) can be rewritten as

- <k 54k, L4k, 2L
dy

s 57 (1.53)

> =nT-T, on T,

where 7, 7iz and 71 are the direction cosines of the appropriate outward surface normals.
In many industrial applications, for example, wire drawing, crystal growth, continuous
casting, etc., the material will have a motion in space and this motion may be restricted to one



