

Fundamentals of the Finite Element Method for Heat and Mass Transfer Second Edition

P. Nithiarasu, R. W. Lewis, and K. N. Seetharamu

Fundamentals of the Finite Element Method for Heat and Mass Transfer

WILEY SERIES IN COMPUTATIONAL MECHANICS

Series Advisors:

René de Borst Perumal Nithiarasu Tayfun E. Tezduyar Genki Yagawa Tarek Zohdi

Fundamentals of the Finite Element Method for Heat and Mass Transfer	Nithiarasu, Lewis and Seetharamu	January 2016
Introduction to Computational Contact Mechanics: A Geometrical Approach	Konyukhov	April 2015
Extended Finite Element Method: Theory and Applications	Khoei	December 2014
Computational Fluid-Structure Interaction: Methods and Applications	Bazilevs, Takizawa and Tezduyar	January 2013
Introduction to Finite Strain Theory for Continuum Elasto-Plasticity	Hashiguchi and Yamakawa	November 2012
Nonlinear Finite Element Analysis of Solids and Structures, Second Edition	De Borst, Crisfield, Remmers and Verhoosel	August 2012
An Introduction to Mathematical Modeling: A Course in Mechanics	Oden	November 2011
Computational Mechanics of Discontinua	Munjiza, Knight and Rougier	November 2011
Introduction to Finite Element Analysis: Formulation, Verification and Validation	Szabó and Babuška	March 2011

Fundamentals of the Finite Element Method for Heat and Mass Transfer

Second Edition

P. Nithiarasu

Zienkiewicz Centre for Computational Engineering College of Engineering, Swansea University, UK

R. W. Lewis

Zienkiewicz Centre for Computational Engineering College of Engineering, Swansea University, UK

> **K. N. Seetharamu** Department of Mechanical Engineering PESIT, Bangalore, Karnataka, India

WILEY

This edition first published 2016 © 2016 by John Wiley & Sons, Ltd. First edition published 2004 © 2004 by John Wiley & Sons, Ltd.

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

The advice and strategies contained herein may not be suitable for every situation. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read. No warranty may be created or extended by any promotional statements for this work. Neither the publisher nor the author shall be liable for any damages arising herefrom.

Library of Congress Cataloging-in-Publication Data

Names: Nithiarasu, Perumal. | Lewis, R. W. (Roland Wynne) | Seetharamu, K. N.

| Lewis, R. W. (Roland Wynne). Fundamentals of the finite element method for heat and fluid flow.

Title: Fundamentals of the finite element method for heat and mass transfer.

Description: Second edition / P. Nithiarasu, R.W. Lewis, K.N. Seetharamu. | Chichester, West Sussex :

John Wiley & Sons, Inc., 2016. | First edition: Fundamentals of the finite element method for heat and fluid flow / Roland W. Lewis, Perumal Nithiarasu, Kankanhalli N. Seetharamu (Hoboken, NJ : Wiley, 2004). | Includes bibliographical references and index.

Identifiers: LCCN 2015034600 | ISBN 9780470756256 (cloth : alk. paper)

Subjects: LCSH: Finite element method. | Heat equation. | Heat-Transmission.

| Fluid dynamics. | Mass transfer.

Classification: LCC QC20.7.F56 L49 2016 | DDC 530.15/5353–dc23 LC record available at http://lccn.loc.gov/2015034600

A catalogue record for this book is available from the British Library.

Set in 10/12.5pt Times by Aptara Inc., New Delhi, India.

Cover images: courtesy of the authors.

Contents

Preface to the Second Edition		xii	
Se	ries Ec	litor's Preface	xiv
1	Intro	duction	1
	1.1	Importance of Heat and Mass Transfer	1
	1.2	Heat Transfer Modes	2
	1.3	The Laws of Heat Transfer	3
	1.4	Mathematical Formulation of Some Heat Transfer Problems	5
		1.4.1 Heat Transfer from a Plate Exposed to Solar Heat Flux	5
		1.4.2 Incandescent Lamp	7
		1.4.3 Systems with a Relative Motion and Internal Heat Generation	8
	1.5	Heat Conduction Equation	10
	1.6	Mass Transfer	13
	1.7	Boundary and Initial Conditions	13
	1.8	Solution Methodology	15
	1.9	Summary	15
	1.10	Exercises	16
	Refer	ences	17
2	Some	e Basic Discrete Systems	19
	2.1	Introduction	19
	2.2	Steady-state Problems	20
		2.2.1 Heat Flow in a Composite Slab	20
		2.2.2 Fluid Flow Network	23
		2.2.3 Heat Transfer in Heat Sinks	26
	2.3	Transient Heat Transfer Problem	28
	2.4	Summary	31
	2.5	Exercises	31
	Refer	ences	36
3	The l	Finite Element Method	39
	3.1	Introduction	39
	3.2	Elements and Shape Functions	42

		3.2.1	One-dimensional Linear Element	43
		3.2.2	One-dimensional Quadratic Element	46
		3.2.3	Two-dimensional Linear Triangular Element	49
		3.2.4	Area Coordinates	53
		3.2.5	Quadratic Triangular Element	55
		3.2.6	Two-dimensional Quadrilateral Elements	58
		3.2.7	Isoparametric Elements	63
		3.2.8	Three-dimensional Elements	72
	3.3	Formul	ation (Element Characteristics)	76
		3.3.1	Ritz Method (Heat Balance Integral Method – Goodman's Method)	78
		3.3.2	Rayleigh–Ritz Method (Variational Method)	79
		3.3.3	The Method of Weighted Residuals	82
		3.3.4	Galerkin Finite Element Method	86
	3.4	Formul	ation for the Heat Conduction Equation	89
		3.4.1	Variational Approach	90
		3.4.2	The Galerkin Method	93
	3.5	Require	ements for Interpolation Functions	94
	3.6	Summa	ıry	100
	3.7	Exercis	es	100
	Refe	rences		102
4	Stea	dv-State	Heat Conduction in One-dimension	105
	4.1	Introdu	ction	105
	4.2	Plane V	Valls	105
		4.2.1	Homogeneous Wall	105
		4.2.2	Composite Wall	107
		4.2.3	Finite Element Discretization	108
		4.2.4	Wall with Varying Cross-sectional Area	110
		4.2.5	Plane Wall with a Heat Source: Solution by Linear Elements	112
		4.2.6	Plane Wall with Heat Source: Solution by Quadratic Elements	115
		4.2.7	Plane Wall with a Heat Source: Solution by Modified Quadratic	
			Equations (Static Condensation).	117
	4.3	Radial	Heat Conduction in a Cylinder Wall	118
	4.4	Solid C	ylinder with Heat Source	120
	4.5	Conduc	ction – Convection Systems	123
	4.6	Summa	۲. ۱۳۷	126
	4.7	Exercis	es	127
	Refe	rences		129
5	Stea	dv-state l	Heat Conduction in Multi-dimensions	131
-	5.1	Introdu	ction	131
	5.2	Two-di	mensional Plane Problems	132
		5.2.1	Triangular Elements	132
	5.3	Rectang	gular Elements	142

CONTENTS

	5.4 5.5	Plate w Three-c	ith Variable Thickness	145 146
	5.6	Axisyn 5.6.1	nmetric Problems Galerkin Method for Linear Triangular Axisymmetric Elements	148 150
	5.7	Summa	ıry	153
	5.8	Exercis	es	153
	Refe	rences		155
6	Tran	sient He	at Conduction Analysis	157
	6.1	Introdu	ction	157
	6.2	Lumpe	d Heat Capacity System	157
	6.3	Numeri	ical Solution	159
		6.3.1	Transient Governing Equations and Boundary and Initial	
			Conditions	159
		6.3.2	The Galerkin Method	160
	6.4	One-di	mensional Transient State Problem	162
		6.4.1	Time Discretization-Finite Difference Method (FDM)	163
		6.4.2	Time Discretization-Finite Element Method (FEM)	168
	6.5	Stabilit	y	169
	6.6	Multi-d	limensional Transient Heat Conduction	169
	6.7	Summa	ıry	171
	6.8	Exercis	es	171
	Refe	ences	•••••••••••••••••••••••••••••••••••••••	173
7	Lam	inar Cor	nvection Heat Transfer	175
	7.1	Introdu	ction	175
		7.1.1	Types of Fluid Motion Assisted Heat Transport	176
	7.2	Navier-	Stokes Equations	177
		7.2.1	Conservation of Mass or Continuity Equation	177
		7.2.2	Conservation of Momentum	179
		7.2.3	Energy Equation	183
	7.3	Nondin	nensional Form of the Governing Equations	184
	7.4	The Tra	ansient Convection-Diffusion Problem	188
		7.4.1	Finite Element Solution to the Convection-Diffusion Equation	189
		7.4.2	A Simple Characteristic Galerkin Method for Convection-Diffusion	
			Equation	191
		7.4.3	Extension to Multi-dimensions	197
	7.5	Stabilit	y Conditions	202
	7.6	Charac	teristic Based Split (CBS) Scheme	202
		7.6.1	Spatial Discretization	208
		7.6.2	Time-step Calculation	211
		7.6.3	Boundary and Initial Conditions	211
		7.6.4	Steady and Transient Solution Methods	213
	7.7	Artifici	al Compressibility Scheme	214

vii

	7.8	Nusselt Number, Drag and Stream Function	215
		7.8.1 Nusselt Number	215
		7.8.2 Drag Calculation	216
		7.8.3 Stream Function	217
	7.9	Mesh Convergence	218
	7.10	Laminar Isothermal Flow	219
	7.11	Laminar Nonisothermal Flow	231
		7.11.1 Forced Convection Heat Transfer	232
		7.11.2 Buovancy-driven Convection Heat Transfer	238
		7.11.3 Mixed Convection Heat Transfer	240
	7.12	Extension to Axisymmetric Problems	243
	7.13	Summary	246
	7.14	Exercises	247
	Refer	ences	249
8	Turb	ulent Flow and Heat Transfer	253
	8.1	Introduction	253
		8.1.1 Time Averaging	254
		8.1.2 Relationship between κ , ϵ , v_T and α_T	256
	8.2	Treatment of Turbulent Flows	257
		8.2.1 Reynolds Averaged Navier-Stokes (RANS)	257
		8.2.2 One-equation Models	258
		8.2.3 Two-equation Models	259
		8.2.4 Nondimensional Form of the Governing Equations	260
	8.3	Solution Procedure	262
	8.4	Forced Convective Flow and Heat Transfer	263
	8.5	Buoyancy-driven Flow	272
	8.6	Other Methods for Turbulence	275
		8.6.1 Large Eddy Simulation (LES)	275
	8.7	Detached Eddy Simulation (DES) and Monotonically Integrated LES	
		(MILES)	278
	8.8	Direct Numerical Simulation (DNS)	278
	8.9	Summary	279
	Refer	ences	279
9	Heat	Exchangers	281
	9.1	Introduction	281
	9.2	LMTD and Effectiveness-NTU Methods	283
		9.2.1 LMTD Method	283
		9.2.2 Effectiveness – NTU Method	285
	9.3	Computational Approaches	286
		9.3.1 System Analysis	286
		9.3.2 Finite Element Solution to Differential Equations	289
	9.4	Analysis of Heat Exchanger Passages	289

	9.5	Challenges	297
	9.6	Summary	299
	Refere	nces	299
10	Mass	Transfer	301
	10.1	Introduction	301
	10.2	Conservation of Species	302
		10.2.1 Nondimensional Form	304
		10.2.2 Buoyancy-driven Mass Transfer	305
		10.2.3 Double-diffusive Natural Convection	306
	10.3	Numerical Solution	307
	10.4	Turbulent Mass Transport	317
	10.5	Summary	319
	Refer	ences	319
11	Con	reation Heat and Mass Transfer in Davous Madia	201
11		Introduction	3 21 221
	11.1	Congrelized Deroug Medium Flow Approach	224
	11.2	11.2.1 Nondimensional Scales	224
		11.2.1 Nonumensional Scales	220
	113	Discretization Procedure	329
	11.5	11.2.1 Temporal Discretization	220
		11.3.2 Spatial Discretization	330
		11.3.2 Spatial Discretization	227
	11 /	Nonisothermal Flows	222
	11.4	Derous Madium Eluid Interface	240
	11.5	Porous Medium-Fluid Interface	247
	11.0		240
	II./ Defer		249
	Kelei		349
12	Solid	ification	353
	12.1	Introduction	353
	12.2	Solidification via Heat Conduction	354
		12.2.1 The Governing Equations	354
		12.2.2 Enthalpy Formulation	354
	12.3	Convection During Solidification	356
		12.3.1 Governing Equations and Discretization	358
	12.4	Summary	363
	Refer	ences	364
13	Heat	and Mass Transfer in Fuel Cells	365
	13.1	Introduction.	365
		13.1.1 Fuel Cell Types	367
	13.2	Mathematical Model	368

		13.2.1	Anodic and Cathodic Compartments	371
		13.2.2	Electrolyte Compartment	373
	13.3	Numer	ical Solution Algorithms	373
		13.3.1	Finite Element Modeling of SOFC	374
	13.4	Summa	ary	378
	Refer	ences	· · · · · · · · · · · · · · · · · · ·	378
14	An li	ntroduct	ion to Mesh Generation and Adaptive Finite Element Methods	379
	14.1	Introdu	ction	379
	14.2	Mesh C	Seneration	380
		14.2.1	Advancing Front Technique (AFT)	381
		14.2.2	Delaunay Triangulation	382
		14.2.3	Mesh Cosmetics	387
	14.3	Bounda	ary Grid Generation	390
		14.3.1	Boundary Grid for a Planar Domain	390
		14.3.2	NURBS Patches	391
	14.4	Adaptiv	ve Refinement Methods	392
	14.5	Simple	Error Estimation and Mesh Refinement	393
		14.5.1	Heat Conduction	394
	14.6	Interpo	lation Error Based Refinement	397
		14.6.1	Anisotropic Adaptive Procedure	398
		14.6.2	Choice of Variables and Adaptivity	399
	14.7	Summa	ary	401
	Refer	ences		402
15	Impl	ementat	ion of Computer Code	405
15	15.1	Introdu	iction	405
	15.1	Preproc	recsing	406
	15.2	15.2.1	Mesh Generation	406
		15.2.1	I inear Triangular Flement Data	408
		15.2.2	Element Area Calculation	400
		15.2.5	Shape Functions and Their Derivatives	410
		15.2.4	Boundary Normal Calculation	411
		15.2.5	Mass Matrix and Mass Lumping	412
		15.2.0	Implicit Pressure or Heat Conduction Matrix	414
	153	13.2.7 Main I	Init	/16
	15.5	1531	Time sten Calculation	/16
		15.3.1	Flement Loop and Assembly	/10
		15.3.2	Undeting Solution	420
		15.3.5	Boundary Conditions	420
		15.3.4	Monitoring Stoody State	421
	15 /	Dostors	womoning steady state	422
	13.4	15 / 1	Interpolation of Data	423
	15 5	1J.4.1		424
	1J.J Dofor	Summe	u y	424
	Refer	ences		424

CONTENTS

A	Gaussian Elimination Reference	425 426
B	Green's Lemma	427
С	Integration Formulae	429
	C.1 Linear Triangles	429
	C.2 Linear Tetrahedron	429
D	Finite Element Assembly Procedure	431
Е	Simplified Form of the Navier-Stokes Equations	435
F	Calculating Nodal Values of Second Derivatives	437
Ind	ex	439

xi

Preface to the Second Edition

In this second and enhanced edition of the book, we provide the readers with a detailed step-bystep application of the finite element method to heat and mass transfer problems. In addition to the fundamentals of the finite element method and heat and mass transfer, we have attempted to take the readers through some advanced topics of heat and mass transfer. The first edition of the book covered only the application of the finite element method to heat conduction and flow aided laminar heat convection. The second edition of the book has been enhanced further with turbulent flow and heat transfer, and mass transfer, in addition to advanced topics such as fuel cells.We believe that the second edition provides a comprehensive text for students, engineers and scientists who would like to pursue a finite element based heat transfer analysis. This textbook is suitable for beginners, senior undergraduate students, postgraduate students, engineers and early career researchers.

The first three chapters of the book deal with the essential fundamentals of both the heat conduction and the finite element method. In the first chapter, the fundamentals of energy balance and the standard derivations of relevant equations for the heat conduction analysis are discussed. Chapter 2 deals with the basic discrete systems which provide a basis for the finite element method formulations in the following chapters. The discrete system analysis is demonstrated through a variety of simple heat transfer and fluid flow problems. The third chapter gives a comprehensive account of the finite element method formulations and relevant history. Several examples and exercises included in Chapter 3 give the readers a complete overview of the theory and practice associated with the finite element method.

The application of the finite element method to heat conduction problems are discussed in detail in Chapters 4, 5 and 6. The conduction analysis starts with a simple one-dimensional steady-state heat conduction in Chapter 4 and is extended to multi-dimensions in Chapter 5. Chapter 6 gives the transient solution procedures for heat conduction problems.

Chapters 7, 8 and 9 deal with heat transfer by convection. In Chapter 7, heat transfer aided by the laminar motion of a single phase flow is discussed in detail. All the relevant differential equations are derived from first principles. All the three types of convection modes; forced, mixed and natural convection, are discussed in detail. Several examples and comparisons are provided to support the accuracy and flexibility of the finite element procedures discussed. In Chapter 8 the turbulent flow and heat transfer are discussed in some detail. Some examples and comparisons provide the readers a chance to assess the accuracy of the methods employed. Chapter 9 utilizes the finite element method developed in Chapters 1, 7 and 8 to provide a solution approach to flow and heat transfer in compact heat exchangers. Chapter 10 provides an introduction to the application of the finite element to problems of mass transfer. A detailed

PREFACE TO THE SECOND EDITION

description of heat and mass transfer in porous media is then provide in Chapter 11. Two important applications of the finite element method for heat and mass transfer are explained in Chapters 12 and 13. Chapter 12 briefly introduces solidification problems using both heat conduction and convection approaches. Simple examples of solidification in this chapter may serve as a reference for students and researchers working in the area of solidification. In Chapter 13, we introduced a finite element solution approach to studying heat and mass transfer in fuel cells. Although the approach is only explained for solid oxide fuel cells, the method can be easily generalized to other types of fuel cells. Chapter 14 gives the reader sufficient information to understand the process of mesh generation. The main focus of this chapter is automatic and unstructured mesh generation. Some aspects of the adaptive mesh generation are also covered in this chapter. Finally, Chapter 15 briefly introduces the topic of computer implementation. The readers will be able to download the two-dimensional source codes and documentations from the website: **www.zetacomp.com**

Many people have assisted the authors either directly or indirectly during the preparation of this textbook. In particular, the authors wish to thank Dr Alessandro Mauro, Universitá degli Studi di Napoli Parthenope, for proofreading Chapter 13 and Dr Igor Sazonov, Swansea University, for helping the authors to put together part of Chapter 14. We would also like thank all our students, postdoctoral researchers and colleagues for providing help and support.

P. Nithiarasu, Swansea R. W. Lewis, Swansea K. N. Seetharamu, Bangalore

Series Editor's Preface

It is known that heat transfer provides a good context for teaching finite element methods and other computational mechanics topics. Fundamental concepts can be explained with such simple examples as heat conduction in 1D, then in 2D and 3D, and convective terms can be added to describe the special methods needed to deal with that class of partial differential equations. This book in our series does that, and with its distinguished, experienced authors, does it well. It not only teaches how to solve heat and mass transfer problems with finite element methods, but it also serves the purpose of teaching many different concepts in finite element methods. Readers from very diverse backgrounds will be able to benefit from this book. The book can be used by engineering undergraduate students to learn the fundamentals of heat and mass transfer and numerical methods, by graduate students in engineering and sciences to learn the advanced topics they need to know, and by practicing engineers and scientists as a good source and guide for research and development work in heat and mass transfer. 1

Introduction

1.1 Importance of Heat and Mass Transfer

The subject of heat and mass transfer is of fundamental importance in many branches of engineering. A mechanical engineer may be interested to know the mechanisms of heat transfer involved in the operation of equipment, for example, boilers, condensers, air preheaters, economizers etc., in a thermal power plant in order to improve their performance. Nuclear power plants require precise information on heat transfer as safe operation is an important factor in their design. Refrigeration and air-conditioning systems also involve heatexchanging devices, which need careful design. *Electrical engineers* are keen to avoid material damage in electric motors, generators and transformers due to hot spots, developed by improper heat transfer design. An *electronic engineer* is interested in knowing efficient methods of heat dissipation from chips and semi-conductor devices so that they function within safe operating temperatures. A computer hardware engineer is interested to know the cooling requirements of circuit-boards, as the miniaturization of computing devices is advancing at a rapid rate. Chemical engineers are interested in heat and mass transfer processes in various chemical reactions. A metallurgical engineer would be interested in knowing the rate of heat transfer required for a particular heat treatment process, e.g. the rate of cooling in a casting process has a profound influence on the quality of the final product. Aeronautical engineers are interested in knowing the heat transfer rate in rocket nozzles and in heat shields used in re-entry vehicles. An agricultural engineer would be interested in the drying of food grains, food processing and preservation. A civil engineer would need to be aware of the thermal stresses developed in quick setting concrete, the influence of heat and mass transfer on building and building materials as well as the effect of heat on nuclear containment and buildings etc. An environmental engineer is concerned with the effect of heat on dispersion of pollutants in air, transport of pollutants in soils, lakes and seas and their impact on life. A *bioengineer* is often interested in the heat and

Fundamentals of the Finite Element Method for Heat and Mass Transfer, Second Edition.

P. Nithiarasu, R. W. Lewis, and K. N. Seetharamu.

^{© 2016} John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.

mass transfer processes, such as hypothermia and hyperthermia associated with the human body.

The above-mentioned applications are only a sample of heat and mass transfer applications. The solar system and the associated energy transfer from the sun are the principal factors for existence of life on Earth. It is not untrue to say that it is extremely difficult, often impossible, to avoid some form of heat transfer in any process on Earth.

The study of heat and mass transfer provides economical and efficient solutions for many critical problems encountered in diverse engineering items of equipment. For example, we can consider the development of heat pipes which can transport heat at a much greater rate than that of copper or silver rods of the same dimensions and even at almost isothermal conditions. The development of present-day gas turbine blades, where the gas temperature exceeds the melting point of the blade material, is possible by providing efficient cooling systems. This is another example of the success of heat transfer design methods. The design of computer chips, which encounter heat flux of the order occurring in re-entry vehicles, especially when the surface temperature of the chips is limited to less than 100 °C, is again a success story of heat transfer design.

Although there are many successful heat transfer designs, further developments on heat and mass transfer studies are necessary in order to increase the life span and efficiency of the many devices discussed previously, which can lead to many more new inventions. Also, if we are to protect our environment, it is essential to understand the many heat and mass transfer processes involved and if necessary to take appropriate action.

1.2 Heat Transfer Modes

Heat transfer is that section of engineering science that studies the energy transport between material bodies due to temperature difference (Bejan 1993; Holman 1989; Incropera and Dewitt 1990; Sukhatme 1992). The three modes of heat transfer are:

- (a) conduction
- (b) convection and
- (c) radiation.

The conduction mode of heat transport occurs either because of an exchange of energy from one molecule to another without actual motion of the molecules, or is due to the motion of free electrons if they are present. Therefore, this form of heat transport depends heavily on the properties of the medium and takes place in solids, liquids and gases if a difference in temperature exists.

Molecules present in liquids and gases have freedom of motion and by moving from a hot to a cold region, they carry energy with them. The transfer of heat from one region to another due to such macroscopic motion in a liquid or gas, added to the energy transfer by conduction within the fluid, is called heat transfer by convection. Convection may be either free, forced or mixed. When fluid motion occurs due to a density variation caused by temperature differences, the situation is said to be a free or natural convection. When the fluid motion is caused by an external force, such as pumping or blowing, the state is defined as being forced convection.

A mixed convection state is one in which both natural and forced convection are present. Convection heat transfer also occurs in boiling and condensation processes.

All bodies emit thermal radiation at all temperatures. This is the only mode which does not require a material medium for heat transfer to occur. The nature of thermal radiation is such that a propagation of energy, carried by *electromagnetic waves*, is emitted from the surface of the body. When these electromagnetic waves strike other body surfaces, a part is reflected, a part transmitted and the remaining part is absorbed.

All modes of heat transfer are generally present in varying degrees in a real physical problem. The important aspects in solving heat transfer problems are to identify the significant modes and to decide whether the heat transferred by other modes can be neglected.

1.3 The Laws of Heat Transfer

It is important to quantify the amount of energy being transferred per unit time and for that we require the use of rate equations. For heat conduction, the rate equation is known as *Fourier's law* (Fourier 1955) which is expressed for one dimension, as

$$q_x = -k\frac{dT}{dx},\tag{1.1}$$

where q_x is the heat flux in the x direction (W/m²); k is the thermal conductivity (W/mK, a property of the material, see Table 1.1) and dT/dx the temperature gradient (K/m).

Material	Thermal conductivity, k
Metals:	
Pure silver	410
Pure copper	385
Pure aluminium	200
Pure iron	73
Alloys:	
Stainless steel (18% Cr, 8% Ni)	16
Aluminium alloy (4.5% Cr)	168
Non metals:	
Plastics	0.6
Wood	0.2
Liquid:	
Water	0.6
Gasses:	
Dry air	0.025 (at atmospheric pressure)

Table 1.1 Typical values of thermal conductivity of some materials in W/mK at 20 $^{\circ}$ C.

Gases (stagnant)	15
Gases (flowing)	15–250
Liquids (stagnant)	100
Liquids (flowing)	100-2000
Boiling liquids	2000-35 000
Condensing vapors	2000-25 000

Table 1.2 Typical values of heat transfer coefficient in W/m²K

For convective heat transfer, the rate equation is given by *Newton's law* of cooling (Whewell 1866) as

$$q = h(T_w - T_a), \tag{1.2}$$

where q is the convective heat flux; (W/m^2) ; $(T_w - T_a)$ the temperature difference between the wall and the fluid and h is the convection heat transfer coefficient (W/m^2K) (or film coefficient, see Table 1.2).

The convection heat transfer coefficient frequently appears as a boundary condition in the solution of heat conduction through solids, where h is often known (Table 1.2).

The maximum flux that can be emitted by radiation from a black surface is given by the *Stefan-Boltzmann Law* (Boltzmann 1884; Stefan 1879), that is,

$$q = \sigma T_w^{4}, \tag{1.3}$$

where q is the radiative heat flux (W/m²); σ is the Stefan-Boltzmann constant (5.669 × 10⁻⁸), in W/m²K⁴ and T_w is the surface temperature (K).

The heat flux emitted by a real surface is less than that of a black surface and is given by

$$q = \epsilon \sigma T_w^{-4}, \tag{1.4}$$

where ϵ is the radiative property of the surface and is referred to as the emissivity. The net radiant energy exchange between any two surfaces 1 and 2 is given by

$$Q = F_{\epsilon}F_{G}\sigma A_{1}(T_{1}^{4} - T_{2}^{4}), \qquad (1.5)$$

where F_{ϵ} is a factor which takes into account the nature of the two radiating surfaces; F_G a factor which takes into account the geometric orientation of the two radiating surfaces and A_1 is the area of surface 1.

When a heat transfer surface, at temperature T_1 , is completely enclosed by a much larger surface at temperature T_2 , the net radiant exchange can be calculated by

$$Q = qA_1 = \epsilon_1 \sigma A_1 (T_1^4 - T_2^4).$$
(1.6)

With respect to the laws of thermodynamics, only the first law (Clausius 1850) is of interest in heat transfer problems. The increase of energy in a system is equal to the difference

between the energy transfer by heat to the system and the energy transfer by work done on the surroundings by the system, that is,

$$dE = dQ - dW, \tag{1.7}$$

where Q is the total heat entering the system and W is the work done by the system on the surroundings. Since we are interested in the rate of energy transfer in heat transfer processes, we can restate the first law of thermodynamics as:

"The rate of increase of the energy of the system is equal to the difference between the rate at which energy enters the system and the rate at which the system does work on the surroundings," that is,

$$\frac{dE}{dt} = \frac{dQ}{dt} - \frac{dW}{dt},\tag{1.8}$$

where t is the time.

1.4 Mathematical Formulation of Some Heat Transfer Problems

In analyzing a thermal system, the engineer should be able to identify the relevant heat transfer processes and only then can the system behavior be quantified properly. In this section, some typical heat transfer problems are formulated by identifying the appropriate heat transfer mechanisms.

1.4.1 Heat Transfer from a Plate Exposed to Solar Heat Flux

Consider a plate of size $L \ge B \ge d$ exposed to the solar flux of intensity q_s as shown in Figure 1.1. In many solar applications, such as a solar water heater, solar cooker etc., the temperature of the plate is a function of time. The plate loses heat by convection and radiation to the ambient air, which is at temperature T_q . Some heat flows through the plate and is convected

Figure 1.1 Heat transfer from a plate subjected to solar heat flux.

to the atmosphere from the bottom side. We shall apply the law of conservation of energy to derive an appropriate equation, the solution of which gives the temperature of the plate with respect to time.

Heat entering the top surface of the plate:

$$q_s A_T. \tag{1.9}$$

Heat loss from the plate to the surroundings: Top surface:

$$hA_T(T - T_a) + \epsilon \sigma A_T(T^4 - T_a^4), \qquad (1.10)$$

Side surface:

$$hA_S(T - T_a) + \epsilon \sigma A_S(T^4 - T_a^4), \qquad (1.11)$$

Bottom surface:

$$hA_B(T - T_a) + \epsilon \sigma A_B(T^4 - T_a^4), \qquad (1.12)$$

where the subscripts T, S and B refer respectively to the top, side and bottom surface areas. The topic of radiation exchange between a gas and a solid surface is not simple. Readers are referred to appropriate texts for details (Holman 1989; Siegel and Howell 1992). Under steady-state conditions, the heat received by the plate is lost to the surroundings, thus

$$q_{s}A_{T} = hA_{T}\left(T - T_{a}\right) + \epsilon\sigma A_{T}\left(T^{4} - T_{a}^{4}\right) + hA_{S}\left(T - T_{a}\right) +\epsilon\sigma A_{S}\left(T^{4} - T_{a}^{4}\right) + hA_{B}\left(T - T_{a}\right) + \epsilon\sigma A_{B}\left(T^{4} - T_{a}^{4}\right).$$
(1.13)

This is a nonlinear algebraic equation because of the presence of the T^4 term. The solution of this equation results in the steady-state temperature of the plate. If we want to calculate the temperature of the plate as a function of time, *t*, then we have to consider the rate of rise in the internal energy of the plate. Substituting $E = volume \times \rho \times c_p \times T$ into the LHS of the Equation (1.8) gives

$$(volume) \times \rho c_p \frac{dT}{dt} = (LBd)\rho c_p \frac{dT}{dt},$$
 (1.14)

where ρ is the density and c_p is the specific heat of the plate. Thus, at any instant of time, the difference between the heat received and lost (work done on the surroundings) by the plate will be equal to the rate of change in internal energy heat stored (Equation (1.8)). Thus,

$$(LBd)\rho c_p \frac{dT}{dt} = q_s A_T - \left[hA_T(T - T_a) + \epsilon \sigma A_T \left(T^4 - T_a^4\right) + \epsilon \sigma A_S \left(T^4 - T_a^4\right) + hA_B(T - T_a) + \epsilon \sigma A_B \left(T^4 - T_a^4\right)\right].$$
(1.15)

This is a first-order nonlinear differential equation, which requires an initial condition, viz.,

at
$$t = 0, T = T_a$$
. (1.16)

Figure 1.2 Energy balance in an incandescent light source.

The solution is determined iteratively because of the nonlinearity of the problem. Equation (1.15) can be simplified by substituting relations for the surface areas. It should be noted, however, that this is a general equation, which can be used for similar systems.

It is important to note that the spatial variation of temperature within the plate is neglected here. However, this variation can be included via Fourier's law of heat conduction, Equation (1.1). Such a variation is necessary if the plate is not thin enough to reach equilibrium instantly (Section 1.5).

1.4.2 Incandescent Lamp

Figure 1.2 shows an idealized incandescent lamp. The filament is heated to a temperature T_f by an electric current. Heat is convected to the surrounding gas and is radiated to the wall, which also receives heat from the gas by convection. The wall in turn convects and radiates heat to the ambient at T_a . A formulation of equations, based on energy balance, is necessary in order to determine the temperature of the gas and the wall with respect to time.

1.4.2.1 Gas

Rise in internal energy of the gas:

$$\rho_g c_{pg} \frac{dT_g}{dt}.$$
(1.17)

Convection from the filament to the gas:

$$h_f A_f (T_f - T_g).$$
 (1.18)

Convection from the gas to the wall:

$$h_g A_g (T_g - T_w).$$
 (1.19)

Radiation from the filament to the gas:

$$\epsilon_f A_f \sigma \left(T_f^4 - T_g^4 \right). \tag{1.20}$$

Now, the energy balance for the gas gives

100

$$\rho_g c_{pg} \frac{dT_g}{dT} = h_f A_f (T_f - T_g) - h_g A_g (T_g - T_w) + \epsilon_f A_f \sigma \left(T_f^4 - T_g^4 \right).$$
(1.21)

1.4.2.2 Wall

Rise in internal energy of the wall:

$$\rho_w c_{pw} \frac{dT_w}{dt}.$$
(1.22)

Radiation from the filament to the wall:

$$\epsilon_f \sigma A_f \left(T_f^4 - T_w^4 \right). \tag{1.23}$$

Convection from the wall to ambient:

$$h_w A_w (T_w - T_a).$$
 (1.24)

Radiation from the wall to ambient:

$$\epsilon_w \sigma A_w \left(T_w^4 - T_a^4 \right). \tag{1.25}$$

Energy balance for the wall gives

$$\rho_{w}c_{pw}\frac{dT_{w}}{dt} = h_{g}A_{g}(T_{g} - T_{w}) + \epsilon_{f}\sigma A_{f}\left(T_{f}^{4} - T_{w}^{4}\right) - h_{w}A_{w}(T_{w} - T_{a}) - \epsilon_{w}\sigma A_{w}\left(T_{w}^{4} - T_{a}^{4}\right),$$
(1.26)

where ρ_g is the density of the gas in the bulb; c_{pg} the specific heat of the gas; ρ_w the density of the wall of the bulb; c_{pw} the specific heat of the wall; h_f the heat transfer coefficient between filament and gas; h_g the heat transfer coefficient between gas and wall; h_w the heat transfer coefficient between wall and ambient and ϵ the emissivity. The subscripts f, w, g and a respectively indicate the filament, wall, gas and ambient.

Equations (1.21) and (1.26) are first-order nonlinear differential equations. The initial conditions required are

At t = 0,

$$T_g = T_a \quad \text{and} \quad T_w = T_a. \tag{1.27}$$

The simultaneous solution of Equations (1.21) and (1.26), along with the above initial condition, results in the temperatures of the gas and the wall as functions of time.

1.4.3 Systems with a Relative Motion and Internal Heat Generation

The extrusion of plastics, drawing of wires and artificial fiber (optical fiber), suspended electrical conductors of various shapes, continuous casting etc. can be treated alike.

In order to derive an energy balance for such a system, we consider a small differential control volume of length, Δx , as shown in Figure 1.3. In this problem, the heat lost to the environment by radiation is assumed to be negligibly small. The energy is conducted, convected

Figure 1.3 Conservation of energy in a moving body.

and transported with the material in motion. With reference to Figure 1.3, we can write the following equations of conservation of energy, that is,

$$Q_x + me_x + GA\Delta x = Q_{x+dx} + me_{x+dx} + hP\Delta x(T - T_a), \qquad (1.28)$$

where Q = Aq is the total heat; *m* is the mass flow ρAu and is assumed to be constant; e_x is the specific energy; ρ the density of the material; *A* the cross-sectional area; *P* the perimeter of the control volume; *G* is the heat generated per unit volume and *u* is the velocity at which the material is moving. Using the Taylor series of expansion we obtain

$$m(e_x - e_{x+dx}) = -m\frac{de_x}{dx}\Delta x = -mc_p\frac{dT}{dx}\Delta x.$$
(1.29)

Note that $de_x = c_p dT$ at constant pressure. Similarly, using Fourier's law (Equation (1.1)),

$$Q_x - Q_{x+dx} = -\frac{dQ_x}{dx} = \frac{d}{dx} \left[kA \frac{dT}{dx} \right].$$
(1.30)

On substituting Equations (1.29) and (1.30) into Equation (1.28), we obtain the following conservation equation,

$$\frac{d}{dx}\left[kA\frac{dT}{dx}\right] - hP(T - T_a) - \rho c_p A u \frac{dT}{dx} + GA = 0.$$
(1.31)

In the above equation, the first term is derived from the heat diffusion (conduction) within the material, the second term is due to convection from the material surface to ambient, the third term represents the heat transport due to the motion of the material, and finally the last term is added to account for heat generation within the body.

1.5 Heat Conduction Equation

The determination of temperature distribution in a medium (solid, liquid, gas or combination of phases) is the main objective of a conduction analysis, that is, to know the temperature in the medium as a function of space at steady state and as a function of time during the transient state. Once this temperature distribution is known, the heat flux at any point within the medium, or on its surface, may be computed from Fourier's law, Equation (1.1). A knowledge of the temperature distribution within a solid can be used to determine the structural integrity via a determination of the thermal stresses and distortion. The optimization of the thickness of an insulating material and the compatibility of any special coatings or adhesives used on the material can be studied by knowing the temperature distribution.

We shall now derive the conduction equation in Cartesian coordinates by applying the energy conservation law to a differential control volume as shown in Figure 1.4. The solution of the resulting differential equation, with prescribed boundary conditions, gives the temperature distribution in the medium.

The Taylor series expansion gives:

$$Q_{x+dx} = Q_x + \frac{\partial Q_x}{\partial x} \Delta x$$

$$Q_{y+dy} = Q_y + \frac{\partial Q_y}{\partial y} \Delta y$$

$$Q_{z+dz} = Q_z + \frac{\partial Q_z}{\partial z} \Delta z.$$
(1.32)

Figure 1.4 A differential control volume for heat conduction analysis.

Note that second and higher order terms are neglected in the above equation. The heat generated in the control volume is $G\Delta x\Delta y\Delta z$ and the rate of change in energy storage is given as

$$\rho c_p(\Delta x \Delta y \Delta z) \frac{\partial T}{\partial t}.$$
(1.33)

Now, with reference to Figure 1.4, we can write the energy balance as

"energy inlet + energy generated = energy stored + energy exit"

that is:

$$(Q_x + Q_y + Q_z) + G(\Delta x \Delta y \Delta z) = \rho(\Delta x \Delta y \Delta z) \frac{\partial T}{\partial t} + Q_{x+dx} + Q_{y+dy} + Q_{z+dz}.$$
 (1.34)

Substituting Equation (1.32) into the previous equation and rearranging results in;

$$-\frac{\partial Q_x}{\partial x}\Delta x - \frac{\partial Q_y}{\partial y}\Delta y - \frac{\partial Q_z}{\partial z}\Delta z + G(\Delta x \Delta y \Delta z) = \rho c_p (\Delta x \Delta y \Delta z) \frac{\partial T}{\partial t}.$$
 (1.35)

The total heat transfer Q in each direction can be expressed as (area perpendicular to heat flux direction \times heat flux):

$$Q_x = (\Delta y \Delta z)q_x = -k_x (\Delta y \Delta z) \frac{\partial T}{\partial x}$$

$$Q_y = (\Delta x \Delta z)q_y = -k_y (\Delta x \Delta z) \frac{\partial T}{\partial y}$$

$$Q_z = (\Delta x \Delta y)q_z = -k_z (\Delta x \Delta y) \frac{\partial T}{\partial z}.$$
(1.36)

Substituting Equation (1.36) into Equation (1.35) and dividing by the volume, $\Delta x \Delta y \Delta z$, we get

$$\frac{\partial}{\partial x} \left[k_x \frac{\partial T}{\partial x} \right] + \frac{\partial}{\partial y} \left[k_y \frac{\partial T}{\partial y} \right] + \frac{\partial}{\partial z} \left[k_z \frac{\partial T}{\partial z} \right] + G = \rho c_p \frac{\partial T}{\partial t}.$$
(1.37)

Equation (1.37) is the transient heat conduction equation for a stationary system expressed in Cartesian coordinates. The thermal conductivity, k, in the above equation is a vector. In its most general form, the thermal conductivity can be expressed as a tensor, that is,

$$\mathbf{k} = \begin{bmatrix} k_{xx} & k_{xy} & k_{xz} \\ k_{yx} & k_{yy} & k_{yz} \\ k_{zx} & k_{zy} & k_{zz} \end{bmatrix}.$$
 (1.38)

The preceding Equations (1.37) and (1.38) are valid for solving heat conduction problems in anisotropic materials with directional variation in thermal conductivities. In many situations, however, thermal conductivity can be taken as a nondirectional property, that is, the material is isotropic in nature. In such materials, the heat conduction equation is written as (constant thermal conductivity):

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} + \frac{G}{k} = \frac{1}{\alpha} \frac{\partial T}{\partial t},$$
(1.39)

where $\alpha = k/\rho c_p$ is the *thermal diffusivity*, which is an important parameter in transient heat conduction analyses. If the analysis is restricted only to steady-state heat conduction without heat generation, the equation is reduced to

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} = 0.$$
(1.40)

For a one-dimensional case, the steady-state heat conduction equation is further reduced to

$$\frac{d}{dx}\left(k\frac{dT}{dx}\right) = 0. \tag{1.41}$$

The heat conduction equation for a cylindrical coordinate system is given by

$$\frac{1}{r}\frac{\partial}{\partial r}\left[k_{r}r\frac{\partial T}{\partial r}\right] + \frac{1}{r^{2}}\frac{\partial}{\partial \phi}\left[k_{\phi}\frac{\partial T}{\partial \phi}\right] + \frac{\partial}{\partial z}\left[k_{z}\frac{\partial T}{\partial z}\right] + G = \rho c_{p}\frac{\partial T}{\partial t}.$$
(1.42)

In cylindrical coordinates, the heat fluxes can be expressed as

$$q_r = -k_r \frac{\partial T}{\partial r}$$

$$q_{\phi} = -\frac{k_{\phi}}{r} \frac{\partial T}{\partial \phi}$$

$$q_z = -k_z \frac{\partial T}{\partial z},$$
(1.43)

where r, ϕ and z are the cylindrical coordinate directions. The heat conduction equation for a spherical coordinate system is given by

$$\frac{1}{r^{2}}\frac{\partial}{\partial r}\left[k_{r}r^{2}\frac{\partial T}{\partial r}\right] + \left(\frac{1}{r^{2}sin^{2}\theta}\right)\frac{\partial}{\partial\phi}\left[k_{\phi}\frac{\partial T}{\partial\phi}\right] + \left(\frac{1}{r^{2}sin\theta}\right)\frac{\partial}{\partial\theta}\left[k_{\theta}sin\theta\frac{\partial T}{\partial\theta}\right] + G = \rho c_{p}\frac{\partial T}{\partial t}.$$
(1.44)

The heat fluxes in a spherical coordinate system can be expressed as

$$q_{r} = -k_{r} \frac{\partial T}{\partial r}$$

$$q_{\phi} = -\frac{k_{\phi}}{r \sin \theta} \frac{\partial T}{\partial \phi}$$

$$q_{\theta} = -\frac{k_{\theta}}{r} \frac{\partial T}{\partial \theta},$$
(1.45)

where r, ϕ and θ are the spherical coordinate directions. It should be noted that for both cylindrical and spherical coordinate systems (Equations (1.42) and (1.44)) can be derived in a similar fashion as for Cartesian coordinates by considering the appropriate differential control volumes.

1.6 Mass Transfer

When a concentration gradient exists in a fluid mixture, mass transfer takes place from a higher concentration to a lower concentration location. Such mass transport often takes place at the molecular level in the form of mass diffusion. The mass transport at the macroscopic level is referred to as mass convection. Thus, the modes of mass transfer are very similar to the first two modes of heat transfer, that is, conduction (diffusion) and convection. Mass diffusion is often described using Fick's law of mass transport (Fick 1855). This states that the mass flux of a constituent per unit area is proportional to the concentration gradient, that is,

$$J_A = \frac{\dot{m}_A}{A} = -D_{AB} \frac{dC_A}{dx},\tag{1.46}$$

where \dot{m}_A is the mass flux per unit time, D_{AB} is the diffusion coefficient and C_A is the mass concentration of the component A. As seen, this expression is very similar to Fourier's law of heat conduction (Equation (1.1)). The convective mass flux per unit area may be defined as

$$\frac{\dot{m}_A}{A} = h_A (C_A - C_{A\infty}), \tag{1.47}$$

where h_A is the mass transfer coefficient and $C_A - C_{A\infty}$ is the concentration difference through which mass transfer occurs. Equation (1.47) is analogous to the Newton's law of cooling for heat transfer (Equation (1.2)). Further details on mass transfer are given in Chapter 10.

1.7 Boundary and Initial Conditions

The heat conduction equations discussed in Section 1.5 will be complete for any problem only if the appropriate boundary and initial conditions are stated. With the necessary boundary and initial conditions, a solution to the heat conduction equation is possible. The boundary conditions for the conduction equation can be of two types or a combination of these: the *Dirichlet* condition, in which the temperature on the boundaries is known and/or the *Neumann* condition, in which the heat flux is imposed, that is (see Figure 1.5):

Dirichlet condition:

$$T = T_o \qquad \text{on} \qquad \Gamma_T. \tag{1.48}$$

Neumann condition:

$$q = -k \frac{\partial T}{\partial n} = \bar{q}$$
 on Γ_{qf} . (1.49)

Figure 1.5 Boundary conditions.

In the above equations (Equations (1.48) and (1.49)), T_o is the prescribed temperature; Γ the boundary surface; *n* is the outward direction normal to the surface and \bar{q} is the constant flux given. The insulated, or adiabatic, condition can be obtained by substituting $\bar{q} = 0$. The convective heat transfer boundary condition also falls into the *Neumann* category and can be expressed as

$$-k\frac{\partial T}{\partial n} = h(T_w - T_a)$$
 on Γ_{qc} . (1.50)

It should be observed that the heat conduction equation has second-order terms and hence faces two types of boundary conditions. Since the time appears as a first-order term, at least one initial value (i.e., at some instant of time all temperatures must be known) is to be specified for the entire body, that is,

$$T = T_0$$
 all over the domain Ω at $t = t_0$, (1.51)

where t_0 is a reference time.

The constant or variable temperature conditions are generally easy to implement as temperature is a scalar. However, the implementation of surface fluxes is not as straightforward. Equation (1.49) can be rewritten with direction cosines of the outward normals as

$$-\left(k_x\frac{\partial T}{\partial x}\tilde{l}+k_y\frac{\partial T}{\partial y}\tilde{m}+k_z\frac{\partial T}{\partial z}\tilde{n}\right)=\bar{q}\quad\text{on}\quad\Gamma_{qf}.$$
(1.52)

Similarly, Equation (1.50) can be rewritten as

$$-\left(k_x\frac{\partial T}{\partial x}\tilde{l}+k_y\frac{\partial T}{\partial y}\tilde{m}+k_z\frac{\partial T}{\partial z}\tilde{n}\right)=h(T-T_a)\quad\text{on}\quad\Gamma_{qc},$$
(1.53)

where \tilde{l} , \tilde{m} and \tilde{n} are the direction cosines of the appropriate outward surface normals.

In many industrial applications, for example, wire drawing, crystal growth, continuous casting, etc., the material will have a motion in space and this motion may be restricted to one